327 research outputs found

    Middleware-based Database Replication: The Gaps between Theory and Practice

    Get PDF
    The need for high availability and performance in data management systems has been fueling a long running interest in database replication from both academia and industry. However, academic groups often attack replication problems in isolation, overlooking the need for completeness in their solutions, while commercial teams take a holistic approach that often misses opportunities for fundamental innovation. This has created over time a gap between academic research and industrial practice. This paper aims to characterize the gap along three axes: performance, availability, and administration. We build on our own experience developing and deploying replication systems in commercial and academic settings, as well as on a large body of prior related work. We sift through representative examples from the last decade of open-source, academic, and commercial database replication systems and combine this material with case studies from real systems deployed at Fortune 500 customers. We propose two agendas, one for academic research and one for industrial R&D, which we believe can bridge the gap within 5-10 years. This way, we hope to both motivate and help researchers in making the theory and practice of middleware-based database replication more relevant to each other.Comment: 14 pages. Appears in Proc. ACM SIGMOD International Conference on Management of Data, Vancouver, Canada, June 200

    Elastic Business Process Management: State of the Art and Open Challenges for BPM in the Cloud

    Full text link
    With the advent of cloud computing, organizations are nowadays able to react rapidly to changing demands for computational resources. Not only individual applications can be hosted on virtual cloud infrastructures, but also complete business processes. This allows the realization of so-called elastic processes, i.e., processes which are carried out using elastic cloud resources. Despite the manifold benefits of elastic processes, there is still a lack of solutions supporting them. In this paper, we identify the state of the art of elastic Business Process Management with a focus on infrastructural challenges. We conceptualize an architecture for an elastic Business Process Management System and discuss existing work on scheduling, resource allocation, monitoring, decentralized coordination, and state management for elastic processes. Furthermore, we present two representative elastic Business Process Management Systems which are intended to counter these challenges. Based on our findings, we identify open issues and outline possible research directions for the realization of elastic processes and elastic Business Process Management.Comment: Please cite as: S. Schulte, C. Janiesch, S. Venugopal, I. Weber, and P. Hoenisch (2015). Elastic Business Process Management: State of the Art and Open Challenges for BPM in the Cloud. Future Generation Computer Systems, Volume NN, Number N, NN-NN., http://dx.doi.org/10.1016/j.future.2014.09.00

    Providing Transaction Class-Based QoS in In-Memory Data Grids via Machine Learning

    Get PDF
    Elastic architectures and the ”pay-as-you-go” resource pricing model offered by many cloud infrastructure providers may seem the right choice for companies dealing with data centric applications characterized by high variable workload. In such a context, in-memory transactional data grids have demonstrated to be particularly suited for exploiting advantages provided by elastic computing platforms, mainly thanks to their ability to be dynamically (re-)sized and tuned. Anyway, when specific QoS requirements have to be met, this kind of architectures have revealed to be complex to be managed by humans. Particularly, their management is a very complex task without the stand of mechanisms supporting run-time automatic sizing/tuning of the data platform and the underlying (virtual) hardware resources provided by the cloud. In this paper, we present a neural network-based architecture where the system is constantly and automatically re-configured, particularly in terms of computing resources

    Modeling and Simulation of Multi-tier Enterprise IT System

    Get PDF
    This paper discusses modelling and simulation of multi-tier enterprise IT system. The layers in multi-tier architecture consist of web layer, application layer and database layer. Entities in the multi-tier system have been abstracted out into 3 categories- consumer, resource and router. Existing modelling and simulation frameworks for multi-tier systems focus on power management or performance of load balancing algorithms. Our framework enables seamless modelling, simulation, and experimentation of a wide range of what-if scenarios in multi-tier systems while encapsulating all the variations that arise due to configuration, composition, design and deployment. As an illustration, we discuss and simulate prediction of bottleneck scenario with results

    aMOSS: Automated Multi-objective Server Provisioning with Stress-Strain Curving

    Full text link
    Abstract—A modern data center built upon virtualized server clusters for hosting Internet applications has multiple correlated and conflicting objectives. Utility-based approaches are often used for optimizing multiple objectives. However, it is difficult to define a local utility function to suitably represent one objective and to apply different weights on multiple local utility functions. Furthermore, choosing weights statically may not be effective in the face of highly dynamic workloads. In this paper, we propose an automated multi-objective server provisioning with stress-strain curving approach (aMOSS). First, we formulate a multi-objective optimization problem that is to minimize the number of physical machines used, the average response time and the total number of virtual servers allocated for multi-tier applications. Second, we propose a novel stress-strain curving method to automatically select the most efficient solution from a Pareto-optimal set that is obtained as the result of a non-dominated sorting based optimization technique. Third, we en-hance the method to reduce server switching cost and improve the utilization of physical machines. Simulation results demonstrate that compared to utility-based approaches, aMOSS automatically achieves the most efficient tradeoff between performance and resource allocation efficiency. We implement aMOSS in a testbed of virtualized blade servers and demonstrate that it outperforms a representative dynamic server provisioning approach in achieving the average response time guarantee and in resource allocation efficiency for a multi-tier Internet service. aMOSS provides a unique perspective to tackle the challenging autonomic server provisioning problem. I

    Scalable hosting of web applications

    Get PDF
    Modern Web sites have evolved from simple monolithic systems to complex multitiered systems. In contrast to traditional Web sites, these sites do not simply deliver pre-written content but dynamically generate content using (one or more) multi-tiered Web applications. In this thesis, we addressed the question: How to host multi-tiered Web applications in a scalable manner? Scaling up a Web application requires scaling its individual tiers. To this end, various research works have proposed techniques that employ replication or caching solutions at different tiers. However, most of these techniques aim to optimize the performance of individual tiers and not the entire application. A key observation made in our research is that there exists no elixir technique that performs the best for allWeb applications. Effective hosting of a Web application requires careful selection and deployment of several techniques at different tiers. To this end, we present several caching and replication strategies, such as GlobeCBC, GlobeDB and GlobeTP, to improve the scalability of different tiers of a Web application. While these techniques and systems improve the performance of the individual tiers (and eventually the application), an application's administrator is not only interested in the performance of its individual tiers but also in its endto- end performance. To this end, we propose a resource provisioning approach that allows us to choose the best resource configuration for hosting a Web application such that its end-to-end response time can be optimized with minimum usage of resources. The proposed approach is based on an analytical model for multi-tier systems, which allows us to derive expressions for estimating the mean end-to-end response time and its variance.Steen, M.R. van [Promotor]Pierre, G.E.O. [Copromotor

    M2: Malleable Metal as a Service

    Full text link
    Existing bare-metal cloud services that provide users with physical nodes have a number of serious disadvantage over their virtual alternatives, including slow provisioning times, difficulty for users to release nodes and then reuse them to handle changes in demand, and poor tolerance to failures. We introduce M2, a bare-metal cloud service that uses network-mounted boot drives to overcome these disadvantages. We describe the architecture and implementation of M2 and compare its agility, scalability, and performance to existing systems. We show that M2 can reduce provisioning time by over 50% while offering richer functionality, and comparable run-time performance with respect to tools that provision images into local disks. M2 is open source and available at https://github.com/CCI-MOC/ims.Comment: IEEE International Conference on Cloud Engineering 201
    • …
    corecore