
SCALABLE HOSTING
OF WEB APPLICATIONS

SWAMINATHAN SIVASUBRAMANIAN

COPYRIGHT c© 2006 BY SWAMINATHAN SIVASUBRAMANIAN

VRIJE UNIVERSITEIT

SCALABLE HOSTING OF WEB APPLICATIONS

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. L.M. Bouter,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de faculteit der Exacte Wetenschappen
op woensdag 18 april 2007 om 10.45 uur

in het auditorium van de universiteit,
De Boelelaan 1105

door

SWAMINATHAN SIVASUBRAMANIAN

geboren te Chennai, India

promotoren: prof.dr.ir. M.R. van Steen
dr.ir. G.E.O. Pierre

ACKNOWLEDGEMENTS

My grad school advisor once remarked that a Ph.D. degree is not a testimonial of
one’s intellect but his/her perseverance. A few people have helped me through this
journey and it is time to thank them!

A major share of the credit goes to my advisors: Maarten van Steen and Guil-
laume Pierre. Maarten has always been an energetic advisor providing excellent
support, motivation and guidance. He has taught me a great deal about distributed
systems, scalability, and also authoring. Moreover, he has been a constant source
of motivation and really raised the quality of my research. He introduced me to the
field of CDNs and I owe a great deal of my current knowledge and skills to him.
Similarly, Guillaume has been a great advisor. He has always been accessible and
never objected in me barging into his office to discuss any of my wacky (and most
often lousy) ideas. He has been remarkably patient in reading the first drafts of my
papers (a.k.a. brain dumps) and making them more readable. I owe a great deal to
both, Maarten and Guillaume, for playing a crucial rule in my research, mentality
and success.

Guillaume has also been more than just an advisor, he has been a great friend
and helped me get through the initial dutch culture shock. I have to thank him
and Caroline for being kind enough to treat me and my group mates to some great
french cuisine every semester!

During my Ph.D. research, I was fortunate to work with some great people.
Among them, first, I would like to thank Gustavo Alonso for helping me with my
research. I knew nothing about databases and my visit to ETH helped a great deal
in shaping my thesis research. I would also like to thank Bruno Crispo for intro-
ducing me to the field of security that helped me in generating lots of publications
in that field. Similarly, I also need to thank Sandjai Bhulai for exposing me to the
field of queueing theory that enabled us to generate some good results in the field
of multi-tier application modeling.

I would also like to thank Werner Vogels for providing me the opportunity
and encouraging me to take on some real world problems in distributed systems
scalability. His thoughts on scalability and distributed systems have changed my
research perspective. Also, I would also like to the other members in my thesisv

vi Acknowledgements

committee, Michael Rabinovich, Andy Tanenbaum, and Rob van der Mei, for
their effort and time in reading reviewing this dissertation.

Now, to my colleagues at the Vrije Universiteit. First, I owe a great deal to
my P4.30 office mates: Michal and Spyros. These guys made my four years VU
stay more fun with some intriguing conversations on various topics ranging from
research, iraq war, spirituality, amsterdam and so on... Many thanks to Arno for
writing the dutch summary and helping me with the thesis formatting! Also, I
would like to thank all the members in compsys including Bogdan, Jan Mark,
Arno, Berry, Srijith, Elth, Wilfred, Konrad, Vivek, Daniela and Melanie for mak-
ing workplace fun.

Now, to my friends in Amsterdam: Narayanan, Paul, Jai, Abhilash, Felix,
Prabhakar, Madhav, and Anita. I cannot thank these people enough who made my
life in Amsterdam liveable. Especially, I owe a lot to Narayanan for organizing
some great road trips around Europe. Many thanks to Jai - his immense enthusi-
asm for learning distributed systems forced me to keep my skills sharp to take his
constant flow of questions everyday.

Last but certainly not the least, I owe this thesis to my family: my dad, mom,
brother and manni. My dad and mom have always been a constant source of sup-
port and love which helped me get through the four years easily. Especially, I owe
my Ph.D. to my brother, Srinivas, as he was the one who took care of my family
financial aspects while I had the luxury of being an irresponsible student.

Swaminathan Sivasubramanian
Seattle, USA. Feb. 2007.

CONTENTS

ACKNOWLEDGEMENTS v

1 INTRODUCTION 1

2 BACKGROUND AND RELATED WORK 7
2.1 Introduction . 7
2.2 Framework . 9

2.2.1 Objective function . 9
2.2.2 Framework elements . 11

2.3 Metric determination . 14
2.3.1 Choice of metrics . 14
2.3.2 Client clustering . 20
2.3.3 Metric estimation services 23
2.3.4 Discussion . 29

2.4 Adaptation triggering . 30
2.4.1 Time-based classification 30
2.4.2 Source-based classification 31
2.4.3 Discussion . 33

2.5 Replica placement . 33
2.5.1 Replica server placement 34
2.5.2 Replica content placement 36
2.5.3 Discussion . 39

2.6 Consistency enforcement . 40
2.6.1 Consistency models . 40
2.6.2 Content distribution mechanisms 43
2.6.3 Discussion . 47

2.7 Request routing . 49
2.7.1 Redirection policies . 50
2.7.2 Redirection mechanisms 53
2.7.3 Discussion . 57

VIII CONTENTS

2.8 Hosting Web applications . 59
2.8.1 Fragment caching . 61
2.8.2 Edge computing . 61
2.8.3 Database caching . 62
2.8.4 Database replication . 64
2.8.5 Discussion . 66

2.9 Conclusion . 67

3 GLOBECBC: CONTENT-BLIND QUERY RESULT CACHING FOR
WEB APPLICATION 69
3.1 Introduction . 69
3.2 Design issues . 72

3.2.1 Data granularity . 72
3.2.2 Cache control and placement 73
3.2.3 Consistency . 74

3.3 System architecture . 75
3.3.1 Caching module . 76
3.3.2 Invalidator . 77
3.3.3 Fine-grained invalidation 77
3.3.4 Tunable consistency . 78

3.4 Performance evaluation . 79
3.4.1 Performance results: Slashdot application 79
3.4.2 Performance results: TPC-W benchmark 85
3.4.3 Discussion . 86

3.5 Cache replacement . 87
3.5.1 Cache replacement . 87
3.5.2 Evaluation results . 88

3.6 Related work . 90
3.7 Conclusion . 92

4 GLOBEDB: AUTONOMIC REPLICATION FOR WEB APPLICA-
TIONS 93
4.1 Introduction . 93
4.2 Design issues . 94

4.2.1 Application transparency 95
4.2.2 Data granularity . 96
4.2.3 Consistency . 96
4.2.4 Data placement . 97

4.3 System architecture . 98
4.3.1 Application model . 98
4.3.2 System architecture . 99

CONTENTS IX

4.4 Data driver . 100
4.4.1 Types of queries . 100
4.4.2 Locating data units . 101

4.5 Replication algorithms . 103
4.5.1 Clustering . 103
4.5.2 Selecting a replication strategy 104
4.5.3 Replica placement heuristics 105
4.5.4 Master selection . 106

4.6 Implementation and its performance 106
4.6.1 Implementation overview 106
4.6.2 Measuring the overhead of the data driver 108

4.7 Performance evaluation: TPC-W bookstore 109
4.7.1 Experiment setup . 109
4.7.2 Experiment results . 112
4.7.3 Effect of the cost function 115

4.8 Related work . 115
4.9 Conclusion . 116

5 GLOBETP: TEMPLATE-BASED DATABASE REPLICATION FOR
SCALABLE WEB APPLICATIONS 119
5.1 Introduction . 119
5.2 Background and related work . 120
5.3 System model . 122

5.3.1 Application model . 122
5.3.2 System model . 122
5.3.3 Issues . 123

5.4 Data placement . 124
5.4.1 Cluster identification . 124
5.4.2 Load analysis . 125
5.4.3 Cluster placement . 127
5.4.4 Query routing . 128

5.5 Performance evaluation . 129
5.5.1 Experimental setup . 129
5.5.2 Potential reductions of UDI queries 131
5.5.3 Partial replication and template-aware query routing . . . 132
5.5.4 Achievable throughput 133
5.5.5 Effect of query caching 135

5.6 Discussion . 135
5.6.1 Potential of query rewriting 135
5.6.2 Fault-tolerance . 136

5.7 Conclusion . 137

X CONTENTS

6 SLA-DRIVEN RESOURCE PROVISIONING OF MULTI-TIER IN-
TERNET APPLICATIONS 139
6.1 Introduction . 139
6.2 Background . 142

6.2.1 Infrastructure model . 142
6.2.2 Generalized service hosting architecture 143
6.2.3 Request distribution . 144
6.2.4 Cache consistency . 145

6.3 Modeling end-to-end service latency 145
6.3.1 Analytical model . 145
6.3.2 Service characterization 147

6.4 Resource provisioning . 148
6.4.1 Estimating Qi . 149
6.4.2 Estimating improvement in cache hit ratio 150
6.4.3 Decision process . 151
6.4.4 Prototype implementation 151

6.5 Performance evaluation . 153
6.5.1 Page generator service 154
6.5.2 Promotional service . 155
6.5.3 TPC-App: SOA benchmark 156
6.5.4 RUBBoS benchmark . 158

6.6 Discussion . 160
6.6.1 Performance of reactive provisioning 160
6.6.2 Predictability of cache hit rates 161
6.6.3 Modeling variances and percentiles 163
6.6.4 Availability-based provisioning 163

6.7 Related work . 163
6.8 Conclusion . 164

7 ANALYSIS OF END-TO-END RESPONSE TIMES OF MULTI-TIER
INTERNET SERVICES 165
7.1 Introduction . 165
7.2 Related work . 167

7.2.1 Modeling Internet systems 167
7.2.2 Performance analysis . 168

7.3 End-to-end analytical model . 169
7.4 Mean response time and its variance 171
7.5 Validation with simulations . 174
7.6 Validation with experiments . 175

7.6.1 Experimental setup . 176
7.6.2 RUBBoS: A bulletin board Web application 177

CONTENTS XI

7.6.3 TPC-App: A service-oriented benchmark 178
7.6.4 Validation with caches 179
7.6.5 Discussion . 182

7.7 Applications of the model . 182
7.7.1 Resource provisioning 182
7.7.2 Admission control . 184
7.7.3 SLA negotiation . 187

7.8 Conclusion . 190

8 CONCLUSION 191

SAMENVATTING 195

BIBLIOGRAPHY 199

XII CONTENTS

LIST OF FIGURES

1.1 Application model of a simple 3-tier Web application. 2

2.1 The feedback control loop for a replica hosting system. 10
2.2 A framework for evaluating wide-area replica hosting systems. . . 11
2.3 Interactions between different components of a wide-area replica

hosting system. 13
2.4 The two DNS queries of King 25
2.5 Positioning in GNP . 26
2.6 Positioning in Lighthouses . 26
2.7 Various Web application hosting techniques. 60

3.1 Variety of solutions that address problem of scalable Web hosting
across 3 tiers . 70

3.2 Database middleware solutions 70
3.3 Cache hit and miss processing in Query Caching systems 72
3.4 GlobeCBC: System Architecture 75
3.5 Effect of Workload on Slashdot application 81
3.6 Comparison of internal latency for plain 3-tier architecture with

and without content-blind caching system 83
3.7 Comparison of client latency for single edge server and 3 edge

server system . 83
3.8 Effect of TTI and Max U pds . 84
3.9 Performance of our architecture compared to edge computing for

TPC-W benchmark . 86
3.10 Performance of different cache replacement algorithms for differ-

ent cache sizes . 89

4.1 Example of benefits of autonomic replication. 95
4.2 Application Model . 98
4.3 System Architecture - Edge servers serving clients close to them

and interactions among edge servers goes through Wide-area net-
work. 99

XIV LIST OF FIGURES

4.4 Salient components of the system 107
4.5 A comparative study of GlobeDB driver implementation with orig-

inal PHP driver for reading and updating local data units 109
4.6 Architectures of different systems evaluated 112
4.7 Performance of different system architectures running TPC-W bench-

mark . 112
4.8 Relative Performance of Autonomic System architectures 114

5.1 Typical Edge-Server Architecture. 120
5.2 Architecture of a partially replicated origin server. 123
5.3 Accuracy of different methods for query cost estimation. 126
5.4 Potential Reduction of UDI queries. 131
5.5 Query latency distributions using 4 servers. 133
5.6 Maximum achievable throughputs with 90% of queries processed

within 100ms. 134

6.1 Simplified Application Model of an Internet Service 140
6.2 Generalized hosting architecture of a multi-tier service. 142
6.3 Logical Design of an Adaptive Hosting System for Internet Services148
6.4 Performance of the Page Generator Service 153
6.5 Performance for the promotional service 155
6.6 Performance for TPC-App benchmark 157
6.7 Resource configurations and response times of RUBBoS bench-

mark for different loads. 159
6.8 Observed response time during a change in the resource configu-

ration: From a single application server and database to a config-
uration with an application server, database cache and a database. . 161

6.9 (a) Impact of window size on hit ratio prediction error and (b) Plot
of the hit ratio prediction error of the fractals Web site during the
flash crowds. 161

7.1 Application Model of a Multi-Tiered Internet Service. 170
7.2 Analytical Model for Multi-Tiered Applications 170
7.3 Comparison between the observed and the predicted values for

the mean and the standard deviation of the response times for
RUBBoS benchmark with a single application server and a sin-
gle database server. 177

7.4 Comparison between the observed and the predicted values for
the mean and the standard deviation of the response times for
TPC-App Benchmark with a single application server and a single
database server. 178

LIST OF FIGURES XV

7.5 Response Times of RUBBoS Application with HTML Cache with
a front-end cache server, an application server and a database server.180

7.6 Response Times of RUBBoS Application with an application server,
a database cache server and a database server. 181

7.7 99 percentile response times of the RUBBoS Application obtained
by (a) the bottleneck analysis method and (b) the end-to-end anal-
ysis method. Note that the scale of the y-axis in the figures differ
by 3 orders of magnitude. 183

7.8 Iso-loss curves for several blocking probabilities p with associated
delay curves. 185

7.9 The SLA negotiation space for all βs,1 and βs,2. 188
7.10 The SLA negotiation space for all βs,1 and βs,2. 189

XVI LIST OF FIGURES

LIST OF TABLES

2.1 Five different classes of metrics used to evaluate performance in
replica hosting systems. 15

2.2 A comparison of approaches for enforcing consistency. 48
2.3 The comparison of representative implementations of a redirec-

tion system . 59

5.1 Maximum throughput of different configurations. 135

7.1 Response time variances of a queueing network with general ser-
vice times at the entry node and two asymmetrically loaded single-
server service nodes. 174

7.2 Response time variances of a queueing network with general ser-
vice times at the entry node and two asymmetrically loaded multi-
server service nodes. 176

CHAPTER 1

Introduction

The World Wide Web (“WWW” or simply the “Web”) is a global information
medium which users can access via computers connected to the Internet.1 The
Web, which began as a simple networked information project at a research lab, has
grown to be the most popular medium of digital communication. It has become an
integral point of people’s lives and several day-to-day activities such as shopping,
banking and trading can now be performed through the Web.

The growing popularity of the Web has driven the need for several businesses
such as online news, retail and financial, to open their business processes to their
Web clients. For online businesses, providing a good client experience is one
of their primary concerns. Human computer interaction studies have shown that
frequent users prefer response times of less than a second for most tasks, and that
human productivity improves more than linearly as computer systems response
times fall in the sub-second range [Shneiderman, 1984]. Hence, for such online
businesses, providing low response latency to their clients is a crucial business
requirement [Vogels, 2006].

The latency incurred in receiving a response from a Web site can be split
into two components. The first component is due to the latency incurred by the
request and the response to traverse the network between the client and the server
machines. The second component is the page generation latency, i.e., the time
incurred by the Web site to generate the appropriate response to each client.

A popular technique used by leading content providers to reduce their site’s
response latency is to avail their digital content through content delivery networks
(popularly known as CDNs) [Rabinovich and Spastscheck, 2002; Sivasubrama-
nian et al., 2004b]. CDNs like Akamai [Dilley et al., 2002] and Speedera2 deploy
servers (called edge servers) around the Internet that locally cache Web content

1http://en.wikipedia.org/wiki/World_Wide_Web
2http://www.speedera.com

2 INTRODUCTION CHAP. 1

Database
Tier

Presentation Business

Tier

Serves static content
and translates client
requests to business
logic requests

with required data
business logic tier

Serves the

related computation
actual business
Performs the

Tier Logic
Responses

Requests/
Client

Figure 1.1: Application model of a simple 3-tier Web application.

and deliver them to the clients. By serving Web content from servers located
close to the clients, CDNs reduce the network latency component as each request
need not travel across a wide-area network. Various commercial CDNs (e.g., Aka-
mai, RADAR [Rabinovich and Aggarwal, 1999], and Speedera) are successful in
building scalable infrastructure to host numerous popular Web sites in the Inter-
net. These CDNs are usually suited for hosting static Web content, i.e., content
that does not get updated too often. Examples of static Web contents include
images, multimedia files, and rarely updated HTML pages.

However, modern Web sites such as Amazon.com and yahoo.com do not sim-
ply deliver static pages but generate content on the fly each time a request is re-
ceived, so that the pages can be customized for each user. Generating a Web page
in response to every request takes more time than simply fetching static HTML
pages from disk. This is because these responses are produced by Web applica-
tions that issue one or more queries to database(s). Hence, the problem of scalable
hosting of dynamic Web sites translates to scalable hosting of Web applications.

The application model of a simple Web application is given in Figure 1.1. As
seen in the figure, a Web application usually consists of three tiers: presentation,
business logic and database. The presentation tier deals with serving static content
such as images and multimedia related content and is also responsible for translat-
ing an incoming client request to appropriate business logic request. The business
logic tier is the heart of the application and contains the core business functional-
ity. It receives requests from its preceding tier and generate appropriate responses
by issuing one or more queries to the underlying database tier.

This thesis addresses the following research question: How to host a multi-
tiered Web application in a scalable and efficient manner? In contrast to static
Web sites, each HTTP request to a dynamic Web site can lead to one or more
business logic requests, and multiple database queries. The most straightforward
technique used by CDNs to improve the performance of such Web applications
is Web page caching where (fragments of) the HTML pages generated by the ap-
plication are cached for serving future requests [Challenger et al., 2005]. This

SEC. 1.0 INTRODUCTION 3

technique works well only if many requests to the Web site can be answered with
the same cached HTML page. However, with the growing drive towards person-
alization of Web sites, generated pages tend to be unique for every user, thereby
reducing the benefits of conventional page caching techniques. Furthermore, if the
underlying database gets updated often then the cached pages have to be evicted
often to ensure that the clients are not delivered stale responses.

The limitations of page caching techniques have triggered the research com-
munity into investigating new approaches for scalable hosting of Web applica-
tions. To scale a Web application, one has to scale each of its tiers appropriately.
Scaling up the presentation layer allows Web applications to scale static content
delivery and involves running multiple instances of Web servers (possibly around
the Internet). As we show in Chapter 2, the techniques used to scale static content
delivery are well understood. Similarly, scaling up the business-logic tier involves
replication of the application code across multiple servers. This problem is also
well understood provided that the application code is stateless [Rabinovich et al.,
2003; Cao et al., 1998; Seltzsam et al., 2006].

Scaling up the database tier is harder and has a significant impact on the per-
formance of database-driven Web applications. For such applications, mere repli-
cation of the application code at the edge servers and a centralized database system
may not suffice, as generation of each page may still require the application code
to make many queries to the database. In such cases, having a central database
server will increase the access latency to the database (as each database query
is transmitted across the wide-area network), thereby resulting in high response
latency. On the other hand, a simple strategy of replicating the entire database
at all edge servers may result in huge performance overhead due to consistency
maintenance.

THESIS CONTRIBUTIONS AND OUTLINE

In this thesis, we present several techniques that can be used to improve the
performance of Web applications in an Internet wide CDN environment. In par-
ticular, we focus on relational database driven Web applications. Examples of
relational database management systems include IBM DB23, Oracle4, MySQL5

and PostgreSQL6. The rest of the thesis is structured as follows. In Chapter 2,
we present related work. Moreover, we propose a framework that aids in analyz-

3http://www.ibm.com/db2
4http://www.oracle.com/database/index.html
5http://www.mysql.org
6http://www.postgresql.org

4 INTRODUCTION CHAP. 1

ing, comparing and understanding several research efforts conducted in the area
of CDNs.

In Chapter 3, we present GlobeCBC, a content-blind query caching middle-
ware. Unlike existing data caching middleware systems, GlobeCBC stores the
query results independently and does not merge different query results. We study
the potential performance of this approach using extensive experimentations on
our prototype implementation and compare it with other systems over an emu-
lated wide-area network. Our evaluations show that content-blind caching per-
forms well in terms of client latency for applications that exhibit high query local-
ity. Moreover, it allows the system to sustain higher throughput by offloading the
database tier.

In Chapter 4, we present GlobeDB, a system that performs autonomic repli-
cation of application data. While GlobeCBC is suited mostly for applications
with high query locality, applications that do not have these characteristics require
replication of the application data to have low access latencies to the database.
GlobeDB is primarily targeted for such applications and handles distribution and
partial replication of application data automatically and efficiently. It provides
Web applications the same advantages that CDNs offer to traditional static Web
sites: low latency and reduced network usage. We substantiate these claims
with extensive experimentation using a prototype implementation with an industry
standard benchmark.

In Chapter 5, we present GlobeTP, a database replication technique that can
be used to improve the throughput of the database tier. The motivation behind
this technique is the observation that generic replication algorithms used by most
databases do not scale linearly as they require to apply all update, insertion and
deletion (UDI) queries to every database replica. The system throughput is there-
fore limited to the point where the number of UDI queries alone is sufficient to
overload one server [Fitzpatrick, 2004]. In such scenarios, partial replication of
a database can help, as update queries will be executed only by a subset of all
servers. Even though GlobeDB employs partial replication, it does not support
queries that span across multiple (partially replicated) data items (e.g., queries
spanning multiple database tables). GlobeTP exploits the fact that a Web applica-
tion’s query workload is based on a small set of read and write templates. Using
knowledge of these templates and the query execution costs of different templates,
GlobeTP provides database table placements that produce significant improve-
ments in database throughput. We demonstrate the efficiency of this technique
using different industry standard benchmarks.

The aforementioned middleware and techniques aim to improve the perfor-
mance of Web applications by improving the performance of the database tier.
Moreover, there are several page caching and business logic replication techniques

SEC. 1.0 INTRODUCTION 5

that aim to improve the performance of the presentation and business-logic tier.
All these techniques aim for application scalability by improving the performance
of a single tier. However, from the view point of an administrator, he/she is in-
terested in the end-to-end performance of the Web application and not just the
performance of individual tiers. Hence, capacity provisioning of Web application
also needs to be done based on its end-to-end performance.

To this end, in Chapter 6, we present a novel resource provisioning approach
for multi-tiered Internet services. In contrast to previous works on capacity provi-
sioning of Web systems, we propose to select the resource configuration based on
its end-to-end performance instead of optimizing each tier individually. The pro-
posed approach employs a combination of queueing models and runtime cache
simulations. Our experiments with a wide range of application demonstrate that
our approach, compared to optimizing tiers independently, is able to host services
more scalably with less resources.

The aforementioned provisioning approach is based on a simple analytical
model that allows us to compute only the mean end-to-end response time of an
application. However, many e-commerce companies are not just interested in the
mean response time but also in its variability [Vogels, 2006]. To this end, in Chap-
ter 7, we present an analytical model for multi-tiered software systems and derive
exact and approximate expressions for the mean and the variance, respectively, of
the end-to-end response times. We validate our expressions through extensive ex-
perimentations with well-known industry-standard benchmarks and services for a
wide range of resource configurations. Our experiments show that our model is
highly accurate in estimating both the mean and the variance in response times
with a margin of error less than 10 percent. Furthermore, we discuss and demon-
strate the benefits of the model to resource provisioning, service level agreement
(SLA) negotiation, and admission control. Finally, Chapter 8 concludes the thesis
and discusses the open issues.

6 INTRODUCTION CHAP. 1

CHAPTER 2

Background and Related Work

In this chapter, we survey research efforts that address different aspects of building
a scalable CDN. A version of this chapter have been published in [Sivasubramanian
et al., 2004b].

2.1. INTRODUCTION

Replication is a technique that allows to improve the quality of distributed
services. In the past few years, it has been increasingly applied to Web services,
notably for hosting Web sites. In such cases, replication involves creating copies
of a site’s Web documents, and placing these document copies at well-chosen
locations. In addition, various measures are taken to ensure (possibly different
levels of) consistency when a replicated document is updated. Finally, effort is put
into redirecting a client to a server hosting a document copy such that the client
is optimally served. Replication can lead to reduced client latency and network
traffic by redirecting client requests to a replica closest to that client. It can also
improve the availability of the system, as the failure of one replica does not result
in entire service outage.

These advantages motivate many Web content providers to offer their services
using systems that use replication techniques. We refer to systems providing such
hosting services as replica hosting systems. The design space for replica hosting
systems is big and seemingly complex. In this chapter, we concentrate on organiz-
ing this design space and review several important research efforts concerning the
development of Web replica hosting systems. A typical example of such a system
is a Content Delivery Network (CDN) [Hull, 2002; Rabinovich and Spastscheck,
2002; Verma, 2002].

In this chapter, we survey a wide range of articles detailing the efforts carried

8 BACKGROUND AND RELATED WORK CHAP. 2

out in the area of building a scalable CDN. However, analyzing and comparing
these efforts is difficult as these works address different aspects of Web replica-
tion. To this end, we propose a framework that aids us in understanding, analyzing
and comparing the efforts conducted in this area. The framework covers the im-
portant issues that need to be addressed in the design of a Web replica hosting
system. It is built around an objective function – a general method for evaluat-
ing the system performance. Using this objective function, we define the role of
the different system components that address separate issues in building a replica
hosting system.

The Web replica hosting systems we consider are scattered across a large ge-
ographical area, notably the Internet. When designing such a system, at least the
following five issues need to be addressed:

1. How do we select and estimate the metrics for taking replication decisions?

2. When do we replicate a given Web document?

3. Where do we place the replicas of a given document?

4. How do we ensure consistency of all replicas of the same document?

5. How do we route client requests to appropriate replicas?

Each of these five issues is to a large extent independent from the others. Once
grouped together, they address all the issues constituting a generalized framework
of a Web replica hosting system. Given this framework, we compare and com-
bine several existing research efforts, and identify problems that have not been
addressed by the research community before.

We note that Web caching is an area closely related to replication. In caching,
whenever a client requests a document for the first time, the client process or
the local server handling the request will fetch a copy from the document’s server.
Before passing it to the client, the document is stored locally in a cache. Whenever
that document is requested again, it can be fetched from the cache locally. In
replication, a document’s server pro-actively places copies of document at various
servers, anticipating that enough clients will make use of this copy. Caching and
replication thus differ only in the method of creation of copies. Hence, we perceive
caching infrastructures (like, for example, Akamai [Dilley et al., 2002]) also as
replica hosting systems, as document distribution is initiated by the server. For
more information on traditional Web caching, see [Wang, 1999]. A survey on
hierarchical and distributed Web caching can be found in [Rodriguez et al., 2001].

A complete design of a Web replica hosting system cannot restrict itself to
addressing the above five issues, but should also consider other non-functional

SEC. 2.2 FRAMEWORK 9

aspects such as security and fault tolerance. However, in this thesis, we mainly
focus on solutions to improve the performance of Web sites. Research addressing
security and fault tolerance issues are not presented in this chapter. Moreover,
discussing these issues makes sense only in the context of the above five design
issues. Therefore, in what follows, we only occasionally refer to these nonfunc-
tional aspects of system design.

The rest of the chapter is organized as follows. In Section 2.2 we present our
framework of wide-area replica hosting systems. In Sections 2.3 to 2.7, we discuss
each of the above mentioned five problems forming the framework. For each
problem, we refer to some of the significant related research efforts, and show how
the problem was tackled. Section 2.8 discusses some of the significant research
efforts that address the problem of hosting database-driven Web applications. We
draw our conclusions in Section 2.9.

2.2. FRAMEWORK

The goal of a replica hosting system is to provide its clients with the best
available performance while consuming as little resources as possible. For exam-
ple, hosting replicas of an object on many servers spread throughout the Internet
can decrease the client end-to-end latency, but is bound to increase the opera-
tional cost of the system. Replication can also introduce costs and difficulties in
maintaining consistency among replicas, but the system should always continue to
meet application-specific consistency constraints. The design of a replica hosting
system is the result of compromises between performance, cost, and application
requirements.

2.2.1. Objective function

In a sense, we are dealing with an optimization problem, which can be modeled
by means of an abstract objective function, Fideal, whose value λ is dependent on
many input parameters:

λ = Fideal(p1, p2, p3, . . . , pn)

In our case, the objective function takes two types of input parameters. The first
type consists of uncontrollable system parameters, which cannot be directly con-
trolled by the replica hosting system. Typical examples of such uncontrollable
parameters are client request rates, update rates for Web documents, and available
network bandwidth. The second type of input parameters are those whose value

10 BACKGROUND AND RELATED WORK CHAP. 2

Uncontrollable parameters

+

+/-

F
λ

parameters
Controllable

element
Feedback

Figure 2.1: The feedback control loop for a replica hosting system.

can be controlled by the system. Examples of such parameters include the number
of replicas, the location of replicas, and the adopted consistency protocols.

One of the problems that replica hosting systems are confronted with is to
achieve optimal performance with only being able to manipulate the controllable
parameters. As a result, continuous feedback is necessary, resulting in a traditional
feedback control system as shown in Figure 2.1.

Unfortunately, the actual objective function Fideal represents an ideal situation,
in the sense that the function is generally only implicitly known. For example, the
actual dimension of λ may be a complex combination of monetary revenues, net-
work performance metrics, and so on. Moreover, the exact relationship between
input parameters and the observed value λ may be impossible to derive. There-
fore, a different approach is always followed by constructing an objective function
F whose output λ is compared to an assumed optimal value λ∗ of Fideal. The closer
λ is to λ∗, the better. In general, the system is considered to be in an acceptable
state, if |λ∗ −λ| ≤ δ, for some system-dependent value δ.

We perceive any large-scale Web replica hosting system to be constantly ad-
justing its controllable parameters to keep λ within the acceptable interval around
λ∗. For example, during a flash crowd (a sudden and huge increase in the client
request rate), a server’s load increases, in turn increasing the time needed to ser-
vice a client. These effects may result in λ falling out of the acceptable interval
and that the system must adjust its controllable parameters to bring λ back to an
acceptable value. The actions on controllable parameters can be such as increas-
ing the number of replicas, or placing replicas close to the locations that generate
most requests. The exact definition of the objective function F , its input parame-
ters, the optimal value λ∗, and the value of δ are defined by the system designers
and will generally be based on application requirements and constraints such as
cost.

We use the notion of an objective function to describe the different compo-
nents of a replica hosting system, corresponding to the different parts of the sys-
tem design. These components cooperate with each other to optimize λ. They
operate on the controllable parameters of the objective function, or observe its
uncontrollable parameters.

SEC. 2.2 FRAMEWORK 11

Redirection
mechanisms

policies
Redirection

Request routing

mechanisms
distribution
Content

Consistency
models

Consistency
policies

Consistency enforcement

Replica hosting system framework

Replica placement

Metric
estimation

clustering
Client

Metric
identification

Metric determination

Triggering
method

Triggering
time

Adaptation triggering

Content
placement

Server
placement

Figure 2.2: A framework for evaluating wide-area replica hosting systems.

2.2.2. Framework elements

We identify five main issues that have to be considered during the design of a
replica hosting system: metric determination, adaptation triggering, replica place-
ment, consistency enforcement, and request routing. These issues can be treated
as chronologically ordered steps that have to be taken when transforming a cen-
tralized service into a replicated one. Our proposed framework of a replica hosting
system matches these five issues as depicted in Figure 2.2. Below we discuss the
five issues and show how each of them is related to the objective function.

In metric determination, we address the question how to find and estimate
the metrics required by different components of the system. Metric determination
is the problem of estimating the value of the objective function parameters. We
discuss two important issues related to metric estimation that need to be addressed
to build a good replica hosting system. The first issue is metric identification: the
process of identifying the metrics that constitute the objective function the system
aims to optimize. For example, a system might want to minimize client latency
to attract more customers, or might want to minimize the cost of replication. The
other important issue is the process of metric estimation. This involves the design
of mechanisms and services related to estimation or measurement of metrics in a
scalable manner. As a concrete example, measuring client latency to every client
is generally not scalable. In this case, we need to group clients into clusters and
measure client-related metrics on a per-cluster basis instead of on a per-client basis
(we call this process of grouping clients client clustering). In general, the metric
estimation component measures various metrics needed by other components of
the replica hosting system.

Adaptation triggering addresses the question when to adjust or adapt the
system configuration. In other words, we define when and how we can detect
that λ has drifted too much from λ∗. Consider a flash crowd causing poor client

12 BACKGROUND AND RELATED WORK CHAP. 2

latency. The system must identify such a situation and react, for example, by
increasing the number of replicas to handle the increase in the number requests.
Similarly, congestion in a network where a replica is hosted can result in poor
accessibility of that replica. The system must identify such a situation and possibly
move that replica to another server. The adaptation-triggering mechanisms do not
form an input parameter of the objective function. Instead, they form the heart
of the feedback element in Figure 2.1, thus indirectly control λ and maintain the
system in an acceptable state.

With Replica placement we address the question where to place replicas.
This issue mainly concerns two problems: selection of locations to install replica
servers that can host replicas (replica server placement) and selection of replica
servers to host replicas of a given object (replica content placement). The server
placement problem must be addressed during the initial infrastructure installation
and during the hosting infrastructure upgrading. The replica content placement
algorithms are executed to ensure that content placement results in an acceptable
value of λ, given a set of replica servers. Replica placement components use
metric estimation services to get the value of metrics required by their placement
algorithms. Both replica server placement and replica content placement form
controllable input parameters of the objective function.

With consistency enforcement we consider how to keep the replicas of a
given object consistent. Maintaining consistency among replicas adds overhead to
the system, particularly when the application requires strong consistency (mean-
ing clients are intolerant to stale data) and the number of replicas is large. The
problem of consistency enforcement is defined as follows. Given certain applica-
tion consistency requirements, we must decide which consistency models, consis-
tency policies and content distribution mechanisms can meet these requirements.
A consistency model dictates the consistency-related properties of the content de-
livered by the systems to its clients. These models define consistency properties of
objects based on time, value, or the order of transactions executed on the object. A
consistency model is usually adopted by consistency policies, which define how,
when, and which content distribution mechanisms must be applied. The content
distribution mechanisms specify the protocols by which replica servers exchange
updates. For example, a system can adopt a time-based consistency model and
employ a policy where it guarantees its clients that it will never serve a replica
that is more than an hour older than the most recent state of the object.

Request routing is about deciding how to direct clients to the replicas they
need. We choose from a variety of redirection policies and redirection mecha-
nisms. Whereas the mechanisms provide a method for informing clients about
replica locations, the policies are responsible for determining which replica must
serve a client. The request routing problem is complementary to the placement

SEC. 2.2 FRAMEWORK 13

λ∗

λ

Triggers

Uncontrollable parameters

Initial configuration
System (F)

+/-

+/-

+/-

Adaptation
triggering

Replica
placement

Metric
estimation

system condition
Observed

Consistency
enforcement

Request
routing

Figure 2.3: Interactions between different components of a wide-area
replica hosting system.

problem, as the assumptions made when solving the latter are implemented by the
former. For example, we can place replica servers close to our clients, assum-
ing that the redirection policy directs the clients to their nearby replica servers.
However, deliberately drifting away from these assumptions can sometimes help
in optimizing the objective function. For example, we may decide to direct some
clients to more distant replica servers to offload the client-closest one. Therefore,
we treat request routing as one of the (controllable) objective function parameters.

Each of the above design issues corresponds to a single logical system com-
ponent. How each of them is actually realized can be very different. The five
components together should form a scalable Web replica hosting system. The
interaction between these components is depicted in Figure 2.3, which is a refine-
ment of our initial feedback control system shown in Figure 2.1. We assume that
λ∗ is a function of the uncontrollable input parameters, that is:

λ∗ = min
pk+1,...,pn

F(p1, . . . , pk︸ ︷︷ ︸
Uncontrollable

parameters

, pk+1, . . . , pn︸ ︷︷ ︸
Controllable
parameters

)

Its value is used for adaptation triggering. If the difference with the computed
value λ is too high, the triggering component initiates changes in one or more of
the three control components: replica placement, consistency enforcement, or re-
quest routing. These different components strive to maintain λ close to λ∗. They
manage the controllable parameters of the objective function, now represented by
the actually built system. Of course, the system conditions are also influenced
by the uncontrollable parameters. The system condition is measured by the met-
ric estimation services. They produce the current system value λ, which is then
passed to the adaptation triggering component for subsequent comparison. This
process of adaptation continues throughout the system’s lifetime.

14 BACKGROUND AND RELATED WORK CHAP. 2

Note that the metric estimation services are also being used by components
for replica placement, consistency enforcement, and request routing, respectively,
for deciding on the quality of their decisions. These interactions are not shown in
the figure for sake of clarity.

2.3. METRIC DETERMINATION

The metric determination component is required to measure the system con-
dition. It allows the system to detect when the system quality drifts away from
the acceptable interval so that the system can adapt its configuration if necessary.
Another purpose of the metric determination component is to provide each of the
three control components with measurements of their input data. For example,
replica placement algorithms may need latency measurements in order to gen-
erate a placement that is likely to minimize the average latency suffered by the
clients. Similarly, consistency enforcement algorithms might require information
on object staleness in order to react with switching to stricter consistency mech-
anisms. Finally, request routing policies may need to know the current load of
replica servers in order to distribute the requests currently targeting heavily loaded
servers to less loaded ones.

In this section, we discuss three issues that have to be addressed to enable scal-
able metric determination. The first issue is metric selection. Depending on the
performance optimization criteria, a number of metrics must be carefully selected
to accurately reflect the behavior of the system. Section 2.3.1 discusses metrics
related to client latency, network distance, network usage, object hosting cost, and
consistency enforcement.

The second issue is client clustering. Some client-related metrics should ide-
ally be measured separately for each client. However, this can lead to scalability
problems as the number of clients for a typical wide-area replica hosting system
can be in the order of millions. A common solution to address this problem is
to group clients into clusters and measure client-related metrics on a per-cluster
basis. Section 2.3.2 discusses various client clustering schemes.

The third issue is metric estimation itself. We must choose mechanisms to
collect metric data. These mechanisms typically use client-clustering schemes to
estimate client-related metrics. Section 2.3.3 discusses some popular mechanisms
that collect metric data.

2.3.1. Choice of metrics

The choice of metrics must reflect all aspects of the desired performance. First
of all, the system must evaluate all metrics that take part in the computation of

SEC. 2.3 METRIC DETERMINATION 15

Class Description

Temporal The metric reflects how long a certain action takes

Spatial The metric is expressed in terms of a distance that is related to the topology of the
underlying network, or region in which the network lies

Usage The metric is expressed in terms of usage of resources of the underlying network,
notably consumed bandwidth

Financial Financial metrics are expressed in terms of a monetary unit, reflecting the monetary
costs of deploying or using services of the replica hosting system

Consistency The metrics express to what extent a replica’s value may differ from the master copy

Table 2.1: Five different classes of metrics used to evaluate performance in
replica hosting systems.

the objective function. Additionally, the system also needs to measure some extra
metrics needed by the control components. For example, a map of host-to-host
distances may help the replica placement algorithms, although it does not have to
be used by the objective function.

There exists a wide range of metrics that can reflect the requirements of both
the system’s clients and the system’s operator. For example, the metrics related
to latency, distance, and consistency can help evaluate the client-perceived per-
formance. Similarly, the metrics related to network usage and object hosting cost
are required to control the overall system maintenance cost, which should remain
within bounds defined by the system’s operator. We distinguish five classes of
metrics, as shown in Figure 2.1, and which are discussed in the following sec-
tions.

Temporal metrics

An important class of metrics is related to the time it takes for peers to communi-
cate, generally referred to as latency metrics. Latency can be defined in different
ways. To explain, we consider a client-server system and follow the approach de-
scribed in [Dykes et al., 2000] by modeling the total time to process a request, as
seen from the client’s perspective, as

T = TDNS +Tconn +Tres +Trest

TDNS is the DNS lookup time needed to find the server’s network address. As
reported by [Cohen and Kaplan, 2001], DNS lookup time can vary tremendously
due to cache misses (i.e., the client’s local DNS server does not have the address
of the requested host in its cache), although in many cases it stays below 500
milliseconds.

16 BACKGROUND AND RELATED WORK CHAP. 2

Tconn is the time needed to establish a TCP connection, which, depending on
the type of protocols used in a replica hosting system, may be relevant to take into
account. [Zari et al., 2001] report that Tconn will often be below 200 milliseconds,
but that, like in the DNS case, very high values up to even 10 seconds may also
occur.

Tres is the time needed to transfer a request from the client to the server and
receiving the first byte of the response. This metric is comparable to measuring
the round-trip time (RTT) between two nodes, but includes the time the server
needs to handle the incoming request. Finally, Trest is the time needed to complete
the transfer of the entire response.

When considering latency, two different versions are often considered. The
end-to-end latency is taken as the time needed to send a request to the server, and
is often taken as 0.5Tres, possibly including the time Tconn to setup a connection.
The client-perceived latency is defined as T − Trest. This latter latency metric
reflects the real delay observed by a user.

Obtaining accurate values for latency metrics is not a trivial task as it may
require specialized mechanisms, or even a complete infrastructure. One particular
problem is predicting client-perceived latency, which not only involves measuring
the round-trip delay between two nodes (which is independent of the size of the
response), but may also require measuring bandwidth to determine Trest. The latter
has shown to be particularly cumbersome requiring sophisticated techniques [Lai
and Baker, 1999]. We discuss the problem of latency measurement further in
Section 2.3.3.

Spatial metrics

As an alternative to temporal metrics, many systems consider a spatial metric
such as number of network-level hops or hops between autonomous systems, or
even the geographical distance between two nodes. In these cases, the underlying
assumption is generally that there exists a map of the network in which the spatial
metric can be expressed.

Maps can have different levels of accuracy. Some maps depict the Internet as
a graph of Autonomous Systems (ASes), thus unifying all machines belonging to
the same AS. They are used for example by [Pierre et al., 2002]. The graph of
ASes is relatively simple and easy to operate on. However, because ASes signif-
icantly vary in size, this approach can suffer from inaccuracy. Other maps depict
the Internet as a graph of routers, thus unifying all machines connected to the
same router [Pansiot and Grad, 1998]. These maps are more detailed than the AS-
based ones, but are not satisfying predictors for latency. For example, [Huffaker
et al., 2002] found that the number of router hops is accurate in selecting the
closest server in only 60% of the cases. The accuracy of router-level maps can

SEC. 2.3 METRIC DETERMINATION 17

be expected to decrease in the future with the adoption of new routing technolo-
gies such as Multi-Protocol Label Switching (MPLS) [Rosen et al., 2001], which
may hide the routing paths within a network. Finally, some systems use pro-
prietary distance calculation schemes, for example by combining the two above
approaches [Rabinovich and Aggarwal, 1999].

[Huffaker et al., 2002] examined to what extent geographical distance could
be used instead of latency metrics. They showed that there is generally a close
correlation between geographical distance and RTT. An earlier study using simple
network measurement tools by [Ballintijn et al., 2000], however, reported only a
weak correlation between geographical distance and RTT. This difference may be
caused by the fact that many more monitoring points outside the U.S. were used,
but that many physical connections actually cross through networks located in the
U.S. This phenomenon also caused large deviations in the results by [Huffaker
et al., 2002]

An interesting approach based on geographical distance is followed in the
Global Network Positioning (GNP) project [Ng and Zhang, 2002]. In this case, the
Internet is modeled as an N-dimensional geometric space. GNP is used to estimate
the latency between two arbitrary nodes. We describe GNP and its several variants
in more detail in Section 2.3.3 when discussing metric estimation services.

Constructing and exploiting a map of the Internet is easier than running an
infrastructure for latency measurements. The maps can be derived, for example,
from routing tables. Interestingly, [Crovella and Carter, 1995] reported that the
correlation between the distance in terms of hops and the latency is quite poor.
However, other studies show that the situation has changed. [McManus, 1999]
shows that the number of hops between ASes can be used as an indicator for
client-perceived latency. Research reported in [Obraczka and Silva, 2000] re-
vealed that the correlation between the number of network-level or AS-level hops
and round-trip times (RTTs) has further increased, but that RTT still remains the
best choice when a single latency metric is needed for measuring client-perceived
performance.

Network usage metrics

Another important metric is the total amount of consumed network resources.
Such resources could include routers and other network elements, but often entails
only the consumed bandwidth. The total network usage can be classified into two
types. Internal usage is caused by the communication between replica servers to
keep replicas consistent. External usage is caused by communication between
clients and replica servers. Preferably, the ratio between external and internal
usage is high, as internal usage can be viewed as a form of overhead introduced
merely to keep replicas consistent. On the other hand, overall network usage may

18 BACKGROUND AND RELATED WORK CHAP. 2

decrease in comparison to the non-replicated case, but may require measuring
more than, for example, consumed bandwidth only.

To see the problem at hand, consider a non-replicated document of size s bytes
that is requested r times per seconds. The total consumed bandwidth in this case is
r · s, plus the cost of r separate connections to the server. The cost of a connection
can typically be expressed as a combination of setup costs and the average distance
that each packet associated with that connection needs to travel. Assume that the
distance is measured in the number of hops (which is reasonable when considering
network usage). In that case, if lr is the average length of a connection, we can
also express the total consumed bandwidth for reading the document as r · s · lr.

On the other hand, suppose the document is updated w times per second and
that updates are always immediately pushed to, say, n replicas. If the average
path length for a connection from the server to a replica is lw, update costs are
w · s · lw. However, the average path length of a connection for reading a document
will now be lower in comparison to the non-replicated case. If we assume that
lr = lw, the total network usage may change by a factor w/r in comparison to the
non-replicated case.

Of course, more precise models should be applied in this case, but the ex-
ample illustrates that merely measuring consumed bandwidth may not be enough
to properly determine network usage. This aspect becomes even more important
given that pricing may be an issue for providing hosting services, an aspect that
we discuss next.

Financial metrics

Of a completely different nature are metrics that deal with the economics of con-
tent delivery networks. To date, such metrics form a relatively unexplored area,
although there is clearly interest to increase our insight (see, for example, [Janiga
et al., 2001]). We need to distinguish at least two different roles. First, the owner
of the hosting service is confronted with costs for developing and maintaining
the hosting service. In particular, costs will be concerned with server placement,
server capacity, and network resources (see, e.g., [Chandra et al., 2001]). This
calls for metrics aimed at the hosting service provider.

The second role is that of customers of the hosting service. Considering that
we are dealing with shared resources that are managed by a service provider, ac-
counting management by which a precise record of resource consumption is de-
veloped, is important for billing customers [Aboba et al., 2000]. However, devel-
oping pricing models is not trivial and it may turn out that simple pricing schemes
will dominate the sophisticated ones, even if application of the latter are cheaper
for customers [Odlyzko, 2001]. For example, Akamai uses peak consumed band-
width as its pricing metric.

SEC. 2.3 METRIC DETERMINATION 19

The pricing model for hosting an object can directly affect the control com-
ponents. For example, a model can mandate that the number of replicas of an
object is constrained by the money paid by the object owner. Likewise, there exist
various models that help in determining object hosting costs. Examples include a
model with a flat base fee and a price linearly increasing along with the number
of object replicas, and a model charging for the total number of clients serviced
by all the object replicas.

We observe that neither financial metrics for the hosting service provider nor
those for consumers have actually been established other than in some ad hoc and
specific fashion. We believe that developing such metrics, and notably the models
to support them, is one of the more challenging and interesting areas for content
delivery networks.

Consistency metrics

Consistency metrics inform to what extent the replicas retrieved by the clients are
consistent with the replica version that was up-to-date at the moment of retrieval.
Many consistency metrics have been proposed and are currently in use, but they
are usually quantified along three different axes.

In time-based consistency models, the difference between two replicas A and
B is measured as the time between the latest update on A and the one on B. In
effect, time-based models measure the staleness of a replica in comparison to
another, more recently updated replica. Taking time as a consistency metric is
popular in Web-hosting systems as it is easy to implement and independent of the
semantics of the replicated object. Because updates are generally performed at
only a single primary copy from where they are propagated to secondaries, it is
easy to associate a single timestamp with each update and to subsequently measure
the staleness of a replica.

In value-based models, it is assumed that each replica has an associated nu-
merical value that represents its current content. Consistency is then measured as
the numerical difference between two replicas. This metric requires that the se-
mantics of the replicated object are known or otherwise it would be impossible to
associate and compare object values. An example of where value-based metrics
can be applied is a stock-market Web document containing the current values of
shares. In such a case, we could define a Web document to be inconsistent if at
least one of the displayed shares differs by more than 2% with the most recent
value.

Finally, in order-based models, reads and writes are perceived as transactions
and replicas can only differ in the order of execution of write transactions ac-
cording to certain constraints. These constraints can be defined as the allowed
number of out-of-order transactions, but can also be based on the dependencies

20 BACKGROUND AND RELATED WORK CHAP. 2

between transactions as is commonly the case for distributed shared-memory sys-
tems [Mosberger, 1993], or client-centric consistency models as introduced in
Bayou [Terry et al., 1994].

Metric classification

Metrics can be classified into two types: static and dynamic. Static metrics are
those whose estimates do not vary with time, as opposed to dynamic metrics.
Metrics such as the geographical distance are static in nature, whereas metrics
such as end-to-end latency, number of router hops or network usage are dynamic.
The estimation of dynamic metrics can be a difficult problem as it must be per-
formed regularly to be accurate. Note that determining how often a metric should
be estimated is a problem by itself. For example, [Paxson, 1997a] found that the
time periods over which end-to-end routes persist vary from seconds to days.

Dynamic metrics can be more useful when selecting a replica for a given client
as they estimate the current situation. For example, [Crovella and Carter, 1995]
conclude that the use of a dynamic metric instead of a static one is more useful
for replica selection as the former can also account for dynamic factors such as
network congestion. Static metrics, in turn, are likely to be exploited by replica
server placement algorithms as they tend to be more directed toward a global,
long-lasting situation than an instantaneous one.

In general, however, any combination of metrics can be used by any control
component. For example, the placement algorithms proposed by [Radoslavov
et al., 2001] and [Qiu et al., 2001] use dynamic metrics (end-to-end latency and
network usage). Also [Dilley et al., 2002] and [Rabinovich and Aggarwal, 1999]
use end-to-end latency as a primary metric for determining the replica location.
Finally, the request-routing algorithm described in [Szymaniak et al., 2003] ex-
ploits network distance measurements. We observe that the existing systems tend
to support a small set of metrics, and use all of them in each control component.

2.3.2. Client clustering

As we noticed before, some metrics should be ideally measured on a per-client
basis. In a wide-area replica hosting system, for which we can expect millions of
clients, this poses a scalability problem to the estimation services as well as the
components that need to use them. Hence, there is a need for scalable mechanisms
for metric estimation.

A popular approach by which scalability is achieved is client clustering in
which clients are grouped into clusters. Metrics are then estimated on a per-
cluster basis instead of on a per-client basis. Although this solution allows to
estimate metrics in a scalable manner, the efficiency of the estimation depends on

SEC. 2.3 METRIC DETERMINATION 21

the accuracy of clustering mechanisms. The underlying assumption here is that
the metric value computed for a cluster is representative of values that would be
computed for each individual client in that cluster. Accurate clustering schemes
are those which keep this assumption valid.

The choice of a clustering scheme depends on the metric it aims to estimate.
Below, we present different kinds of clustering schemes that have been proposed
in the literature.

Local name servers

Each Internet client contacts its local DNS server to resolve a service host name
to its IP address(es). The clustering scheme based on local name servers unifies
clients contacting the same name server, as they are assumed to be located in
the same network-topological region. This is a useful abstraction as DNS-based
request-routing schemes are already used in the Internet. However, the success
of these schemes relies on the assumption that clients and local name servers are
close to each other. [Shaikh et al., 2001] performed a study on the proximity of
clients and their name servers based on the HTTP logs from several commercial
Web sites. Their study concludes that clients are typically eight or more hops
from their representative name servers. The authors also measured the round trip
times both from the name servers to the servers (name-server latency) and from
the clients to the servers (client latency). It turns out that the correlation between
the name-server latency and the actual client latency is quite poor. They conclude
that the latency measurements to the name servers are only a weak approximation
of the latency to actual clients. These findings have been confirmed by [Mao et al.,
2002].

Autonomous Systems

The Internet has been built as a graph of individual network domains, called Au-
tonomous Systems (ASes). The AS clustering scheme groups together clients
located in the same AS, as is done for example, by [Pierre et al., 2002]. This
scheme naturally matches the AS-based distance metric. Further clustering can be
achieved by grouping ASes into a hierarchy, as proposed by [Barford et al., 2001],
which in turn can be used to place caches.

Although an AS is usually formed out of a set of networks belonging to a
single administrative domain, it does not necessarily mean that these networks
are proximal to each other. Therefore, estimating latencies with an AS-based
clustering scheme can lead to poor results. Furthermore, since ASes are global in
scope, multiple ASes may cover the same geographical area. It is often the case
that some IP hosts are very close to each other (either in terms of latency or hops)

22 BACKGROUND AND RELATED WORK CHAP. 2

but belong to different ASes, while other IP hosts are very far apart but belong to
the same AS. This makes the AS-based clustering schemes not very effective for
proximity-based metric estimations.

Client proxies

In some cases, clients connect to the Internet through proxies which provide them
with services such as Web caching and prefetching. Client proxy-based cluster-
ing schemes group together all clients using the same proxy into a single cluster.
Proxy-based schemes can be useful to measure latency if the clients are close to
their proxy servers. An important problem with this scheme is that many clients
in the Internet do not use proxies at all. Thus, this clustering scheme will create
many clusters consisting of only a single client, which is inefficient with respect
to achieving scalability for metric estimation.

Network-aware clustering

Researchers have proposed another scheme for clustering Web clients, which is
based on client-network characteristics. [Krishnamurthy and Wang, 2000] evalu-
ate the effectiveness of a simple mechanism that groups clients having the same
first three bytes of their IP addresses into a single cluster. However, this simple
mechanism fails in more than 50% of the cases when checking whether grouped
clients actually belong to the same network. The authors identify two reasons for
failure. First, their scheme wrongly merges small clusters that share the same first
three bytes of IP addresses as a single class-C network. Second, it splits several
class-A, class-B, and CIDR networks into multiple class-C networks. Therefore,
the authors propose a novel method to identify clusters by using the prefixes and
network masks information extracted from the Border Gateway Protocol routing
tables [Rekhter and Li, 1995]. The proposed mechanism consists of the following
steps:

1. Creating a merged prefix table from routing table snapshots

2. Performing the longest prefix matching on each client IP address (as routers
do) using the constructed prefix table

3. Classifying all the clients which have the same longest prefix into a single
cluster.

The authors demonstrate the effectiveness of their approach by showing a success
rate of 99.99% in their validation tests.

SEC. 2.3 METRIC DETERMINATION 23

Hierarchical clustering

Most clustering schemes aim at achieving a scalable manner of metric estimation.
However, if the clusters are too coarse grained, it decreases the accuracy of mea-
surement simply because the underlying assumption that the difference between
the metric estimated to a cluster and to a client is negligible is no longer valid. Hi-
erarchical clustering schemes help in estimating metrics at different levels (such
as intra-cluster and inter-cluster), thereby aiming at improving the accuracy of
measurement, as in IDMaps [Francis et al., 2001] and Radar [Rabinovich and Ag-
garwal, 1999]. Performing metric estimations at different levels results not only
in better accuracy, but also in better scalability.

Note that there can be other possible schemes of client clustering, based not
only on the clients’ network addresses or their geographical proximities, but also
on their content interests (see, e.g., [Xiao and Zhang, 2001]). However, such
clustering is not primarily related to improving scalability through replication, for
which reason we further exclude it from our study.

2.3.3. Metric estimation services

Once the clients are grouped into their respective clusters, the next step is to ob-
tain the values for metrics (such as latency or network overhead). Estimation of
metrics on a wide-area scale such as the Internet is not a trivial task and has been
addressed by several research initiatives before [Francis et al., 2001; Moore et al.,
1996]. In this section, we discuss the challenges involved in obtaining the value
for these metrics.

Metric estimation services are responsible for providing values for the various
metrics required by the system. These services aid the control components in
taking their decisions. For example, these services can provide replica placement
algorithms with a map of the Internet. Also, metric estimation services can use
client-clustering schemes to achieve scalability.

Metric estimations schemes can be divided into two groups: active and passive
schemes. Active schemes obtain respective metric data by simulating clients and
measuring the performance observed by these simulated clients. Active schemes
are usually highly accurate, but these simulations introduce additional load to the
replica hosting system. Examples of active mechanisms are Cprobes [Carter and
Crovella, 1997] and Packet Bunch Mode [Paxson, 1997b]. Passive mechanisms
obtain the metric data from observations of existing system behavior. Passive
schemes do not introduce additional load to the network, but deriving the metric
data from the past events can suffer from poor accuracy. Examples of passive
mechanisms include SPAND [Stemm et al., 2000] and EtE [Fu et al., 2002].

Different metrics are by nature estimated in different manners. For example,

24 BACKGROUND AND RELATED WORK CHAP. 2

metric estimation services are commonly used to measure client latency or net-
work distance. The consistency-related metrics are not measured by a separate
metric estimation service, but are usually measured by instrumenting client appli-
cations. In this section, our discussion of existing research efforts mainly covers
services that estimate network-related metrics.

IDMaps

IDMaps is an active service that aims at providing an architecture for measur-
ing and disseminating distance information across the Internet [Francis et al.,
1999, 2001]. IDMaps uses programs called tracers that collect and advertise
distance information as so-called distance maps. IDMaps builds its own client-
clustering scheme. It groups different geographical regions as boxes and con-
structs distance maps between these boxes. The number of boxes in the Internet
is relatively small (in the order of thousands). Therefore, building a distance table
between these boxes is inexpensive. To measure client-server distance, an IDMaps
client must calculate the distance to its own box and the distance from the target
server to this server’s box. Given these two calculations, and the distance between
the boxes calculated based on distance maps, the client can discover its real dis-
tance to the server. It must be noted that the efficiency of IDMaps heavily depends
on the size and placement of boxes.

King

King is an active metric estimation method [Gummadi et al., 2002]. It exploits the
global infrastructure of DNS servers to measure the latency between two arbitrary
hosts. King approximates the latency between two hosts, H1 and H2, with the
latency between their local DNS servers, S1 and S2.

Assume that a host X needs to calculate the latency between hosts H1 and
H2. The latency between their local DNS servers, LS1S2 , is calculated based on
round-trip times (RTTs) of two DNS queries. With the first query, host X queries
the DNS server S1 about some non-existing DNS name that belongs to a domain
hosted by S1 [see Figure 2.4(a)]. In this way, X discovers its latency to S1:

LXS1 =
1
2

RTT1

By querying about a non-existing name, X ensures that the response is retrieved
from S1, as no cached copy of that response can be found anywhere in the DNS.

With the second query, host X queries the DNS server S1 about another non-
existing DNS name that this time belongs to a domain hosted by S2 (see Fig-
ure 2.4b). In this way, X measures the latency of its route to S2 that goes through

SEC. 2.3 METRIC DETERMINATION 25

S2

A

X

RTT = A + B

B

S2

A

X

RTT = A + B + C + D

S1

Measured distance

H2H1

Real distance

H2H1

(a) (b)

Host

S1

DNS server

1 2

D
C

B

Figure 2.4: The two DNS queries of King

S1:

LXS2 =
1
2

RTT2

A crucial observation is that this latency is a sum of two partial latencies, one
between X and S1, and the other between S1 and S2: LXS2 = LXS1 + LS1S2 . Since
LXS1 has been measured by the first DNS query, X may subtract it from the total
latency LXS2 to determine the latency between the DNS servers:

LS1S2 = LXS2 −LXS1 =
1
2

RTT2 − 1
2

RTT1

Note that S1 will forward the second query to S2 only if S1 is configured to accept
so-called “recursive” queries from X [Mockapetris, 1987b].

In essence, King is actively probing with DNS queries. A potential problem
with this approach is that an extensive use of King may result in overloading
the global infrastructure of DNS servers. In such case, the efficiency of DNS
is likely to decrease, which can degrade the performance of the entire Internet.
Also, according to the DNS specification, it is recommended to reject recursive
DNS queries that come from non-local clients, which renders many DNS servers
unusable for King [Mockapetris, 1987a].

Network Positioning

The idea of network positioning has been proposed in [Ng and Zhang, 2002],
where it is called Global Network Positioning (GNP). GNP is a novel approach
to the problem of network distance estimation, where the Internet is modeled as
an N-dimensional geometric space. GNP approximates the latency between any
two hosts as the Euclidean distance between their corresponding positions in the
geometric space.

GNP relies on the assumption that latencies can be triangulated in the Internet.
The position of any host X is computed based on its measured latencies between
X and k landmark hosts, whose positions have been computed earlier (k ≥ N +1,

26 BACKGROUND AND RELATED WORK CHAP. 2

Measured distance
Calculated distance

(x2,y2)

L3

L1
(x1,y1)

(x3,y3)

L2

(x4,y4)

Landmark
Any host

L1

L2

L3

Figure 2.5: Positioning in GNP

Measured distance
Calculated distancePositioned host

Landmark Any host

Transition matrix

y y

xL

yL PLy
PG

Gx

G

Gx

G

CGGBGA

GB
CG

Gx

G GA GA

GB CG

Figure 2.6: Positioning in Lighthouses

to ensure that the calculated position is unique). By treating these latencies as
distances, GNP triangulates the position of X (see Figure 2.5). The triangulation
is implemented by means of Simplex-downhill, which is a classical optimization
method for multi-dimensional functions [Nelder and Mead, 1965].

The most important limitation of GNP is that the set of landmarks can never
change. If any of them becomes unavailable, the latency to that landmark cannot
be measured and GNP is no longer able to position any more hosts. It makes GNP
sensitive to landmark failures.

This limitation is removed in the Lighthouses system [Pias et al., 2003]. The
authors have shown that hosts can be accurately positioned relative to any previ-
ously positioned hosts, acting as “local” landmarks. This eliminates the need for
contacting the original landmarks each time a host is positioned (see Figure 2.6).
It also allows to improve the positioning accuracy, by selecting some of the local
landmarks close to the positioned host [Castro et al., 2003].

SCoLE further improves the scalability of the system by allowing each host to
select its own positioning parameters, construct its own “private” space, and posi-
tion other hosts in that space [Szymaniak et al., 2004]. This effectively removes
the necessity of a global negotiation to determine positioning parameters, such
as the space dimension, the selection of global landmarks, and the positioning
algorithm. Such an agreement is difficult to reach in large-scale systems, where

SEC. 2.3 METRIC DETERMINATION 27

different hosts can have different requirements with respect to the latency estima-
tion process. Latency estimates performed in different private spaces have been
shown to be highly correlated, even though these spaces have completely different
parameters.

Another approach is to position all hosts simultaneously as a result of a global
optimization process [Cox et al., 2003; Shavitt and Tankel, 2003; Waldvogel and
Rinaldi, 2003]. In this case, there is no need to choose landmarks, since every host
is in fact considered to be a landmark. The global optimization approach is gen-
erally faster than its iterative counterpart, which positions hosts one by one. The
authors also claim that it leads to better accuracy, and that it is easy to implement
in a completely distributed fashion. However, because it operates on all the laten-
cies simultaneously, it can potentially have to be re-run every time new latency
measurements are available. Such a re-run is likely to be computationally expen-
sive in large-scale systems, where the number of performed latency measurements
is high. Note that the network position approaches can be applied only where the
modeled metric can be triangulated, making it more difficult when measuring, for
example, bandwidth.

SPAND

SPAND is a shared passive network performance measurement service [Stemm
et al., 2000]. This service aims at providing network-related measures such as
client end-to-end latency, available bandwidth, or even application-specific perfor-
mance details such as access time for a Web object. The components of SPAND
are client applications that can log their performance details, a packet-capturing
host that logs performance details for SPAND-unaware clients, and performance
servers that process the logs sent by the above two components. The performance
servers can reply to queries concerning various network-related and application-
specific metrics. SPAND has an advantage of being able to produce accurate
application-specific metrics if there are several clients using that application in
the same shared network. Further, since it employs passive measurement, it does
not introduce any additional traffic.

Network Weather Service

The Network Weather Service (NWS) is an active measurement service [Wolski
et al., 1999]. It is primarily used for Grid computing, where decisions regarding
scheduling of distributed computations are made based on the knowledge of server
loads and several network performance metrics, such as available bandwidth and
end-to-end latency. Apart from measuring these metrics, it also employs predic-
tion mechanisms to forecast their value based on past events. In NWS, the metrics

28 BACKGROUND AND RELATED WORK CHAP. 2

are measured using special sensor processes, deployed on every potential server
node. Further, to measure end-to-end latency active probes are sent between these
sensors. NWS uses adaptive forecasting approach, in which the service dynami-
cally identifies the model that gives the least prediction error. NWS has also been
used for replica selection [McCune and Andresen, 1998]. However, exploiting
NWS directly by a wide-area replica hosting system can be difficult, as this ser-
vice does not scale to the level of the Internet. This is due to the fact that it runs
sensors in every node and does not use any explicit client clustering schemes. On
the other hand, when combined with a good client clustering scheme and careful
sensor placement, NWS can become a useful metric estimation service.

Akamai metric estimation

Commercial replica hosting systems often use their own monitoring or metric esti-
mation services. Akamai has built its own distributed monitoring service to mon-
itor server resources, network-related metrics and overall system performance.
The monitoring system places monitors in every replica server to measure server
resources. The monitoring system simulates clients to determine if the overall
system performance is in an acceptable state as perceived by clients. It measures
network-related information by employing agents that communicate with border
routers in the Internet as peers and derive the distance-related metrics to be used
for its placement decisions [Dilley et al., 2002].

Other systems

In addition to the above wide-area metric estimation systems, there are different
classes of systems that measure service-related metrics such as content popularity,
client-aborted transfers, and amount of consumed bandwidth. These kinds of sys-
tems perform estimation in a smaller scale, and mostly measure metrics as seen
by a single server.

Web page instrumentation and associated code (e.g., in Javascript) is being
used in various commercial tools for measuring service-related metrics. In these
schemes, instrumentation code is downloaded by the client browser after which it
tracks the download time for individual objects and reports performance charac-
teristics to the Web site.

EtE is a passive system used for measuring metrics such as access latency,
and content popularity for the contents hosted by a server [Fu et al., 2002]. This
is done by running a special model near the analyzed server that monitors all the
service-related traffic. It is capable of determining sources of delay (distinguishing
between network and server delays), content popularity, client-aborted transfers
and the impact of remote caching on the server performance.

SEC. 2.4 METRIC DETERMINATION 29

[Rabinovich et al., 2006] propose a marketplace-driven measurement called
DipZoom. The system aims to provide focused, on-demand Internet measure-
ments for large scale distributed systems. Compared to previous approaches that
require a well-established infrastructure for measurement, DipZoom offers a match-
making service that allows different measurement providers to trade their services.
It uses peer-to-peer concepts to bring together experimenters in need of measure-
ments with external measurement providers. It then harnesses market forces to
orchestrate the supply and demand to provide a “free market” eco-system. This
approach can be potentially useful for applications that do not have the luxury of
having a well established infrastructure for running metric estimation services.

2.3.4. Discussion

In this section, we discussed three issues related to metric estimation: metric se-
lection, client clustering, and metric estimation.

Metric selection deals with deciding which metrics are important to evaluate
system performance. In most cases, optimizing latency is considered to be most
important in many works. Another metric used to measure the efficiency of a
system is consumed bandwidth. However, in order to measure the efficiency of a
consistency protocol as expressed by the ratio between the consumed bandwidth
for replica updates and the bandwidth delivered to clients, some distance metric
needs to be taken into account as well. When it comes to consistency metrics, three
different types need to be considered: those related to time, value, and the ordering
of operations. It appears that this differentiation is fairly complete, leaving the
actual implementation of consistency models and the enforcement of consistency
the main problem to solve.

A scalability problem that these metrics introduce is that they, in theory, re-
quire measurements on a per-client basis. With millions of potential clients, such
measurements are impossible. This problem is alleviated by client-clustering
schemes. Finding the right metric for clustering, and also one that can be eas-
ily established has shown to be difficult. However, network-aware clustering by
which a prefix of the network address is taken as criterion for clustering has led to
very accurate results.

Once a metric has been chosen, its value needs to be determined. This is where
metric estimation services come into place. Various services exist, including some
very recent ones that can handle difficult problems such as estimating the latency
between two arbitrary nodes in the Internet. We note that the techniques and
results presented in this section apply to CDNs hosting both static Web content
and dynamic Web applications. Hence, these results are complementary to the
solutions addressed by the thesis.

30 BACKGROUND AND RELATED WORK CHAP. 2

2.4. ADAPTATION TRIGGERING

The performance of a replica hosting system changes with the variations of
uncontrollable system parameters such as client access patterns and network con-
ditions. These changes make the current value of the system λ drift away from
the optimal value λ∗, and fall out of the acceptable interval. The system needs
to maintain a desired level of performance by keeping λ in an acceptable range
amidst these changes. The adaptation triggering component of the system is re-
sponsible for identifying changes in the system and for adapting the system con-
figuration to bound λ within the acceptable range. This adaptation consists of
a combination of changes in replica placement, consistency policy, and request
routing policy.

We classify adaptation triggering components along two criteria. First, they
can be classified based on their timing nature. Second, they can be classified based
on which element of the system actually performs the triggering.

2.4.1. Time-based classification

Taking timing into account, we distinguish three different triggering mechanisms:
periodic triggers, aperiodic triggers, and triggers that combine these two.

Periodic triggers

A periodic triggering component analyzes a number of input variables, or λ itself,
at fixed time intervals. If the analysis reveals that λ is too far from λ∗, the system
triggers the adaptation. Otherwise, it allows the system to continue with the same
configuration. Such a periodic evaluation scheme can be effective for systems that
have relatively stable uncontrollable parameters. However, if the uncontrollable
parameters fluctuate a lot, then it may become very hard to determine a good
evaluation periodicity. A too short period will lead to considerable adaptation
overhead, whereas a too long period will result in slow reactions to important
changes.

Aperiodic triggers

Aperiodic triggers can trigger adaptation at any time. A trigger is usually due to
an event indicating a possible drift of λ from the acceptable interval. Such events
are often defined as changes of the uncontrollable parameters, such as the client
request rates or end-to-end latency, which may reflect issues that the system has
to deal with.

SEC. 2.4 ADAPTATION TRIGGERING 31

The primary advantage of aperiodic triggers is their responsiveness to emer-
gency situations such as flash crowds where the system must be adapted quickly.
However, it requires continuous monitoring of metrics that can indicate events in
the system, such as server load or client request rate.

Hybrid triggers

Periodic and aperiodic triggers have opposite qualities and drawbacks. Periodic
triggers are well suited for detecting slow changes in the system that aperiodic
triggers may not detect, whereas aperiodic triggers are well suited to detect emer-
gency situations where immediate action is required. Consequently, a good ap-
proach may be a combination of periodic and aperiodic triggering schemes. For
example, Radar and Globule use both periodic and aperiodic triggers, which give
them the ability to perform global optimizations and to react to emergency situa-
tions.

In Radar [Rabinovich and Aggarwal, 1999], every replica server periodically
checks for its load and the number of client accesses to a particular replica. An
object is deleted for low client accesses and a migration/replication component is
invoked if the server load is above a threshold. In addition, a replica server can
detect that it is overloaded and ask its replication-managing component to offload
it. Adaptation in this case consists either of distributing the load over other replica
servers, or to propagate the request to another replication-managing component in
case there are not enough replica servers available.

In Globule [Pierre and van Steen, 2006], each primary server periodically eval-
uates recent client access logs. The need for adapting the replication and consis-
tency policies is determined by this evaluation. Similarly to Radar, each replica
server also monitors its request rate and response times. When a server is over-
loaded, it can request its primary server to reevaluate the replication strategy.

2.4.2. Source-based classification

Adaptation triggering mechanisms also vary upon which part of the system actu-
ally performs the triggering. We describe three different kinds of mechanisms.

Server-triggered adaptation

Server-triggered adaptation schemes consider that replica servers are in a good po-
sition to evaluate metrics from the system. Therefore, the decision that adaptation
is required is taken by one or more replica servers. Radar and Globule use server-
triggered adaptation, as they make replica servers monitor and possibly react to
system conditions.

32 BACKGROUND AND RELATED WORK CHAP. 2

Server-triggered adaptation is also well suited for reacting to internal server
conditions, such as overloads resulting from flash crowds or denial-of-service
(DoS) attacks. For example, in [Jung et al., 2002a], the authors studied the char-
acteristics of flash crowds and DoS attacks. They propose an adaptation scheme
where servers can differentiate these two kinds of events and react accordingly:
increase the number of replicas in case of a flash crowd, or invoke security mech-
anisms in case of a DoS attack.

Server-triggered adaptation is effective as the servers are in a good position to
determine the need for changes in their strategies in view of other constraints, such
as total system cost. Also, these mechanisms do not require running triggering
components on elements (hosts, routers) that may not be under the control of the
replica hosting system.

Client-triggered adaptation

Adaptation can be triggered by the clients. In client-triggered schemes, clients or
client representatives can notice that they experience poor quality of service and
request the system to take the appropriate measures. Sayal et al. [Sayal et al.,
2003] describe such a system where smart clients provide the servers with feed-
back information to help take replication decisions. Similarly, Akamai uses emu-
lated clients placed around the world to check whether the response time provided
to end users meet the desired level of performance [Dilley et al., 2002].

Client-triggered adaptation can be efficient in terms of preserving a client’s
QoS. However, it has three important drawbacks. First, the clients or client rep-
resentatives must cooperate with the replica hosting system. Second, client trans-
parency is lost, as clients or their representatives need to monitor events and take
explicit action. Third, by relying on individual clients to trigger adaptation, this
scheme may suffer from poor scalability in a wide-area network, unless efficient
client clustering methods are used.

Router-triggered adaptation

In router-triggered schemes, adaptation is initiated by the routers that can inform
the system of network congestion, link and network failures, or degraded end-to-
end request latencies. These schemes observe network-related metrics and operate
on them.

Such an adaptation scheme is used in SPREAD [Rodriguez and Sibal, 2000].
In SPREAD, every network has one special router with a distinguished proxy at-
tached to it. If the router notices a TCP communication from a client to retrieve
data from a primary server, it intercepts this communication and redirects the re-
quest to the proxy attached to it. The proxy gets a copy of the referenced object

SEC. 2.5 REPLICA PLACEMENT 33

from the primary server and services this client and all future requests passing
through its network. By using the network layer to implement replication, this
scheme builds an architecture that is transparent to the client.

Router-triggered schemes have the advantage that routers are in a good posi-
tion to observe network-related metrics, such as end-to-end latency and consumed
bandwidth while preserving client transparency. Such schemes are useful to detect
network congestion or dead links, and thus may trigger changes in replica loca-
tion. However, they suffer from two disadvantages. First, they require the support
of routers, which may not be available to every enterprise building a replica host-
ing system in the Internet. Second, they introduce an overhead to the network
infrastructure, as they need to isolate the traffic targeting Web hosting systems,
which involves processing all packets received by the routers.

2.4.3. Discussion

Deciding when to trigger system adaptation is difficult because explicitly com-
puting λ and λ∗ may be expensive, if not impossible. This calls for schemes that
are both responsive enough to detect the drift of λ from the acceptable interval
and computationally inexpensive. This is usually realized by monitoring simple
metrics which are believed to significantly influence λ.

Another difficulty is posed by the fact that it is not obvious which adaptive
components should be triggered. Depending on the origin of the performance
drift, the optimal adaptation may be any combination of changes in replica place-
ment, request routing or consistency policies.

Note that the problem of adaptation for a CDN hosting multi-tiered Web ap-
plications is more difficult compared to adapting a single-tiered Web site (which
is the case for static Web content). Adapting Web application configurations re-
quires identification of the “bottleneck” tier and choosing the right mechanism to
alleviate it. In some cases, adaptation decisions must be made for multiple tiers.
As we show in Chapter 6, efficient hosting of Web application often requires care-
ful selection of the best adaptation mechanism to be applied at more than one
tier. Moreover, the adaptation decisions must be based on the end-to-end perfor-
mance of the Web application instead of adapting individual tiers independently.
We address the issue of adaptation of Web applications in detail in Chapter 6.

2.5. REPLICA PLACEMENT

The task of replica placement algorithms is to find good locations to host repli-
cas. As noted earlier, replica placement forms a controllable input parameter of the
objective function. Changes in uncontrollable parameters, such as client request

34 BACKGROUND AND RELATED WORK CHAP. 2

rate or client latencies, may warrant changing the replica locations. In such case,
the adaptation triggering component triggers the replica placement algorithms,
which subsequently adapt the current placement to new conditions.

The problem of replica placement consists of two subproblems: replica server
placement and replica content placement. Replica server placement is the problem
of finding suitable locations for replica servers. Replica content placement is the
problem of selecting replica servers that should host replicas of an object. Both
these placements can be adjusted by the system to optimize the objective function
value λ.

There are some fundamental differences between the server and content place-
ment problems. Server placement concerns the selection of locations that are good
for hosting replicas of many objects, whereas content placement deals with the se-
lection of locations that are good for replicas of a single object. Furthermore, these
two problems differ in how often and by whom their respective solutions need to
be applied. The server placement algorithms are used in a larger time scale than
the content placement algorithms. They are usually used by the system operator
during installation of server infrastructure or while upgrading the hosting infras-
tructure, and can typically be run once every few months. The content placement
algorithms are run more often, as they need to react to possibly rapidly changing
situations such as flash crowds.

In [Karlsson et al., 2002], the authors present a framework for evaluating
replica placement algorithms for content delivery networks and also in other fields
such as distributed file systems and databases. Their framework can be used to
classify and qualitatively compare the performance of various algorithms using
a generic set of primitives covering problem definition and heuristics. They also
provide an analytical model to predict the decision times of each algorithm. Their
framework is useful for evaluating the relative performance of different replica
placement algorithms, and as such, complements the material discussed in this
section.

2.5.1. Replica server placement

The problem of replica server placement is to select K servers out of N potential
sites such that the objective function is optimized for a given network topology,
client population, and access patterns. The objective function used by the server
placement algorithms operates on some of the metrics defined in Section 2.3.
These metrics may include, for example, client latencies for the objects hosted
by the system, and the financial cost of server infrastructure.

The problem of determining the number and locations of replica servers, given
a network topology, can be modeled as the center placement problem. Two vari-
ants used for modeling it are the facility location problem and the minimum K-

SEC. 2.5 REPLICA PLACEMENT 35

median problem. Both these problems are NP-hard. They are defined in [Shmoys
et al., 1997; Qiu et al., 2001], and we describe them here again for the sake of
completeness.

Facility Location Problem Given a set of candidate server locations i in which
the replica servers (“facilities”) may be installed, running a server in loca-
tion i incurs a cost of fi. Each client j must be assigned to one replica server,
incurring a cost of d jci j where d j denotes the demand of the node j, and ci j

denotes the distance between i and j. The objective is to find the number
and location of replica servers which minimizes the overall cost.

Minimum K-Median Problem Given N candidate server locations, we must se-
lect K of them (called “centers”), and then assign each client j to its closest
center. A client j assigned to a center i incurs a cost of d jci j. The goal is to
select K centers, so that the overall cost is minimal.

The difference between the minimum K-median problem and the facility location
problem is that the former associates no cost with opening a center (as with a
facility, which has an operating cost of fi). Further, in the minimum K-median
problem, the number of servers is bounded by K.

Some initial work on the problem of replica server placement has been ad-
dressed in [da Cunha, 1997]. However, it has otherwise been seldom addressed
by the research community and only few solutions have been proposed.

In [Li et al., 1999], the authors propose a placement algorithm based on the
assumption that the underlying network topologies are trees and solve it using dy-
namic programming techniques. The algorithm is designed for Web proxy place-
ment but is also relevant to server placement. The algorithm works by dividing
a tree T into smaller subtrees Ti; the authors show that the best way to place t
proxies is by placing ti proxies for each Ti such that ∑ ti = t. The algorithm is
shown to be optimal if the underlying network topology is a tree. However, this
algorithm has two limitations: (i) it cannot be applied to a wide-area network such
as the Internet whose topology is not a tree, and (ii) it has a high computational
complexity of O(N3K2) where K is the number of proxies and N is the number
of candidate locations. We note that the first limitation of this algorithm is due
to its assumption about the presence of a single origin server and henceforth to
find servers that can host a target Web service. This allows to construct only a
tree topology with this origin server as root. However, a typical Web replica host-
ing system will host documents from multiple origins, falsifying this assumption.
This nature of problem formulation is more relevant for content placement, where
every document has a single origin Web server.

In [Qiu et al., 2001], the authors model the replica placement problem as a
minimum K-median problem and propose a greedy algorithm. In each iteration,

36 BACKGROUND AND RELATED WORK CHAP. 2

the algorithm selects one server, which offers the least cost, where cost is defined
as the average distance between the server and its clients. In the ith iteration, the al-
gorithm evaluates the cost of hosting a replica at the remaining N− i+1 potential
sites in the presence of already selected i− 1 servers. The computational cost of
the algorithm is O(N2K). The authors also present a hot-spot algorithm, in which
the replicas are placed close to the clients generating most requests. The computa-
tional complexity of the hot-spot algorithm is N2 +min(NlogN,NK). The authors
evaluate the performance of these two algorithms and compare each one with the
algorithm proposed in [Li et al., 1999]. Their analysis shows that the greedy al-
gorithm performs better than the other two algorithms and its performance is only
1.1 to 1.5 times worse than the optimal solution. The authors note that the place-
ment algorithms need to incorporate the client topology information and access
pattern information, such as client end-to-end distances and request rates.

In [Radoslavov et al., 2001], the authors propose two replica server place-
ment algorithms that do not require the knowledge of client location but decide on
replica location based on the network topology alone. The proposed algorithms
are max router fanout and max AS/max router fanout. The first algorithm selects
servers closest to the router having maximum fanout in the network. The second
algorithm first selects the Autonomous System (AS) with the highest fanout, and
then selects a server within that AS that is closest to the router having maximum
fanout. The performance studies show that the second algorithm performs only 1.1
to 1.2 times worse than that of the greedy algorithm proposed in [Qiu et al., 2001].
Based on this, the authors argue that the need for knowledge of client locations
is not essential. However, it must be noted that these topology-aware algorithms
assume that the clients are uniformly spread throughout the network, which may
not be true. If clients are not spread uniformly throughout the network, then the
algorithm can select replica servers that are close to routers with highest fanout but
distant from most of the clients, resulting in poor client-perceived performance.

2.5.2. Replica content placement

The problem of replica content placement consists of two subproblems: content
placement and replica creation. The first problem concerns the selection of a set
of replica servers that must hold the replica of a given object. The second problem
concerns the selection of a mechanism to inform a replica server about the creation
of new replicas.

Content placement

The content placement problem consists of selecting K out of N replica servers
to host replicas of an object, such that the objective function is optimized under

SEC. 2.5 REPLICA PLACEMENT 37

a given client access pattern and replica update pattern. The content placement
algorithms select replica servers in an effort to improve the quality of service
provided to the clients and minimize the object hosting cost.

Similarly to the server placement, the content placement problem can be mod-
eled as the facility location placement. However, such solutions can be compu-
tationally expensive making it difficult to be applied to this problem, as the con-
tent placement algorithms are run far more often their server-related counterparts.
Therefore, existing replica hosting systems exploit simpler solutions.

In Radar [Rabinovich and Aggarwal, 1999], every host runs the replica place-
ment algorithm, which defines two client request rate thresholds: Rrep for replica
replication, and Rdel for object deletion, where Rdel < Rrep. A document is
deleted if its client request rate drops below Rdel . The document is replicated if its
client request rate exceeds Rrep. For request rates falling between Rdel and Rrep,
documents are migrated to a replica server located closer to clients that issue more
than a half of requests. The distance is calculated using a Radar-specific metric
called preference paths. These preference paths are computed by the servers based
on information periodically extracted from routers.

In SPREAD, the replica servers periodically calculate the expected number of
requests for an object. Servers decide to create a local replica if the number of
requests exceeds a certain threshold [Rodriguez and Sibal, 2000]. These servers
remove a replica if the popularity of the object decreases. If required, the total
number of replicas of an object can be restricted by the object owner.

In [Chen et al., 2002a], the authors propose a dynamic replica placement al-
gorithm for scalable content delivery. This algorithm uses a dissemination-tree-
based infrastructure for content delivery and a peer-to-peer location service pro-
vided by Tapestry for locating objects [Zhao et al., 2004]. The algorithm works as
follows. It first organizes the replica servers holding replicas of the same object
into a load-balanced tree. Then, it starts receiving client requests which target the
origin server containing some latency constraints. The origin server services the
client if the server’s capacity constraints and client’s latency constraints are met.
If any of these conditions fail, it searches for another server in the dissemination
tree that satisfies these two constraints and creates a replica at that server. The al-
gorithm aims to achieve better scalability by quickly locating the objects using the
peer-to-peer location service. The algorithm is good in terms of preserving client
latency and server capacity constraints. On the other hand, it has a considerable
overhead caused by checking QoS requirements for every client request. In the
worst case a single client request may result in creating a new replica. This can
significantly increase the request servicing time.

In [Kangasharju et al., 2001a], the authors model the content placement prob-
lem as an optimization problem. The problem is to place K objects in some of N

38 BACKGROUND AND RELATED WORK CHAP. 2

servers, in an effort to minimize the average number of inter-AS hops a request
must traverse to be serviced, meeting the storage constraints of each server. The
problem is shown to be NP-complete and three heuristics are proposed to address
this problem. The first heuristic uses popularity of an object as the only criterion
and every server decides upon the objects it needs to host based on the objects’
popularity. The second heuristic uses a cost function defined as a product of ob-
ject popularity and distance of server from origin server. In this heuristic, each
server selects the objects to host as the ones with high cost. The intuition behind
this heuristic is that each server hosts objects that are highly popular and also that
are far away from their origin server, in an effort to minimize the client latency.
This heuristic always tries to minimize the distance of a replica from its origin
server oblivious of the presence of other replicas. The third heuristic overcomes
this limitation and uses a coordinated replication strategy where replica locations
are decided in a global/coordinated fashion for all objects. This heuristic uses a
cost function that is a product of total request rate for a server, popularity, and
shortest distance of a server to a copy of the object. The central server selects
the object and replica pairs that yield the best cost at every iteration and recom-
putes the shortest distance between servers for each object. Using simulations, the
authors show that the global heuristic outperforms the other two heuristics. The
drawback is its high computational complexity.

In [Tang and Xu, 2004], the authors model the content placement problem as
a constrained optimization problem where the objective is to find a placement po-
sition such that the CDN can minimize its replication costs (e.g., bandwidth costs,
or storage) provided it can meet certain a quality of service (e.g., client latency).
The authors show that the problem is NP-complete and propose heuristics that
perform close to optimal solution and has O(N2) complexity.

In [Szymaniak et al., 2006], the authors propose a latency-minimizing con-
tent placement algorithm that is designed to scale for millions of servers. The
algorithm works in two steps. The first step is to identify the network regions (i.e.,
group of nodes whose latencies to each other are relatively low), where the replicas
should be placed. The second step is to choose a server to host the replica in the
selected network region. The algorithm relies on network positioning techniques
that model Internet latencies in an M-dimensional geometric space (discussed in
Section 2.3). This allows the system to avoid the costly pairwise latency estima-
tions between all potential replica locations. This reduces the computational cost
of choosing K replica locations out of N servers to O(Nmax(logN,K)), which is
significantly lower than those of the previously proposed algorithms.

SEC. 2.5 REPLICA PLACEMENT 39

Replica creation mechanisms

Various mechanisms can be used to inform a replica server about the creation of
a new replica that it needs to host. The most widely used mechanisms for this
purpose are pull-based caching and push replication.

In pull-based caching, replica servers are not explicitly informed of the cre-
ation of a new replica. When a replica server receives a request for a document it
does not own, it treats it as a miss and fetches the replica from the master. As a
consequence, the creation of a new replica is delayed until the first request for this
replica. This scheme is adopted in Akamai [Dilley et al., 2002]. Note that in this
case, pull-based caching is used only as a mechanism for replica creation. The
decision to place a replica in that server is taken by the system, when redirecting
client requests to replica servers.

In push replication, a replica server is informed of a replica creation by explic-
itly pushing the replica contents to the server. A similar scheme is used in Glob-
ule [Pierre and van Steen, 2006] and Radar [Rabinovich and Aggarwal, 1999].

2.5.3. Discussion

The problem of replica server and content placement is not regularly addressed by
the research community. A few works have proposed solution for these problems
[Qiu et al., 2001; Radoslavov et al., 2001; Chen et al., 2002a; Kangasharju et al.,
2001a]. We note that an explicit distinction between server and content placement
is generally not made. Rather, work has concentrated on finding server locations
to host contents of a single content provider. However, separate solutions for
server placement and content placement would be more useful in a replica hosting
system, as these systems are intended to host different contents with varying client
access patterns.

The existing server placement algorithms improve client QoS by minimizing
client latency or distance [Qiu et al., 2001; Radoslavov et al., 2001]. Even though
client QoS is important to make placement decisions, in practice the selection
of replica servers is constrained by administrative reasons, such as business re-
lationship with an ISP, and financial cost for installing a replica server. Such a
situation introduces a necessary tradeoff between financial cost and performance
gain, which are not directly comparable entities. This drives the need for server
placement solutions that not only take into account the financial cost of a partic-
ular server facility but that can also translate the performance gains into potential
monetary benefits. To the best of our knowledge little work has been done in this
area, which requires building economic models that translate the performance of
a replica hosting system into the monetary profit gained. These kinds of economic
models are imperative to enable system designers to make better judgments in

40 BACKGROUND AND RELATED WORK CHAP. 2

server placement and provide server placement solutions that can be applied in
practice.

Note that the content placement algorithms described in this section are de-
signed for replicating static Web objects. However, the problem of placing repli-
cas of Web applications is vastly different from placing Web objects. This is be-
cause unlike static Web objects a Web application is multi-tiered and replicating a
Web application requires replication of (all or some of) its tiers. For instance, we
can replicate the business logic code alone and use a centralized database (e.g.,
Akamai’s Edge Computing Infrastructure [Dilley et al., 2002]). Alternatively, we
can place the business logic code and the entire database at all servers. Both ap-
proaches have their own advantages and disadvantages. We return to this problem
and discuss some of the significant research efforts addressing this issue in Sec-
tion 2.8.

2.6. CONSISTENCY ENFORCEMENT

The consistency enforcement problem concerns selecting consistency models
and implementing them using various consistency policies, which in turn can use
several content distribution mechanisms. A consistency model is a contract be-
tween a replica hosting system and its clients that dictates the consistency-related
properties of the content delivered by the system. A consistency policy defines
how, when, and to which object replicas the various content distribution mech-
anisms are applied. For each object, a policy adheres to a certain consistency
model defined for that object. A single model can be implemented using different
policies. A content distribution mechanism is a method by which replica servers
exchange replica updates. It defines in what form replica updates are transferred,
who initiates the transfer, and when updates take place.

Although consistency models and mechanisms are usually well defined, choos-
ing a valid one for a given object is a nontrivial task. The selection of a consistency
model, policies, and mechanisms must ensure that the required level of consis-
tency (defined by various consistency metrics as discussed in Section 2.3) is met,
while keeping the communication overhead as low as possible.

2.6.1. Consistency models

Consistency models differ in their strictness of enforcing consistency. By strong
consistency, we mean that the system guarantees that all replicas are identical
from the perspective of the system’s clients. If a given replica is not consistent
with others, it cannot be accessed by clients until it is brought up to date. Due to
high replica synchronization costs, strong consistency is seldom used in wide-area

SEC. 2.6 CONSISTENCY ENFORCEMENT 41

systems. Weak consistency, in turn, allows replicas to differ, but ensures that all
updates reach all replicas after some (bounded) time. Since this model is resistant
to delays in update propagation and incurs less synchronization overhead, it fits
better in wide-area systems.

Single vs. multiple master

Depending on whether updates originate from a single site or from several ones,
consistency models can be classified as single-master or multi-master, respec-
tively. The single-master models define one machine to be responsible for holding
an up-to-date version of a given object. These models are simple and fit well
with applications where the objects by nature have a single source of changes.
They are also commonly used in existing replica hosting systems, as these sys-
tems usually deliver some centrally managed data. For example, Radar assumes
that most of its objects are static Web objects that are modified rarely and uses
primary-copy mechanisms for enforcing consistency. The multi-master models
allow more than one server to modify the state of an object. These models are
applicable to replicated Web objects whose state can be modified as a result of a
client access. However, these models introduce some new problems such as the
necessity of solving update conflicts. Little work has been done on these models
in the context of Web replica hosting systems.

Types of consistency

As we explained, consistency models usually define consistency along three dif-
ferent axes: time, value, and order.

Time-based consistency models were formalized in [Torres-Rojas et al., 1999]
and define consistency based on real time. These models require a content distri-
bution mechanism to ensure that an update to a replica at time t is visible to the
other replicas and clients before time t + ∆. In [Cate, 1992], the author adopts a
time-based consistency model for maintaining consistency of FTP caches. The
consistency policy in this system guarantees that the only updates that might not
yet be reflected in a site are the ones that have happened in the last 10% of the
reported age of the file. Time-based consistency is applicable to all kinds of ob-
jects. It can be enforced using different content distribution mechanisms such as
polling (where a client or replica polls often to see if there is an update), or server
invalidation (where a server invalidates a copy held by other replicas and clients
if it gets updated). These mechanisms are explained in detail in the next section.

Value-based consistency schemes ensure that the difference between the value
of a replica and that of other replicas (and its clients) is no greater than a certain ∆.
Value-based schemes can be applied only to objects that have a precise definition

42 BACKGROUND AND RELATED WORK CHAP. 2

of value. For example, an object encompassing the details about the number of
seats booked in an aircraft can use such a model. This scheme can be implemented
by using polling or server invalidation mechanisms. Examples of value-based
consistency schemes and content distribution mechanisms can be found in [Bhide
et al., 2002].

Order-based consistency schemes are generally exploited in replicated databases.
These models perceive every read/write operation as a transaction and allow the
replicas to operate in different states if the out-of-order transactions adhere to
the rules defined by these policies. For example,in [Krishnakumar and Bernstein,
1994], the authors introduce the concept of N-ignorant transactions, where a trans-
action can be carried out on a replica while it is ignorant of N prior transactions
in other replicas. The rules constraining the order of execution of transactions can
also be defined based on dependencies among transactions. Implementing order-
based consistency policies requires content distribution mechanisms to exchange
the transactions among all replicas, and transactions need to be timestamped using
mechanisms such as logical clocks [Raynal and Singhal, 1996]. This consistency
scheme is applicable to a group of objects that jointly constitute a regularly up-
dated database.

A continuous consistency model, integrating the above three schemes, is pre-
sented in [Yu and Vahdat, 2002]. The underlying premise of this model is that
there is a continuum between strong and weak consistency models that is seman-
tically meaningful for a wide range of replicated services, as opposed to traditional
consistency models, which explore either strong or weak consistency [Bernstein
and Goodman, 1983]. The authors explore the space between these two extremes
by making applications specify their desired level of consistency using conits. A
conit is defined as a unit of consistency. The model uses a three-dimensional vec-
tor to quantify consistency: (Numerical Error, Order Error, Staleness). Numerical
error is used to define and implement value-based consistency, Order error is
used to define and implement order-based consistency schemes, and Staleness is
used for time-based consistency. If each of these metrics is bound to zero, then
the model implements strong consistency. Similarly, if there are no bounds then
the model does not provide any consistency at all. The conit-based model allows
a broad range of applications to express their consistency requirements. Also, it
can precisely describe guarantees or bounds with respect to differences between
replicas on a per-replica basis. This enables replicas having poor network connec-
tivity to implement relaxed consistency, whereas replicas with better connectivity
can still benefit from stronger consistency. The mechanisms implementing this
conit-based model are described in [Yu and Vahdat, 2000] and [Yu and Vahdat,
2002].

SEC. 2.6 CONSISTENCY ENFORCEMENT 43

2.6.2. Content distribution mechanisms

Content distribution mechanisms define how replica servers exchange updates.
These mechanisms differ on two aspects: the forms of the update and the direction
in which updates are triggered (from update source to replicas or vice versa). The
choices made for each aspect influence the system’s attainable level of consistency
as well as the communication overhead incurred by consistency enforcement.

Update forms

Replica updates can be transferred in three different forms. In the first form,
called state shipping, a whole replica is sent. The advantage of this approach is its
simplicity. On the other hand, it may incur significant communication overhead,
especially noticeable when a small update is performed on a large object.

In the second update form, called delta shipping, only differences with the
previous state are transmitted. It generally incurs less communication overhead
compared to state shipping, but it requires each replica server to have the previ-
ous replica version available. Further, delta shipping assumes that the differences
between two object versions can be quickly computed.

In the third update form, called function shipping, replica servers exchange
the actions that cause the changes. It generally incurs the least communication
overhead as the size of description of the action is usually independent from the
object state and size. However, it forces each replica server to convey a certain,
possibly computationally demanding, operation.

The update form is usually dictated by the exploited replication scheme and
the object characteristics. For example, in active replication requests targeting an
object are processed by all the replicas of this object. In such a case, function
shipping is the only choice. In passive replication, in turn, requests are first pro-
cessed by a single replica, and then the remaining ones are brought up-to-date.
In such a case, the update form selection depends on the object characteristics
and the change itself: whether the object structure allows for changes to be easily
expressed as an operation (which suggests function shipping), whether the object
size is large compared to the size of the changed part (which suggests delta ship-
ping), and finally, whether the object was simply replaced with a completely new
version (which suggests state shipping).

In general, it is the job of a system designer to select the update form that
minimizes the overall communication overhead. In most replica hosting systems,
updating means simply replacing the whole replica with its new version. However,
it has been shown that updating Web objects using delta shipping could reduce
the communication overhead by up to 22% compared to commonly used state
shipping [Mogul et al., 1997].

44 BACKGROUND AND RELATED WORK CHAP. 2

Update direction

The update transfer can be initiated either by a replica server that is in need of a
new version and wants to pull it from one of its peers, or by the replica server that
holds a new replica version and wants to push it to its peers. It is also possible to
combine both mechanisms.

Pull In one version of the pull-based approach, every piece of data is associated
with a Time To Refresh (TTR) attribute, which denotes the next time the data
should be validated. The value of TTR can be a constant, or can be calculated from
the update rate of the data. It may also depend on the consistency requirements
of the system. Data with high update rates and strong consistency requirements
require a small TTR, whereas data with less updates can have a large TTR. Such a
mechanism is used in [Cate, 1992]. The advantage of the pull-based scheme is that
it does not require replica servers to store state information, offering the benefit of
higher fault tolerance. On the other hand, enforcing stricter consistency depends
on careful estimation of TTR: small TTR values will provide good consistency,
but at the cost of unnecessary transfers when the document was not updated.

In another pull-based approach, HTTP requests targeting an object are ex-
tended with the HTTP if-modified-since field. This field contains the modification
date of a cached copy of the object. Upon receiving such a request, a Web server
compares this date with the modification date of the original object. If the Web
server holds a newer version, the entire object is sent as the response. Otherwise,
only a header is sent, notifying that the cached copy is still valid. This approach
allows for implementing strong consistency. On the other hand, it can impose
large communication overhead, as the object home server has to be contacted for
each request, even if the cached copy is valid.

In practice, a combination of TTR and checking the validity of a document at
the server is used. Only after the TTR value expires, will the server contact the
document’s origin server to see whether the cached copy is still valid. If it is still
valid, a fresh TTR value is assigned to it and a next validation check is postponed
until the TTR value expires again.

Push The push-based scheme ensures that communication occurs only when
there is an update. The key advantage of this approach is that it can meet strong
consistency requirements without introducing the communication overhead known
from the “if-modified-since” approach: since the replica server that initiates the
update transfer is aware of changes, it can precisely determine which changes to
push and when. An important constraint of the push-based scheme is that the

SEC. 2.6 CONSISTENCY ENFORCEMENT 45

object home server needs to keep track of all replica servers to be informed. Al-
though storing this list may seem costly, it has been shown that it can be done in an
efficient way [Cao and Liu, 1998]. A more important problem is that the replica
holding the state becomes a potential single point of failure, as the failure of this
replica affects the consistency of the system until it is fully recovered.

Push-based content distribution schemes can be associated with leases [Gray
and Cheriton, 1989]. In such approaches, a replica server registers its interest in a
particular object for an associated lease time. The replica server remains registered
at the object home server until the lease time expires. During the lease time, the
object home server pushes all updates of the object to the replica server. When
the lease expires, the replica server can either consider it as potentially stale or
register at the object home server again.

Leases can be divided into three groups: age-based, renewal-frequency-based,
and load-based ones [Duvvuri et al., 2000]. In the age-based leases, the lease time
depends on the last time the object was modified. The underlying assumption is
that objects that have not been modified for a long time will remain unmodified
for some time to come. In the renewal-frequency-based leases, the object home
server gives longer leases to replica servers that ask for replica validation more
often. In this way, the object server prefers replica servers used by clients express-
ing more interest in the object. Finally, in the load-based leases the object home
server tends to give away shorter lease times when it becomes overloaded. By
doing that, the object home server reduces the number of replica servers to which
the object updates have to be pushed, which is expected to reduce the size of the
state held at the object home server.

Other schemes The pull and push approaches can be combined in different
ways. In [Bhide et al., 2002], the authors propose three different combination
schemes of Push and Pull. The first scheme, called Push-and-Pull (PaP), simul-
taneously employs push and pull to exchange updates and has tunable parameters
to control the extent of push and pulls. The second scheme, Push-or-Pull (PoP),
allows a server to adaptively choose between a push- or pull-based approach for
each connection. This scheme allows a server to characterize which clients (other
replica servers or proxies to which updates need to be propagated) should use
either of these two approaches. The characterization can be based on system dy-
namics. By default, clients are forced to use the pull-based approach. PoP is
a more effective solution than PaP, as the server can determine the moment of
switching between push and pull, depending on its resource availability. The third
scheme, called PoPoPaP, is an extended version of PoP, that chooses from Push,
Pull and PaP. PoPoPaP improves the resilience of the server (compared to PoP),

46 BACKGROUND AND RELATED WORK CHAP. 2

offers graceful degradation, and can maintain strong consistency.
Another way of combining push and pull is to allow the former to trigger the

latter. It can be done either explicitly, by means of invalidations, or implicitly,
with versioning. Invalidations are pushed by an object’s origin server to a replica
server. They inform the replica server or the clients that the replica it holds is
outdated. In case the replica server needs the current version, it pulls it from
the origin server. Invalidations may reduce the network overhead, compared to
pushing regular updates, as the replica servers do not have to hold the current
version for all the time and can delay its retrieval until it is really needed. It is
particularly useful for often-updated, rarely-accessed objects.

Versioning techniques are exploited in Akamai [Dilley et al., 2002; Leighton
and Lewin, 2000]. In this approach, every object is assigned a unique version
identifier, modified after each update. The parent document that contains a ref-
erence to the object is rewritten after each update as well, so that it points to the
latest version. The consistency problem is thus reduced to maintaining the con-
sistency of the parent document. Each time a client retrieves the document, the
object reference is followed and a replica server is queried for that object. If the
replica server notices that it does not have a copy of the referenced version, the
new version is pulled in from the origin server.

Scalable mechanisms All the aforesaid content distribution mechanisms do not
scale for large number of replicas (say, in the order of thousands). In this case,
push-based mechanisms suffer from the overhead of storing the state of each
replica and updating them (through separate unicast connections). Pull-based
mechanisms suffer from the disadvantage of creating a hot spot around the ori-
gin server with thousands of replicas requesting the origin server (again through
separate connections) for an update periodically. Both mechanisms suffer from ex-
cessive network traffic for updating large number of replicas, as the same updates
are sent to different replicas using separate connections. This also introduces con-
siderable overhead on the server, in addition to increasing the network overhead.
These scalability limitations require the need for building scalable mechanisms.

Scalable content distribution mechanisms proposed in the literature aim to
solve scalability problems of conventional push and pull mechanisms by building
a content distribution hierarchy of replicas or clustering objects.

The first approach is adopted in [Ninan et al., 2002; Tewari et al., 2002; Fei,
2001]. In this approach, a content distribution tree of replicas is built for each
object. The origin server sends its update only to the root of the tree (instead of the
entire set of replicas), which in turn forwards the update to the next level of nodes
in the tree and so on. The content distribution tree can be built either using network
multicasting or application-level multicasting solutions. This approach drastically

SEC. 2.6 CONSISTENCY ENFORCEMENT 47

reduces the overall amount of data shipped by the origin server. In [Ninan et al.,
2002], the authors proposed a scalable lease-based consistency mechanism where
leases are made with a replica group (with the same consistency requirement),
instead of individual replicas. Each lease group has its own content distribution
hierarchy to send their replica updates. Similarly, in [Tewari et al., 2002], the
authors propose a mechanism that builds a content distribution hierarchy and also
uses object clustering to improve the scalability.

In [Fei, 2001], the authors propose a mechanism that chooses between update
propagation (through a multicast tree) or invalidation schemes on a per-object ba-
sis, periodically, based on each object’s update and access rate. The basic intuition
of the mechanism is to choose propagation if an object is accessed more than it is
updated (thereby reducing the pull traffic) and invalidation otherwise (as the over-
head for shipping updates is higher than pulling updates of an object only when
it is accessed). The mechanism computes the traffic overhead of the two methods
for maintaining consistency of an object, given its past update and access rate. It
chooses the one that introduces the least overhead as the mechanism to be adopted
for that object.

Object clustering is the process of clustering various objects with similar prop-
erties (update and/or request patterns) and treating them as a single clustered
object. It reduces the connection initiation overhead during the transmission of
replica updates, from a per-object level to per-cluster level, as updates for a cluster
are sent in a single connection instead of individuals connection for each object
(note the amount of updates transferred using both mechanisms are the same).
Clustering also reduces the number of objects to be maintained by a server, which
can help in reducing the adaptation overhead as a single decision will affect more
objects. To our knowledge, object clustering is not used in any well-known replica
hosting system.

2.6.3. Discussion

In this section, we discussed two important components of consistency enforce-
ment namely, consistency models and content distribution mechanisms. In con-
sistency models, we listed different types of consistency models – based on time,
value or transaction orders. In addition to these models, we also discussed the
continuous consistency model, in which different network applications can ex-
press the consistency constraints in any point in the consistency spectrum. This
model is useful to capture the consistency requirements for a broad range of ap-
plications being hosted by a replica hosting system. However, the mechanisms
proposed to enforce its policies do not scale with increasing number of replicas.
Similar models need to be developed for Web replica hosting systems that can
provide bounds on inconsistent access of its replicas with no loss of scalability.

48 BACKGROUND AND RELATED WORK CHAP. 2

Table 2.2: A comparison of approaches for enforcing consistency.

Systems Push Pull Vari- Comments

and Protocols Inv. Prop. ants

Akamai X X Uses push-based invalidation for consistency and
pull for distribution

Radar X Uses primary-copy

SPREAD X Chooses strategy on a per-object basis based on
its access and update rate

[Pierre et al., 2002] X Chooses strategy on a per-object basis based on
its access and update rate

[Duvvuri et al., 2000] X Invalidates content until lease is valid

Adaptive Push-Pull X X Chooses between push and pull strategy on a per-
object basis

[Fei, 2001] X X Chooses between propagation and invalidation on
a per-object basis

In content distribution mechanisms, we discussed the advantages and disad-
vantages of push, pull, and other adaptive mechanisms. These mechanisms can
be broadly classified as server-driven and client-driven consistency mechanisms,
depending on who is responsible for enforcing consistency. At the outset, client-
driven mechanisms seems to be a more scalable option for large-scale hosting
systems, as in this case the server is not overloaded with the responsibility of en-
forcing consistency. However, in [Yin et al., 2002] the authors have shown that
server-driven consistency protocols can meet the scalability requirements of large-
scale dynamic Web services delivering both static and dynamic Web content.

We note that existing systems and protocols concentrate only on time-based
consistency models and very little has been done on other consistency models.
Hence, in our summary table of consistency approaches adopted by various sys-
tems and protocols (Table 2.2), we discuss only the content distribution mecha-
nisms adopted by them.

Note that the consistency mechanisms presented in this section apply mostly
to static Web objects rather than relational databases. This is because, in the case
of static Web objects, the read and update requests are always addressed to a single
object and the ratio of updates are usually low. In the case of relational database
driven Web applications, a single database query might require accessing millions
of records to generate a response. Hence, the problem of providing a consistent
response to a single query ensuring tracking updates to millions of objects thereby
making it harder. We return to this issue in Section 2.8. The issue of data consis-
tency is one of the key problems to solve while distributing a Web application at

SEC. 2.7 REQUEST ROUTING 49

a worldwide scale and is also addressed in the solutions presented in subsequent
chapters.

Note that most of the consistency mechanisms described in this chapter (and
those used in the systems proposed in this thesis) assume that servers and networks
are failure free. However, in reality, these failures happen. An ideal replica hosting
system must be capable of serving consistent data even amidst server and network
failures. In [Brewer, 2000], the author conjectures that it is impossible to provide
both strong consistency and perfect availability in a system that is prone to net-
work partitions. This conjecture was proved by [Gilbert and Lynch, 2002]. These
results suggest that the hosting system (or the application designer) has to choose
the right tradeoff between consistency and availability. Unfortunately, most of the
contributions presented in this thesis do not focus on availability-related issues.
However, we occasionally return to these issues in subsequent chapters.

2.7. REQUEST ROUTING

In request routing, we address the problem of deciding which replica server
shall best service a given client request, in terms of the metrics selected in Sec-
tion 2.3. These metrics can be, for example, replica server load (where we choose
the replica server with the lowest load), end-to-end latency (where we choose
the replica server that offers the shortest response time to the client), or distance
(where we choose the replica server that is closest to the client).

Selecting a replica is difficult, because the conditions on the replica servers
(e.g., load) and in the network (e.g., link congestion, thus its latency) change con-
tinuously. These changing conditions may lead to different replica selections, de-
pending on when and for which client these selections are made. In other words, a
replica optimal for a given client may not necessarily remain optimal for the same
client forever. Similarly, even if two clients request the same document simultane-
ously, they may be directed to different replicas. In this section, we refer to these
two kinds of conditions as “system conditions.”

The entire request routing problem can be split into two: devising a redirection
policy and selecting a redirection mechanism. A redirection policy defines how to
select a replica in response to a given client request. It is basically an algorithm
invoked when the client request is invoked. A redirection mechanism, in turn, is
a means of informing the client about this selection. It first invokes a redirection
policy, and then provides the client with the redirecting response that the policy
generates.

A redirection system can be deployed either on the client side, or on the server
side, or somewhere in the network between these two. It is also possible to com-

50 BACKGROUND AND RELATED WORK CHAP. 2

bine client-side and server-side techniques to achieve better performance [Karaul
et al., 1998]. Interestingly, a study by [Rodriguez et al., 2000] suggests that clients
may easily circumvent the problem of replica selection by simultaneously retriev-
ing their data from several replica servers. This claim is disputed by [Kangasharju
et al., 2001b], where the authors notice that the delay caused by opening connec-
tions to multiple servers can outweigh the actual gain in content download time.
In this section, we assume that we leave the client-side unmodified, as the only
software that usually works there is a Web browser. We therefore do not discuss
the details of client-side server-selection techniques, which can be found in [Conti
et al., 2002]. Finally, we do not discuss various Web caching schemes, which have
been thoroughly described in [Rodriguez et al., 2001], as caches are by nature de-
ployed on the client-side.

In this section, we examine redirection policies and redirection mechanisms
separately. For each of them, we discuss several related research efforts, and
summarize with a comparison of these efforts.

2.7.1. Redirection policies

A redirection policy can be either adaptive or non-adaptive. The former considers
current system conditions while selecting a replica, whereas the latter does not.
Adaptive redirection policies are usually more complex than non-adaptive ones,
but this effort is likely to pay off with higher system performance. The systems
we discuss below usually implement both types of policies and can be configured
to use any combination of them.

Non-adaptive policies

Non-adaptive redirection policies select a replica that a client should access with-
out monitoring the current system conditions. Instead, they exploit heuristics that
assume certain properties of these conditions of which we discuss examples be-
low. Although non-adaptive policies are usually easier to implement, the system
works efficiently only when the assumptions made by the heuristics are met.

An example of a non-adaptive policy is round-robin. It aims at balancing
the load of replica servers by evenly distributing all the requests among these
servers [Delgadillo, 1999; Radware, 2002; Szymaniak et al., 2003]. The assump-
tion here is that all the replica servers have similar processing capabilities, and that
any of them can service any client request. This simple policy has proved to work
well in clusters, where all the replica servers are located in the same place [Pai
et al., 1998]. In wide-area systems, however, replica servers are usually distant
from each other. Since round-robin ignores this aspect, it cannot prevent directing
client requests to more distant replica servers. If that happens, the client-perceived

SEC. 2.7 REQUEST ROUTING 51

performance may turn out to be poor. Another problem is that the aim of load
balancing itself is not necessarily achieved, as processing different requests can
involve significantly different computational costs.

A non-adaptive policy exploited in Radar is the following. All replica servers
are ranked according to their predicted load, which is derived from the number of
requests each of them has serviced so far. Then, the policy redirects clients so that
the load is balanced across the replica servers, and that (additionally) the client-
server distance is as low as possible. The assumption here is that the replica server
load and the client-server distance are the main factors influencing the efficiency
of request processing. In [Aggarwal and Rabinovich, 1998], the authors observe
that this simple policy often performs nearly as good as its adaptive counterpart,
which we describe below. However, as both of them ignore network congestion,
the resulting client-perceived performance may still turn out to be poor.

Several interesting non-adaptive policies were implemented in Cisco Distributed-
Director [Delgadillo, 1999]. The first one defines the percentage of all requests
that each replica server receives. In this way, it can send more requests to more
powerful replica servers and achieve better resource utilization. Another policy
allows for defining preferences of one replica server over the other. It may be
used to temporarily relieve a replica server from service (for maintenance pur-
poses, for example), and delegate the requests it would normally service to another
server. Finally, DistributedDirector enables random request redirection, which can
be used for comparisons during some system efficiency tests. Although all these
policies are easy to implement, they completely ignore current system conditions,
making them inadequate to react to emergency situations.

One can imagine a non-adaptive redirection policy that statically assigns clients
to replicas based on their geographical location. This time, the underlying as-
sumptions are that the clients are evenly distributed over the world, and that the
geographical distance to a server reflects the network latency to that server. Al-
though the former assumption is not likely to be valid in a general case, the latter
has been verified positively as we discussed earlier. According to [Huffaker et al.,
2002], the correlation between the geographical distance and the network latency
reaches up to 75%. Still, since this policy ignores the load of replica servers, it
can redirect clients to overloaded replica servers, which may lead to substantially
degraded client experience.

Adaptive policies

Adaptive redirection policies discover the current system conditions by means of
metric estimation mechanisms discussed in Section 2.3. In this way, they are able
to adjust their behavior to situations that normally do not occur, like flash crowds,
and ensure high system robustness [Wang et al., 2002].

52 BACKGROUND AND RELATED WORK CHAP. 2

The information that adaptive policies obtain from metric estimation mecha-
nisms may include, for example, the load of replica servers or the congestion of
selected network links. Apart from these data, a policy may also need to know
some request-related information. The bare minimum is what object is requested
and where the client is located. More advanced replica selection can also take
client QoS requirements into account.

Knowing the system conditions and the client-related information, adaptive
policies first determine a set of replica servers that are capable of handling the
request (i.e., they store a replica of the document and can offer required quality
of service). Then, these policies select one (or more) of these servers, according
to the metrics they exploit. Adaptive policies may exploit more than one metric.
More importantly, a selection based on one metric is not necessarily optimal in
terms of others. For example, [Johnson et al., 2001] observed that most CDNs do
not always select the replica server closest to the client.

The adaptive policy used by Globule selects the replica servers that are closest
to the client in terms of network distance [Szymaniak et al., 2003]. Globule em-
ploys the AS-path length metric, originally proposed by [McManus, 1999], and
determines the distance based on a periodically refreshed, AS-based map of the
Internet. Since this approach uses passive metric estimation services, it does not
introduce any additional traffic to the network. We consider it to be adaptive,
because the map of the Internet is periodically rebuilt, which results in (slow)
adaptation to network topology changes. Unfortunately, the AS-based distance
calculations, although simple to perform, are not very accurate [Huffaker et al.,
2002].

A distance-based adaptive policy is also exploited by SPREAD [Rodriguez
and Sibal, 2000]. In this system, routers simply intercept requests on their path
toward the object home server, and redirect to a near-by replica server. Conse-
quently, requests reach their closest replica servers, and the resulting client-server
paths are shortened. This policy in a natural way adapts to changes in routing.
Its biggest disadvantage is the high cost of deployment, as it requires modifying
many routers.

A combined policy, considering both replica server load and client-server dis-
tance, is implemented in Radar. The policy first isolates the replica servers whose
load is below a certain threshold. Then, from these servers, the client-closest one
is selected. The Radar redirection policy adapts to changing replica server loads
and tries to direct clients to their closest replica servers. However, by ignoring net-
work congestion and end-to-end latencies, Radar focuses more on load balancing
than on improving the client-perceived performance.

Adaptive policies based on client-server latency have been proposed by [Ardaiz
et al., 2001] and [Andrews et al., 2002]. Based either on the client access logs,

SEC. 2.7 REQUEST ROUTING 53

or on passive server-side latency measurements, respectively, these policies redi-
rect a client to the replica server that has recently reported the minimal latency
to the client. The most important advantage of these schemes is that they ex-
ploit latency measurements, which are the best indicator of actual client experi-
ence [Huffaker et al., 2002]. On the other hand, both of them require maintaining
a central database of measurements, which limits the scalability of systems that
exploit these schemes.

A set of adaptive policies is supported by Web Server Director [Radware,
2002]. It monitors the number of clients and the amount of network traffic serviced
by each replica server. It also takes advantage of performance metrics specific for
Windows NT, which are included in the Management Information Base (MIB).
Since this information is only provided in a commercial white paper, it is difficult
to evaluate the efficiency of these solutions.

Another set of adaptive policies is implemented in Cisco DistributedDirec-
tor [Delgadillo, 1999]. This system supports many different metrics, including
inter-AS distance, intra-AS distance, and end-to-end latency. The redirection pol-
icy can determine the replica server based on a weighted combination of these
three metrics. Although this policy is clearly more flexible than a policy that uses
only one metric, measuring all the metrics requires deploying an “agent” on every
replica server. Also, the exploited active latency measurements introduce addi-
tional traffic to the Internet. Finally, because DistributedDirector is kept separate
from the replica servers, it cannot probe their load – it can be approximated only
with the non-adaptive policies discussed above.

A complex adaptive policy is used in Akamai [Dilley et al., 2002]. It con-
siders a few additional metrics, like replica server load, the reliability of routes
between the client and each of the replica servers, and the bandwidth that is cur-
rently available to a replica server. Unfortunately, the actual policy is subject to
trade secret and cannot be found in the published literature. However, a recent
measurement study by [Su et al., 2006] sheds more light on the effectiveness of
Akamai’s redirection policy. In their study, the authors analyzed the redirection
strategies of Akamai and found that in most cases Akamai’s redirection policy
is primarily driven by network latencies. Interestingly enough, the authors also
note that Akamai is usually able to detect even short-lived congestion points in
the Internet and to change its redirecting decisions accordingly.

2.7.2. Redirection mechanisms

Redirection mechanisms provide clients with the information generated by the
redirection policies. Redirection mechanisms can be classified according to sev-
eral criteria. For example, in [Barbir et al., 2002], the authors classify redirection
mechanisms into transport-level, DNS-based, and application-level ones. The

54 BACKGROUND AND RELATED WORK CHAP. 2

authors use the term “request routing” to refer to what we call “redirection” in
this paper. Such classification is dictated by the diversity of request processing
stages, where redirection can be incorporated: packet routing, name resolution,
and application-specific redirection implementation.

In this section, we distinguish between transparent, non-transparent, and com-
bined mechanisms. Transparent redirection mechanisms hide the redirection from
the clients. In other words, a client cannot determine which replica server is ser-
vicing it. In non-transparent redirection mechanisms, the redirection is visible to
the client, which can then explicitly refer to the replica server it is using. Com-
bined redirection mechanisms combine two previous types. They take the best
from these two types and eliminate their disadvantages.

As we only focus on wide-area systems, we do not discuss solutions that are
applicable only to local environments. An example of such a solution is packet
hand-off, which is thoroughly discussed in a survey of load-balancing techniques
by [Cardellini et al., 1999].

Transparent mechanisms

Transparent redirection mechanisms perform client request redirection in a trans-
parent manner. Therefore, they do not introduce explicit bounds between clients
and replica servers, even if the clients store references to replicas. It is particularly
important for mobile clients and for dynamically changing network environments,
as in both these cases, a replica server now optimal for a given client can become
suboptimal shortly later.

Several transparent redirection mechanisms are based on DNS [Delgadillo,
1999; Rabinovich and Aggarwal, 1999; Radware, 2002; Szymaniak et al., 2003].
They exploit specially modified DNS servers. When a modified DNS server re-
ceives a resolution query for a replicated service, a redirection policy is invoked
to generate one or more service IP addresses, which are returned to the client. The
policy chooses the replica servers based on the IP address of the query sender.
In DNS-based redirection, transparency is achieved assuming that services are re-
ferred to by means of their DNS names, and not their IP addresses. The entire
redirection mechanism is extremely popular, because of its simplicity and inde-
pendence from the actual replicated service – as it is incorporated in the name
resolution service, it can be used by any Internet application.

On the other hand, DNS-based redirection has some limitations [Shaikh et al.,
2001]. The most important ones are poor client identification and coarse redi-
rection granularity. Poor client identification is caused by the fact that a DNS
query does not necessarily carry the address of the querying client. The query
can pass through several DNS servers before it reaches the one that knows the
answer. However, any of these DNS servers knows only the DNS server with

SEC. 2.7 REQUEST ROUTING 55

which it directly communicates, and not the querying client. Consequently, using
DNS-based redirection mechanisms forces the system to use the clustering scheme
based on local DNS servers, which was discussed in Section 2.3. The coarse redi-
rection granularity is caused by the granularity of DNS itself: as it deals only with
machine names, it can redirect based only on the part of object URL that is related
to the machine name. Therefore, as long as two object URLs refer to the same ma-
chine name, they are identical for the DNS-based redirection mechanism, which
makes it difficult to use different distribution schemes for different objects.

A scalable version of DNS-based redirection is implemented in Akamai. This
system improves the scalability of the redirection mechanism by maintaining two
groups of DNS servers: top- and low-level ones. Whereas the former share one
location, the latter are scattered over several Internet data centers, and are usually
accompanied by replica servers. A top-level DNS servers redirects a client query
to a low-level DNS server proximal to the query sender. Then, the low-level DNS
server redirects the sender to an actual replica server, usually placed in the same
Internet data center. What is important, however, is that the top-to-low level redi-
rection occurs only periodically (about once per hour) and remains valid during all
that time. For this reason, the queries are usually handled by proximal low-level
DNS servers, which results in short name-resolution latency. Also, because the
low-level DNS servers and the replica servers share the same Internet data cen-
ter, the former may have accurate system condition information about the latter.
Therefore, the low-level DNS servers may quickly react to sudden changes, such
as flash crowds or replica server failures.

An original transparent redirection scheme is exploited in SPREAD, which
makes proxies responsible for client redirection [Rodriguez and Sibal, 2000].
SPREAD assumes the existence of a distributed infrastructure of proxies, each
handling all HTTP traffic in its neighborhood. Each proxy works as follows. It
inspects the HTTP-carrying IP packets and isolates these targeting replicated ser-
vices. All other packets are routed traditionally. If the requested replica is not
available locally, the service-related packets are forwarded to another proxy along
the path toward the original service site. Otherwise, the proxy services them and
generates IP packets carrying the response. The proxy rewrites source addresses in
these packets, so that the client thought that the response originates from the orig-
inal service site. The SPREAD scheme can be perceived as a distributed packet
hand-off. It is transparent to the clients, but it requires a whole infrastructure of
proxies.

Non-transparent mechanisms

Non-transparent redirection mechanisms reveal the redirection to the clients. In
this way, these mechanisms introduce an explicit binding between a client and a

56 BACKGROUND AND RELATED WORK CHAP. 2

given replica server. On the other hand, non-transparent redirection mechanisms
are easier to implement than their transparent counterparts. They also offer fine
redirection granularity (per object), thus allowing for more flexible content man-
agement.

The simplest method that gives the effect of non-transparent redirection is to
allow a client to choose from a list of available replica servers. This approach is
called “manual redirection” and can often be found on Web services of widely-
known corporations. However, since this method is entirely manual, it is of little
use for replica hosting systems, which require an automated client redirection
scheme.

Non-transparent redirection can be implemented by means of HTTP. It is an-
other redirection mechanism supported by Web Server Director [Radware, 2002].
An HTTP-based mechanism can redirect clients by rewriting object URLs inside
HTML documents, so that these URLs point at object replicas stored on some
replica servers. It is possible to treat each object URL separately, which allows for
using virtually any replica placement. The two biggest advantages of the HTTP-
based redirection are flexibility and simplicity. Its biggest drawback is the lack of
transparency.

Cisco DistributedDirector also supports the HTTP-based redirection, although
in a different manner [Delgadillo, 1999]. Instead of rewriting URLs, this system
exploits the HTTP 302 (temporary moved) response code. In this way, the redi-
recting machine does not need to store any service-related content – all it does is
activate the redirection policy and redirect client to a replica server. On the other
hand, this solution can efficiently redirect only per entire Web service, and not per
object.

Combined mechanisms

It is possible to combine transparent and non-transparent redirection mechanisms
in order to achieve a better result. Such approaches are followed by Akamai [Dilley
et al., 2002], Cisco DistributedDirector [Radware, 2002] and Web Server Direc-
tor [Delgadillo, 1999]. These systems allow to redirect clients using a “cascade”
of different redirection mechanisms.

The first mechanism in the cascade is HTTP. A replica server may rewrite
URLs inside an HTML document so that the URLs of different embedded objects
contain different DNS names. Each DNS name identifies a group of replica servers
that store a given object.

Although it is in general not recommended to scatter objects embedded in
a single Web page over too many servers [Kangasharju et al., 2001b], it may
be sometimes beneficial to host objects of different types on separate groups of
replica servers. For example, as video hosting may require specialized replica

SEC. 2.7 REQUEST ROUTING 57

server resources, it may be reasonable to serve video streams with dedicated
video servers, while providing images with other, regular ones. In such cases,
video-related URLs contain a different DNS name (like “video.cdn.com”) than
the image-related URLs (like “images.cdn.com”).

URL rewriting weakens the transparency, as the clients are able to discover
that the content is retrieved from different replica servers. However, because the
rewritten URLs contain DNS names that point to groups of replica servers, the
clients are not bound to any single replica server. In this way, the system preserves
the most important property of transparent redirection systems.

The second mechanism in the cascade is DNS. The DNS redirection sys-
tem chooses the best replica server within each group by resolving the group-
corresponding DNS name. In this way, the same DNS-based mechanism can be
used to redirect a client to its several best replica servers, each belonging to a
separate group.

By using DNS, the redirection system remains scalable, as it happens in the
case of pure DNS-based mechanisms. By combining DNS with URL rewriting,
however, the system may offer finer redirection granularity and thus allow for
more flexible replica placement strategies.

The third mechanism in the cascade is packet hand-off. The processing capa-
bilities of a replica server may be improved by deploying the replica server as a
cluster of machines that share the same IP address. In this case, the packet-handoff
is implemented locally to scatter client requests across several machines.

Similarly to pure packet-handoff techniques, this part of the redirection cas-
cade remains transparent for the clients. However, since packet hand-off is imple-
mented only locally, the scalability of the redirection system is maintained.

As can be observed, combining different redirection mechanisms leads to con-
structing a redirection system that is simultaneously fine-grained, transparent, and
scalable. The only potential problem is that deploying and maintaining such a
mechanism is a complex task. In practice, however, this problem turns out to be
just one more task of a replica hosting system operator. The duties like maintain-
ing a set of reliable replica servers, managing multiple replicas of many objects,
and making these replicas consistent, are likely to be at similar (if not higher) level
of complexity.

2.7.3. Discussion

The problem of request routing can be divided into two subproblems: devising a
redirection policy and selecting a redirection mechanism. The policy decides to
which replica a given client should be redirected, whereas the mechanism takes
care of delivering this decision to the client.

58 BACKGROUND AND RELATED WORK CHAP. 2

We classify redirection policies into two groups: adaptive and non-adaptive
ones. Non-adaptive policies perform well only when the system conditions do
not change. If they do change, the system performance may turn out to be poor.
Adaptive policies solve this problem by monitoring the system conditions and ad-
justing their behavior accordingly. However, they make the system more complex,
as they need specialized metric estimation services. We note that all the investi-
gated systems implement both adaptive and non-adaptive policies (see Table 2.3).

Redirection mechanisms, in turn, are classified into three groups: transparent,
non-transparent, and combined ones. Transparent mechanisms can be based on
DNS or packet hand-off. As can be observed in Table 2.3, DNS-based mecha-
nisms are very popular. Among them, a particularly interesting one is the scalable
DNS-based mechanism built by Akamai. As for packet hand-off, its traditional
limitation to clusters can be alleviated by means of a global infrastructure, as is
done in SPREAD. Non-transparent mechanisms are based on HTTP. They achieve
finer redirection granularity, at the cost of introducing an explicit binding between
a client and a replica server. Transparent and non-transparent mechanisms can be
combined. Resulting hybrids offer fine-grained, transparent, and scalable redirec-
tion at the cost of higher complexity.

We observe that the request routing component has to cooperate with the met-
ric estimation services to work efficiently. Consequently, the quality of the request
routing component depends on the accuracy of the data provided by the metric es-
timation service.

Further, we note that simple, non-adaptive policies sometimes work nearly as
efficient as their adaptive counterparts. Although this phenomenon may justify
using only non-adaptive policies in simple systems, we do believe that monitoring
system conditions is of a key value for efficient request routing in large infras-
tructures. Moreover, combining several different metrics in the process of replica
selection may additionally improve the system performance.

Finally, we are convinced that using combined redirection mechanisms is in-
evitable for large-scale wide-area systems. These mechanisms offer fine-grained,
transparent, and scalable redirection at the cost of higher complexity. The result-
ing complexity, however, is not significantly larger compared to that of other parts
of a replica hosting system. Since the ability to support millions of clients can be
of fundamental importance, using a combined redirection mechanism is definitely
worth the effort.

SEC. 2.8 HOSTING WEB APPLICATIONS 59

Table 2.3: The comparison of representative implementations of a redirec-
tion system

System Redirection

Policies Mechanisms

Adaptive Non-Adaptive TCP DNS HTTP Comb.

DST LAT NLD CPU USR OTH RR %RQ PRF RND PLD CNT DST 1LV 2LV

Akamai X X X X X X X X

Globule X X X X

Radar X X X X

SPREAD X X

Cisco DD X X X X X X X X X X

Web Direct X X X X X X X X

DST: Network distance OTH : Other metrics PLD: Predicted load
LAT : End-to-end latency RR : Round robin CNT: Centralized
NLD: Network load %RQ: Percentage of requests DST: Distributed
CPU: Replica server CPU load PRF : Server preference 1LV : One-level
USR: Number of users RND : Random selection 2LV : Two-level

2.8. HOSTING WEB APPLICATIONS

With the growing popularity of Web forums, e-commerce sites, blogs and
many others, a significant portion of Web content is not delivered from a static
file but generated dynamically each time a request is received. Dynamically gen-
erating Web contents allows servers to deliver personalized contents to each user,
and to take action when specific requests are issued, such as ordering an item from
an e-commerce site.

Dynamic Web applications are often organized along a three-tiered architec-
ture, as depicted in Figure 2.7(a). When a request is issued, the Web server invokes
application-specific code, which generates the content to be delivered to the client.
This application code, in turn, issues queries to a database where the application
state is preserved.

As noted in the previous section, most of the content placement and consis-
tency mechanisms discussed so far are designed for static Web objects. Contrary
to static Web objects, a Web application is multi-tiered and replicating Web appli-
cation requires replicating (some or all of) its tiers [Sivasubramanian et al., 2006a].
In this section, we present some popular replication techniques that can be used to
scale Web applications.

60 BACKGROUND AND RELATED WORK CHAP. 2

Database

Web browser

Appl. code

<xml>

</xml>

HTTP response

records

Database result

Database

HTTP request

Database query

���������
���������
���������
���������

���������
���������
���������
���������

Web server

(a) Non-replicated

Query
result

<xml>

</xml>

Query
result
<xml>

</xml>

Database
queries

HTTP
response

HTTP
request

HTTP
request

HTTP
response

Web browser Web browser

Database

Edge serverEdge server

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

Appl. code Appl. code

(b) Edge server computing

<xml>

</xml>

Query
result

Query
result
<xml>

</xml>

Database
queries

Web browser

Edge server

Cached
database

query
results

Web browser

Edge server

Database

<xml>

</xml>

<xml>

</xml> ��������
��������
��������
��������

��������
��������
��������
��������

Appl. code

��������
��������
��������
��������

��������
��������
��������
��������

Appl. code

(c) Database query caching

Database

Web browser

Edge server

database
Replicated

records

Web browser

Edge server

updates
Database record

��������
��������
��������
��������

��������
��������
��������
��������

Appl. code

��������
��������
��������
��������

��������
��������
��������
��������

Appl. code

(d) Database record replication

Figure 2.7: Various Web application hosting techniques.

SEC. 2.8 HOSTING WEB APPLICATIONS 61

2.8.1. Fragment caching

For hosting database-driven Web sites, one can ignore the fact that responses are
generated dynamically and cache the generated responses. This is the principal
idea behind a technique called fragment caching [Challenger et al., 2005; Datta
et al., 2002; Douglis et al., 1997; Li et al., 2003; Rabinovich et al., 1997]. In
fragment caching, each Web page is broken down into fragments, which usually
consists of static data (and sometimes also certain dynamic parts of the response).
The fragments are cached at edge servers and are used by the edge servers to
reconstruct (parts of) the page responses. The consistency of the cached fragments
is preserved either by maintaining dependency graph between the fragments and
the underlying database (e.g., [Challenger et al., 2005]) or by using time-based
weak consistency mechanisms (e.g., Akamai [Dilley et al., 2002]).

Fragment caching performs well for applications whose workloads exhibit
high temporal locality and low update rates (to the database). These workloads
tend to exhibit a good cache hit rate thereby enabling the edge servers to construct
a significant fraction of the client responses at the edges [Challenger et al., 2005].
However, with growing drive towards personalization of Web sites, the response
generated for each user tends to be unique, thereby reducing the benefits of these
techniques. In particular, for Web applications with poor temporal locality of re-
quests and considerable update rates, fragment caching will incur a poor cache hit
rate thereby requiring most of the requests to be served by the application located
in the central server.

2.8.2. Edge computing

A simple way to generate user-specific pages is to replicate the application code at
multiple edge servers, and keep the data centralized (see Figure 2.7(b)). This tech-
nique is, for example, the heart of Akamai’s Edge Computing [Davis et al., 2004],
ACDN [Rabinovich et al., 2003] and AutoGlobe [Seltzsam et al., 2006]. Edge
computing (EC) allows each edge server to generate user-specific pages accord-
ing to context, sessions, and information stored in the database, thereby spreading
the computational load across multiple servers.

In an EC infrastructure, one must ensure that the application code is suffi-
ciently replicated to meet the user’s demands. This is essential for many interac-
tive Internet applications that are computationally intensive (e.g., online gaming
systems). In [Rabinovich et al., 2003], the authors propose a code placement algo-
rithm that improves upon the placement algorithm used in RADAR [Rabinovich
and Aggarwal, 1999]. Compared to RADAR, ACDN’s placement algorithm takes
into account not only the client latency but also the bandwidth incurred in the pro-
cess of code replication and migration. ACDN also replicates the application data

62 BACKGROUND AND RELATED WORK CHAP. 2

provided the database is never updated by the application.
Similar to ACDN, Autoglobe also proposes to adapt the number of code repli-

cas based on the system load [Seltzsam et al., 2006]. Autoglobe uses a fuzzy logic
controller to determine the best action to carry out when the application’s load
exceeds certain thresholds. In the event of an overload (or underload) situation,
the controller identifies appropriate actions to remedy the situation. After that,
the fuzzy controller calculates the applicability of all actions (e.g. replication,
migration, deletion). If required, for example, for a migration action, the fuzzy
controller calculates the score of all suitable target service hosts. The action with
the highest applicability is executed and the host with the highest score is selected
as target host of the action.

While EC infrastructures are becoming increasingly popular among commer-
cial CDNs, the centralization of the data can pose a number of problems. First, if
edge servers are located worldwide, then each data access incurs wide-area net-
work latency; second, the central database quickly becomes a performance bot-
tleneck as it needs to serve all database requests from the whole system. These
properties restrict the use of EC to Web applications that require relatively few
database accesses to generate the content.

2.8.3. Database caching

Database caching is a promising technique that can be used to alleviate the database
bottleneck in edge server computing. Database caching allows data stored in the
database, to be cached at locations closer to the client. This allows edge servers to
answer queries locally when all the required data are present (see Figure 2.7(c)).
If the data are not present, the query is forwarded to the central database.

In general, we can classify existing database caching systems into two cate-
gories based on the nature of the cached data. The first category contains systems
that cache complete or partial tables from the central database server, whereas
systems in the second category cache the result of executed queries.

The first category of systems that cache complete or partial tables implement
this functionality by using materialized views. A materialized view consists of all
the tuples that are represented by a database view [Ullman, 1990]. To maintain
consistency, caches register to an update stream from the database server for the
cached materialized views. Updates to the cached views will then be forwarded
to the caches by the central database server. Queries that only use data which
is available in the local materialized views can be answered by the cache. If the
required data are not present in any locally cached view, the query is forwarded to
the database server. Update, Delete and Insert (UDI) queries are always forwarded
to the database server, where they will execute and possibly trigger an update to
the caches.

SEC. 2.8 HOSTING WEB APPLICATIONS 63

Prominent systems that follow this approach include DBCache [Bornhövd
et al., 2004], and MTCache [Larson et al., 2004]. Caching complete or partial
tables is a simple, yet powerful mechanism. However, there are two scalability
issues. The first one is that the materialized views are defined by the system ad-
ministrator at system initialization time. This prohibits the cache to dynamically
adapt to changing workloads, which can result in poor hit ratios over time. The
second issue is that the granularity of the cached data can be very coarse. In that
case, the amount of update traffic will therefore be considerable and a significant
fraction of the cached data may not be used to answer incoming queries.

The second category of query caching systems simply caches the result of
database queries as they are issued by the application code. In this case, each edge
server maintains a partial copy of the database. Each time a query is issued, the
edge-server database needs to check if it contains enough data locally to answer
the query correctly. This process is called query containment check. If the contain-
ment check result is positive, then the query can be executed locally. Otherwise,
it must be sent to the central database. In the latter case, the result is inserted in
the edge-server database so that future identical requests can be served locally.
The process of inserting cached tuples into the edge database is done by creating
insert/update queries on the fly and requires a good understanding of the applica-
tions data schema. The update queries are always executed at the origin server (the
central database server). When an edge server caches a query, it subscribes to re-
ceive invalidations of conflicting query templates. Examples of systems that adopt
this approach include [Dar et al., 1996], [Amza et al., 2005], [Luo and Naughton,
2001] and DBProxy [Amiri et al., 2003a],.

Note that query caching can be done at different locations to achieve differ-
ent objectives. For instance, caches placed at edge servers will help in reducing
database query latency provided the query workload exhibits good temporal lo-
cality. However, keeping the cache consistent can result in increased WAN traffic.
Caches that are placed close to the central database do not incur any WAN traf-
fic to maintain consistency but will result in higher database access latency. We
discuss the relative performance of these approaches in detail in Chapter 5.

A different approach to query caching has been followed by [Olston et al.,
2005], [Sivasubramanian et al., 2006b] and [Manjhi et al., 2007]. In these systems,
the edge servers do not merge different query results into a single database but
stores each query result independently. We call this technique as content-blind
query caching. The performance of this technique and different systems adopting
this technique is discussed in detail in Chapter 3.

64 BACKGROUND AND RELATED WORK CHAP. 2

2.8.4. Database replication

Replication is a commonly used technique to improve database performance. Repli-
cation techniques allow us to maintain identical copies of (complete or partial)
database at multiple locations in the Internet. Database replication is complex due
to its consistency requirements. The level of consistency provided by the repli-
cation mechanisms and the method of maintaining that consistency largely deter-
mines the scalability of the system. In the following, we classify database replica-
tion systems based on the consistency mechanism they provide and describe some
of the prominent works in this area.

Two-phase locking

The most common replication technique adopted by many database systems is to
replicate the entire database and use two phase locking for consistency manage-
ment (2PL) [Ullman, 1990]. In 2PL, as the name implies, the update operation
is executed in two phases. In the first phase, lock is obtained from each replica
(to apply the UDI query). Upon successful completion of the first phase, the UDI
query is executed in the second phase. UDI queries can be submitted to any of
the available replicas from where they are then synchronously applied to all other
replicas. 2PL mechanism ensures that all queries are executed in the same order.
Read queries are distributed between the available replicas. Systems that use 2PL
to maintain consistency include MySQL Cluster1 and Postgres-R [Kemme and
Alonso, 2000].

As shown in [Kemme and Alonso, 2000], for read dominant workloads this
approach will be able to achieve considerable speedup. However for write domi-
nant workloads, it can lead to poor performance. This is due to the fact that 2PL is
a fairly expensive operation. The consistency mechanism used by these systems
are highly restrictive as UDI queries block execution of other incoming UDI and
read queries.

Snapshot isolation

Snapshot isolation (SI) is a multi-version concurrency control mechanism used in
replicated databases. Unlike 2PL, SI has a key advantage that read queries are
never blocked by UDI queries. Snapshot isolation guarantees that all reads made
in a transaction will see a consistent snapshot of the database. The transaction
itself will successfully commit only if no updates it has made conflict with any
concurrent updates made since that snapshot. It has been adopted by several major

1http://www.mysql.com

SEC. 2.8 HOSTING WEB APPLICATIONS 65

database management systems, such as Oracle2, PostgreSQL3 and Microsoft SQL
Server4.

Prominant middleware-based database replication systems that use SI-based
consistency mechanism include [Elnikety et al., 2005], [Lin et al., 2005] and
Ganymed [Plattner and Alonso, 2004]. All these system place the entire database
at the replica servers and differ only in their consistency mechanisms. In Ganymed,
all UDI queries are handled by a master node and all read queries are handled
by the slave nodes. Upon execution of a UDI query, the writesets of the result
are extracted and applied to the replicas in the same order. Read queries are ap-
plied under SI provided by the individual DBMS. While Ganymed focusses on
replicating the database of a single application across a cluster of servers, DB-
Farm [Plattner et al., 2006] extends Ganymed to be capable of hosting database of
multiple applications without loss of performance.

A potential scalability bottleneck in Ganymed is its master node. If the master
node cannot handle all the write transactions, then the system cannot scale any
further. This limitation is addressed by d]takemme05 who use an “update ev-
erywhere” mechanism where UDI queries can be executed at any replica and the
middleware ensures the consistency of the underlying database.

In traditional replicated database systems both transaction ordering and dura-
bility (the writing of the committed database records to disk) are realized in a
single action. In middleware based database replication systems, these tasks are
naturally divided. The middleware determines the global ordering and the indi-
vidual databases provide the durability by writing the commit record. d]tatashkent
showed that this introduces a potential performance issue, since it forces some of
the commit records to be written to disk serially whereas in a standalone system
they could have been grouped together in a single disk write. The authors pro-
pose two different solutions to address this problem. The first solution is to move
the durability from the database to the replication middleware. The second solu-
tion is to retain durability in the database and pass the global commit order from
the replication middleware to the database. Their evaluations suggest that both
solutions perform significant better than the basic SI-based middleware systems.

Adaptation

Database replication systems must adapt to changes in their environment. For
instance, depending on the type of change (such as modifications of the load, the
type of workload, the available resources, the client distribution, etc.), different

2http://www.oracle.com
3http://www.postgresql.org
4http://www.microsoft.com/sql/default.mspx

66 BACKGROUND AND RELATED WORK CHAP. 2

adjustments have to be made. In recent years, different systems have looked at the
problem of adapting database-driven Web applications.

In [Soundararajan et al., 2006], the authors propose a middleware solution for
database replication that dynamically allocates database replicas to applications in
order to maintain application-level performance in response to either peak loads
or failure conditions. The authors adopt a reactive approach where the system
reacts when the average query response time falls outside an acceptable interval.
In such cases, the number of database replicas is decreased/increased accordingly.
Improving on their own work, in [Chen et al., 2006], the authors propose a pro-
active database provisioning system that increases or decreases the number of
replicas based on the current system load conditions. The proposed system uses
the classic K-nearest-neighbors (KNN) machine learning approach to determine
the optimal number of replicas to provision for a given system condition.

2.8.5. Discussion

In this section, we presented a wide range of techniques that have been proposed
in the recent years for scalable hosting of Web applications. As noted earlier,
techniques such as fragment caching although widely used for serving static con-
tent may not work well for Web sites that serve highly personalized content. Edge
computing systems improve the performance of compute-intensive applications as
client responses are generated at edge servers located close to them. However, the
centralization of the data makes it not suitable for data-intensive Web applications.

The database bottleneck of edge computing systems can be addressed by
database caching or replication. As we show in the next chapter, database cach-
ing systems work well if the database query locality is high. However, current
database caching solutions incur the overhead of query containment and execu-
tion which can introduce significant load under high request rates. This is one of
the primary motivations for our work presented in Chapter 3.

We also surveyed numerous database replication solutions. However, most of
the solutions target replication in a cluster environment where all the servers are
located within a single LAN and cannot be applied directly for wide-area envi-
ronments. This makes these solutions not easily applicable for edge computing
environments with the edge servers located at different locations in the Internet.
This is one of the key motivations behind the solutions presented in Chapters 4
and 5.

SEC. 2.9 CONCLUSION 67

2.9. CONCLUSION

In this chapter, we have discussed the most important aspects of replica host-
ing system development. We have provided a generalized framework for such sys-
tems, which consists of five components: metric estimation, adaptation triggering,
replica placement, consistency enforcement, and request routing. The framework
has been built around an objective function, which allows to formally express the
goals of replica hosting system development. For each of the framework compo-
nents, we have discussed its corresponding problems, described several solutions
for them, and reviewed some representative research efforts.

From this chapter, we can clearly see that the problem of scalable hosting of
static Web content in a CDN environment is well understood. Works addressing
the problem of building the metric estimation and client request redirection that
were discussed here are applicable to CDNs hosting not only static content but
also those hosting Web applications.

However, the efforts presented in the adaptation triggering, content placement
algorithms and consistency mechanisms described in this chapter largely apply to
systems that only host static Web objects. Replication of database-driven Web ap-
plications require replicating (some or all) its tiers [Sivasubramanian et al., 2006a].
Effective hosting of applications may warrant replication of the application code
and employing appropriate database caching and replication techniques. In such
cases, a major challenge is to find replication mechanisms that are not only scal-
able but also provide acceptable levels of consistency to the application’s clients.

These issues form the central research question addressed by this thesis. We
also surveyed many significant research efforts that address the problem of scal-
able hosting of Web applications and their shortcomings. In subsequent chapters,
we propose different middleware systems that aim to improve the scalability of
the database tier. Subsequently, we provide an approach by which the administra-
tors can choose the right set of scalability techniques that needs to be applied to
host their application at a desired level of performance with minimum operational
costs.

68 BACKGROUND AND RELATED WORK CHAP. 2

CHAPTER 3

GlobeCBC: Content-Blind Query
Result Caching for Web
Application

In this chapter, we present the design and implementation of GlobeCBC, a database
query result caching middleware for Web applications.

3.1. INTRODUCTION

As discussed in the previous chapter, CDNs employ edge computing to host
Web applications (e.g., Akamai ECI [Davis et al., 2004] and ACDN [Rabinovich
et al., 2003]). In these systems, the application code is replicated at all edge servers
and the data are kept in a centralized server. Mere replication of code has two
drawbacks: (i) each data access incurs a wide-area network latency; and (ii) the
central database server (which we call the origin server) becomes a potential bot-
tleneck. This problem has gained significant interest of the research community,
resulting in a variety of middleware solutions that cache or replicate data.

As seen in Figure 3.2, data access middleware systems can be broadly classi-
fied into two types: (i) Query caching - systems that cache the results of database
queries at the edge servers, and (ii) Data replication systems, which (fully or par-
tially) replicate the underlying database tuples. These two approaches are suited
for different kinds of Web applications. Query caching is suited for Web applica-
tions whose query workload exhibits high temporal locality and contain a small
number of updates. If the workload exhibits poor temporal locality then data repli-
cation often proves beneficial [Amza et al., 2003; Cecchet, 2004; Holliday et al.,
2002; Sivasubramanian et al., 2005].

70 GLOBECBC CHAP. 3

Idea
Underlying

Database
Serverware

Application

cache/replicate
data

(see Figure (b))

replicate
data

e.g., Postgres-R

replicate
pages

replicate
code

Current
Solutions

Middle-

e.g.,

Web
Server Server

Akamai ESI,

Globule
RADAR

,
Akamai EC,
ACDN

e.g.,

Figure 3.1: Variety of solutions that address problem of scalable Web host-
ing across 3 tiers

e.g., GlobeCBC
DBProxy, MTCache GlobeDB [WWW 2005]

Partial

[Lin et.al., 2005],
e.g., [Holliday et.al., ICDCS 2002],

Ganymed
[Amza et.al., USITS 2003],

e.g. C-JDBC,

Full

Data Replication

data
cache/replicate

e.g., DBCache,

Content-aware Content-Blind

Query Caching

 Middleware Solutions

Figure 3.2: Database middleware solutions

SEC. 3.2 INTRODUCTION 71

In this chapter, we focus on the first kind of Web applications and explore the
potential performance of a caching technique, which we call content-blind query
caching, for hosting such Web applications. We present the design and implemen-
tation of GlobeCBC, a system that accelerates performance of Web applications by
caching query results at the edge server. Unlike existing data caching middleware
systems (e.g., [Bornhövd et al., 2004; Larson et al., 2004; Amiri et al., 2003a]),
GlobeCBC does not merge different query results at edge server databases but
stores each query result independently. At the outset, this simple approach may
look very limiting. However, as we show later in the chapter, for many Web ap-
plications this approach avoids the overhead of query containment [Amiri et al.,
2003b], query planning, query execution and cache management (thereby reduc-
ing the server overhead) while maintaining a high cache hit ratio (thereby avoiding
wide-area network latencies). We substantiate these claims with extensive experi-
mentations on an emulated wide-area network test-bed for different kinds of Web
applications.

An important issue in GlobeCBC is to determine which query results to cache
(or rather which item to evict from the cache), when the maximum storage ca-
pacity has been reached. This decision is governed by several factors such as the
cost of each query, temporal locality, and update workload. Instead of making
explicit decisions periodically, we propose the use of online cache replacement
algorithms. While online cache replacement and placement algorithms are well
researched in the context of Web pages, those algorithms are not always best suited
to query-caching systems. We present and evaluate the performance of different
query-cache replacement algorithms for GlobeCBC. We show that the best strat-
egy is the one that takes into account both temporal locality and the execution cost
of each query.

The contributions of the results presented in this chapter are twofold. First,
we explore and demonstrate the potential performance benefits of content-blind
query caching system for different Web applications. Second, we propose and
evaluate the performance of different cache replacement algorithms and show that
an algorithm that takes both the query cost and the temporal locality into account
performs the best.

The rest of the chapter is organized as follows. Section 3.2 presents the de-
sign issues in building a query caching system and motivates our design choices.
Section 3.3 presents the GlobeCBC architecture and Section 3.4 presents the ex-
perimentation results that compare the performance of GlobeCBC with other data
caching and replication solutions. Section 3.5 presents the design and evaluation
of different query replacement algorithms. Finally, Section 3.6 presents the related
work and Section 3.7 concludes the chapter.

72 GLOBECBC CHAP. 3

Query
on local DB

HIT return
results

MISS

Query

Execute
Query on
origin DB

Insert results
on local DB
(requires
query rewrite)

return to
app server

ExecuteQuery
Contain
-ment
Check

(a) Content-aware cache

(no query
in cache repos.
Insert result

app server
return to

results
return

key
using
cache
Check

rewrite)origin DB
Query on

HIT

MISS

Query

Execute

(b) Content-blind cache

Figure 3.3: Cache hit and miss processing in Query Caching systems

3.2. DESIGN ISSUES

3.2.1. Data granularity

The first and foremost important design issues are to determine what data to cache
and how to store them. The two possible design alternatives are content-aware
caching and content-blind caching. The working of these two caching systems is
pictorially described in Figure 3.3.

Content-aware caching systems run a DBMS at each edge server. As shown
in Figure 3.3(a), each query received by the edge server is first checked to deter-
mine whether it can be answered with the locally cached tuples (using a query
containment procedure). If so, the query is executed locally. Otherwise, the query

SEC. 3.2 DESIGN ISSUES 73

is executed on the origin server and the returned result tuples are inserted into the
local database. This approach is storage efficient for queries that span a single
database table as it does not store redundant tuples. Results of queries spanning
multiple tables are usually stored separately.

Here, we pursue the relatively less explored content-blind caching approach
(notably, a similar approach was explored [Olston et al., 2005]; we discuss it in de-
tail in Section 3.6). The key difference between content-aware and content-blind
caching is that the latter does not merge different query results and stores each re-
sult separately. Each query can be answered from the cache only if the result of the
same query has been cached. There are several advantages to this approach. First,
the process of checking if a query is cached or not becomes trivial and scales very
well even for high loads (whereas query containment approaches are relatively ex-
pensive). Second, by caching results directly, the edge servers avoid the overhead
of database query planning and query execution. In fact, edge servers do not even
need to run a DBMS at all. This is especially beneficial under high load. Finally,
cache replacement is quite simple as each result is stored independently.

The content-blind caching approach also has some shortcomings. First, by
storing query results independently it possibly stores redundant data. This draw-
back also exists to a lesser extent in content-aware caching systems, as they also
need to store the results of queries spanning multiple tables independently. Sec-
ond, by skipping the query containment procedures, certain queries may not not
be answered locally even if all the required tuples are available locally. However,
as we show later in our experiments, this approach performs better than its caching
counterparts for different Web applications.

3.2.2. Cache control and placement

Other design issues that need to be addressed are to decide who selects which
queries to cache (cache control) and how the selection is made (cache placement).
Cache control can be centralized, where a central server collects query access
patterns and decides which queries must be cached in which edge server or dis-
tributed, where each edge server independently decides which items to cache (or
to evict from the cache). We choose the second option because it scales naturally
with the addition of new edge servers and reduces the control overhead in the
origin server.

Cache placement decides on which set of query results to cache. This is impor-
tant if the edge server does not have enough resources to cache all query results.
Moreover, the problem of determining which results to keep in the cache gains
significance, if the cached results are always kept in main memory instead of disk.
Cache placement has direct impact on the cache hit ratio and thus also on client la-
tency and throughput, as well as the network traffic between the edge server(s) and

74 GLOBECBC CHAP. 3

the origin server. We choose an online caching algorithm by which an edge server
caches the results of all queries it receives (unless explicitly specified). When the
maximum storage capacity is reached, each edge server will run a cache replace-
ment algorithm to determine the least beneficial cached query to evict from the
cache. Although cache replacement algorithms are well researched in the context
of static Web pages, only few efforts have been conducted to explore them in the
context of database query caching [Dar et al., 1996; Amiri et al., 2002].

3.2.3. Consistency

Cached query results need to be updated or invalidated when the database is up-
dated. As seen in the previous chapter, the problem of maintaining cache consis-
tency has been extensively studied in the context of static Web pages. However,
consistency maintenance in query result caching is different from Web page cach-
ing for two reasons. First, an update to a single database record can affect multiple
query results while at the same time it is more difficult to determine which cached
result must be invalidated. In contrast, an update to a Web page usually affects
only a single object. Second, the ratio of number of updates to number of reads is
much higher when dealing with database-driven Web applications.

These two issues make the problem of maintaining consistency in a query-
caching system challenging. To address them, we assume that the query workload
consists of a fixed set of read and write query templates. A query template is
a parameterized SQL query whose parameter values are passed to the system at
runtime. This scheme is deployed, for example, using Java’s prepared statement.
Examples of parameterized read query templates include QT1: “SELECT price,
stock, details FROM book WHERE id=?” and QT2 : “SELECT price, stock, details
FROM book, author WHERE book.name LIKE (?) AND author.name = ?”. The fol-
lowing is an example of update template UT1: “UPDATE price=price+1 FROM book
WHERE id=?”.

In our system, we expect the developer to specify a priori which query tem-
plate conflicts with which update template. Based on this, whenever an origin
server receives an update query, it invalidates all results belonging to the conflict-
ing templates. Although this assumption of data access through pre-defined query
templates curtails the flexibility of the system in being able to handle new query
types, it suits Web applications well.

Template-based invalidation prevents from invalidating all cached results upon
each database update. However, there can still be a problem if the number of up-
dates to the database is high or if there exists a significant number of conflicts
between the query templates and update templates. In such cases, massive invali-
dations will lead to a low cache hit ratio, increased network traffic and increased
server load, thereby leading to high client latencies. Typically, this problem is ad-

SEC. 3.3 SYSTEM ARCHITECTURE 75

dressed by adoption of weak consistency. In this chapter, we explore how different
forms of weak consistency can be easily integrated into our system and show the
potential scalability benefits obtained by them. We explain the consistency prop-
erties of our system in detail in the next section.

3.3. SYSTEM ARCHITECTURE

Module
Caching

-itory
Repos
Cache

Web ClientsWeb Clients

Requests/Responses

Server
Origin

Server
Edge

Server
Edge

Updates
Query misses/

Updates
Query misses/

Invalidations
/Updates
Query misses

Database Invalidator

Requests/Responses

Module
Caching

-itory
Repos
Cache

 Internet

���
���
���
���

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����

���
���
���
���

����
����
����
����

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

Figure 3.4: GlobeCBC: System Architecture

The architecture of edge computing infrastructure running GlobeCBC is pre-
sented in Figure 3.4. An application is hosted by edge servers located across
different regions in the Internet. Communication between edge servers usually
traverses the wide-area network incurring wide-area latency. Each client is as-
sumed to be redirected to its closest edge server using enhanced DNS-based redi-
rection [Dilley et al., 2002; Fei et al., 1998]. For each session, a client is assumed
to be served by only one edge server. We assume that the application code is
replicated at all edge servers. Furthermore, for each application, one of the edge
servers acts as the origin server. The origin server hosts the complete database of
the application.

The two key components of our system are the caching module and the inval-
idator. The caching module is the middleware that runs in each edge server and
intercepts all query execution requests between the application code and the origin
server database. It is responsible for (i) determining if the requested read query’s

76 GLOBECBC CHAP. 3

result is available in the local cache repository, (ii) returning query results (either
from the local cache repository or by executing the query at the origin server) and
(iii) adding/replacing new query results into the cache.

The invalidator is a stand-alone service that runs at the origin server. It is
responsible for monitoring all update queries addressed to the database server,
determining the list of query templates to invalidate and issuing invalidations. We
will discuss the design and implementation of these components below.

3.3.1. Caching module

The caching module is implemented as a PHP driver and can be added as a module
to the Apache Web Server1. As said earlier, we assume that the application’s
query workload consists of a fixed set of read and write templates. Each query is
identified by the module using the structure: < template-id,query parameters >
as key.

When a read query is issued, the caching module checks if the query result
is cached in the local repository (using its key as the unique identifier). If found,
then the result is returned immediately. Note that this is different from traditional
edge database caching systems as the cached units are not the result tuples but
the result structures. This allows the caching module to return the query result
immediately without query planning and execution overheads.

If the incoming query is not found in the cache, then the query is executed
at the origin server. Upon successful execution, the result is stored in the local
repository. Note that the local cache repository does not use a DBMS to store
query results. Instead, in our system, we store the result of each query as a sep-
arate file in the local file system. Of course, to improve performance it can also
be kept in main memory. The caching module subscribes at the invalidator to the
invalidation channels corresponding to the cached template-id (if it had not sub-
scribed already). This allows the edge server to be informed of the updates to the
underlying database that can possibly affect the cached results. This process of
invalidation is described in detail in the next section.

When the caching module receives a write query (i.e., update/insert/delete),
it is executed on the origin server’s database. Subsequently, it sends a message
(asynchronously) to the invalidator with the template identifier and the parameter
(if applicable) of the write query. Note that since invalidation messages are sent
asynchronously to the edge servers, the system does not provide strong consis-
tency. We assume that this is acceptable for the hosted Web application. However,
if a particular query template can not tolerate any staleness in its result, then the
application developer can disable caching for the concerned query template.

1http://www.apache.org/

SEC. 3.3 SYSTEM ARCHITECTURE 77

3.3.2. Invalidator

The invalidator is a stand-alone service that runs in the origin server and is re-
sponsible for invalidating the cached results at edge servers when they become
stale due to updates. As noted earlier, we assume that the Web application’s work-
load consists of a fixed set of read and write query templates. Furthermore, we
assume that the conflicts between read and write templates are marked offhand
either manually by the developer or using automated code parsers. For example, a
query template whose instances add a new book to the book table (e.g., “INSERT
into books VALUES(..)”) conflicts with query instances that find the newly added
books.

The invalidator maintains such a conflict map for all the write query templates.
For each write template, the invalidator maintains a publish-subscribe channel.
Edge servers that cache a query result of template instance id subscribe to the
channels of write template(s) that id conflicts with.

When a write query is performed on the origin server’s database, the invalida-
tor receives a message from the edge server’s caching module. Upon its receipt,
the invalidator sends the write query key (and the query parameter, if applicable)
to all the subscribers in the channel corresponding to the write identifier. Upon
receipt of the invalidation message, the caching module in each edge server inval-
idates instances of the query templates that conflicts with the write template. We
discuss the process of template-based invalidation in detail in the next section.

3.3.3. Fine-grained invalidation

Template-based invalidation helps in reducing the number of invalidations per-
formed, provided there is no conflict between a result and update query even
though they operate on the same database table(s). For example, in a bookstore ap-
plication, the cached result of a query to find the best selling books is not affected
by an update query to the book table for changing the price of a book. However,
the cached result should be invalidated if a new book order is placed.

Such a simple coarse-grained template-based invalidation is sometimes too
conservative as it invalidates all instances of a conflicting query template. For
example, consider the following template: QT1: “SELECT price, stock, details
from book where id=?” and update query template UT1: “Update price=price+1 from
books where id=?”. Using a simple coarse-grained invalidation scheme, an update
to even a single book (e.g., < UT1,100 >) will invalidate all cached instances of
QT1.

To avoid this conservative invalidation, a simple extension is to take into ac-
count the parameter of the updated item and invalidate only those cached queries
that are affected by the updated item. However, the system can determine which

78 GLOBECBC CHAP. 3

cached queries are affected by an update, without examining the content, only for
simple queries (i.e., SQL queries which access information based on the primary
key). So, in the above example, when the system receives an update query with
key: <UT1,100 >, the invalidator invalidates only the cached item whose key is
<QT1, 100>, provided QT1 is a simple query. As shown later, this simple exten-
sion improves the performance of applications whose workload has lots of simple
queries, such as the TPC-W benchmark.

3.3.4. Tunable consistency

Template-based invalidations help in reducing the number of invalidations to an
extent. However, for Web applications that have a large number of read-write
conflicts, the system will generate large numbers of invalidations. This can cause
a poor cache hit ratio, leading to increased wide-area network traffic, increased
origin server load, and therefore increased client latency. Applications that have
these characteristics can usually scale only by employing weak consistency.

As discussed in the previous chapter, weak consistency protocols are usually
employed along one of the following axes: time, order of operations or value. In
our system, we provide interfaces to the application designers to tune their con-
sistency bounds based on time and order. We do not support value-based mecha-
nisms as our caching module is content-blind.

For time-based mechanisms, the system expects the application developer (or
the system administrator) to set TTIi (time-to-invalidate) values for each update
template, Ui. Subsequently, if an update query of type Ui is received by the inval-
idator, the invalidator starts a timer for TTIi seconds (unless a timer has already
been started). After TTIi seconds, all queued invalidation messages for conflicting
read templates are sent.

For order-based weak consistency mechanisms, we employ a mechanism sim-
ilar to N-ignorant transactions. The system requires the application developer (or
the administrator) to set the bound for each update template Ui, regarding the num-
ber of updates the invalidator can tolerate before invalidating the conflicting read
templates (Max U pdsi). To implement this mechanism, the invalidator maintains
a counter that keeps track of the number of updates it has received for each update
template (Num U pdsi). When Num U pdsi ≥ Max U pdsi, the invalidator sends
out the invalidation messages and resets Num U pdsi to 0.

The system can also support a combination of both time and order-based weak
consistency mechanisms. Application developers or system administrators who
want to get higher scalability using weak consistency, can simply tune one (or
both) of these two parameters, TTI and Max U pds. We call this means of em-
ploying weak consistency as tunable consistency.

SEC. 3.4 PERFORMANCE EVALUATION 79

3.4. PERFORMANCE EVALUATION

In this section, we compare the performance of content-blind caching to other
solutions. We consider two different applications, a news Web site modelling
http://slashdot.org and the TPC-W benchmark, an industry standard e-commerce
benchmark that models an online bookstore. We chose these two applications
for their different data access characteristics. For example, in a typical news fo-
rum, most users are usually interested in the latest news and so the workload will
usually exhibit high locality. On the other hand, in a bookstore application, the
shopping interests of customers can be different thereby leading to much lower
query locality. This allows us to study the behavior of content-blind caching for
different data access patterns.

3.4.1. Performance results: Slashdot application

In this section, we present results of experiments performed using the RUBBoS
benchmark, an open source benchmark that models an online news forum appli-
cation similar to slashdot.org2. The benchmark is written in PHP. Its database
consists of five tables, storing information regarding users, stories, comments,
submissions and moderator activities. The database is filled with 500,000 users,
out of which 10% have moderator privileges, and 200,000 comments. The size of
the database is approximately 1.5 GB.

We deployed the GlobeCBC prototype across 3 identical edge servers each
with dual-processor Pentium III 900 Mhz CPU, 1 GB of memory and a 120 GB
IDE hard disk. Each edge server uses an Apache 2.0.49 Web server with PHP
4.3.6. We use PostgreSQL 7.3.4 for our database servers and PgPool for pooling
database connections3. The origin server uses an identical configuration as the
edge servers except that it acts just as a backend database and does not run a Web
server. We emulate a wide-area network (WAN) among the servers by directing
all the traffic to an intermediate router which uses the NISTNet network emula-
tor4. This router delays packets sent between the different servers to simulate a
realistic wide-area network. In the remaining discussion, we refer to links via
NISTNet with a bandwidth of 50Mbps and a latency of 100ms as WAN links, and
100Mbps and 0 latency as LAN links. Note that these bandwidth and latency val-
ues are considerably optimistic, as the Internet bandwidth usually varies a lot and
is constantly affected by network congestion. These values are chosen to model
the best network conditions for a CDN built on an Internet backbone and are the
least favorable conditions to show the best performance of any data caching or

2http://jmob.objectweb.org/rubbos.html
3http://pgfoundry.org/projects/pgpool/
4http://snad.ncsl.nist.gov/itg/nistnet/

80 GLOBECBC CHAP. 3

replication system. Any lower bandwidth or higher latency will only boost the
performance of caching systems. For example, if the WAN delay in the route is
set to a higher latency, say 500ms, then for edge computing infrastructures that
do not replicate data, each database query will incur at least 500ms round trip la-
tency (and more if each query is transmitted in multiple TCP packets). This value
will therefore boost the performance of data caching solutions as they can answer
queries locally.

We use three client machines to generate requests addressed to the three edge
servers. The client workload for the system is generated by Emulated Browsers
(EBs). The run-time behavior of an EB models a single active client session.
Starting from the home page of the site, each EB uses a Customer Behavior Graph
Model (a Markov chain with various interactions with the Web pages in a Web
site as nodes and transition probabilities as edges) to navigate among Web pages,
performing a sequence of Web interactions [Menasce, 2002]. The behavior model
also incorporates a think time parameter that controls the amount of time an EB
waits between receiving a response and issuing the next request, thereby mod-
elling a human user more accurately. The user workload contains more than 15%
interactions that lead to updates.

We evaluated four system architectures using the aforementioned setup: (i)
Edge Computing: the code is replicated in every edge server while the data re-
main centralized at the origin server. (ii) Full replication: the code and database
are fully replicated in the edge server. All updates are performed at the origin
server and are propagated asynchronously to the edge servers. (iii) Content-aware
caching: the edge servers run a Web application server and a DBMS. The key
difference between this system and full replication is that the edge servers run
the query locally only if the query containment check results in a hit. We imple-
mented the algorithm described in [Amiri et al., 2003a] for query containment.
(iv) Content-blind caching: The edge servers run a Web application server and a
cache repository. The origin server runs the database. Unless stated otherwise,
in content-blind caching schemes, the invalidator is configured with the strongest
possible consistency, TTI = 0 and Max U pds = 0. Note that full replication,
content-aware and content-blind caching systems provide the same level of con-
sistency while only the edge computing architecture provides the stronger level of
consistency.

All experiments are started with a cold cache. The system is warmed up for 20
minutes, after which the measurements are taken for a period of 90 minutes. We
assume the edge server to have infinite cache capacity, i.e., the size of cache repos-
itory was not restricted because we did not want the effect of cache replacement
algorithms to affect the performance of content-aware and content-blind caching
systems. We study the performance of different cache replacement algorithms in

SEC. 3.4 PERFORMANCE EVALUATION 81

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100 120 140 160 180

A
ve

ra
ge

 C
lie

nt
 L

at
en

cy
 (

m
s)

Number of active client sessions

Edge Computing

Content-aware

Full Replication

Content-blind

Figure 3.5: Effect of Workload on Slashdot application

the next section. In all experiments, we measure the end-to-end client latency,
which is the sum of the network latency (the time spent by the request traversing
the WAN) and internal latency (the time spent by the request in generating the
query responses and composing the subsequent HTML pages).

Results for WAN experiments

We first evaluated the client latency for different architectures for only one edge
server and the origin server. We studied the client latency for different client
workloads. The results of our experiment are shown in Figure 3.5.

As seen in the figure, content-blind caching performs the best in terms of
client latency (except for low loads) while edge computing performs the worst in
all cases. It can also be seen that content-blind caching sustains higher load than
full replication and the content-aware caching. This is quite remarkable consider-
ing that content-blind caching provides the same level of consistency. The edge
computing infrastructure performs worse than the other architectures. This is due
to the fact that all data accesses incur a WAN latency in addition to the origin
server becoming the scalability bottleneck thereby increasing the internal latency
in generating query responses.

Full replication system performs marginally better than content-blind under
very low client loads (up until 30 client sessions). This is because in a full repli-
cation system each query is answered locally thereby avoiding any wide-area net-
work latency. During low workloads, the internal latency incurred in generating a
query response is lower than the network latency incurred in answering a query.
Therefore, full replication system performs marginally better in such workloads.
On the other hand, content-blind caching outperforms full replication during high
workloads for two reasons. First, the application’s workload exhibits good tem-
poral locality thereby avoiding WAN latency. Second, the internal latency in gen-
erating a query response, for a content-blind caching system, is much lower than

82 GLOBECBC CHAP. 3

that of full replication as the caching system avoids query planning and execution
latency.

Content-blind caching performs better than content-aware caching for all client
workloads. Even though both systems are equally capable of capturing temporal
locality, the former incurs more latency in generating query responses as it incurs
the overhead of query containment, cache management (inserting and invalidating
caches), query planning, and execution. On the other hand, content-blind cach-
ing avoids these overheads by storing the results of query instances separately,
thereby resulting in lower client latency. Furthermore, the internal latency over-
head increases with increase in client load, as we discuss next.

Understanding internal latencies

To better understand the effect of client workloads on query execution overheads
and subsequently on the internal page generation latency, we isolated a single edge
server and studied the latency in generating a page for two different systems: (i)
a Pentium III dual processor machine that runs a vanilla Apache server and Post-
greSQL 7.3.4 (WAS-DB) and (ii) the same setup that runs the content-blind cach-
ing module, in addition to the Web server and database server (WAS-Cache-DB).
Also, we evaluated the client latency for read-only client sessions for different
loads. In both setups, the network latency incurred for generating a page is set to
zero as both the Web server and database reside on the same machine. The objec-
tive of this study is to measure the potential gain in internal latency by the use of
content-blind caching which avoids query planning and execution latencies.

The results of our study are given in Figure 3.6. As seen in the figure, the in-
ternal latency of a system that employs content-blind caching (WAS-Cache-DB)
is much lower than that of the traditional WAS-DB. In particular, the difference
grows up to an order of magnitude for high loads. This study thus gives a clear
insight into the potential gains of content-blind caching. It also explains the bet-
ter performance of content-blind caching in comparison to full replication and
content-aware caching system, which always incur the query planning and execu-
tion overheads.

Study with multiple edge servers

As a next experiment, we compared the average client latency of a content-blind
caching system with a single edge server to one with three edge servers. For
the latter case, the client load was equally divided among the three edge servers.
As seen in Figure 3.7, the system with three edge servers performs significantly
better in terms of client latency (by a factor of 2) compared to the single edge
server system. This can of course be easily understood as the edge servers share

SEC. 3.4 PERFORMANCE EVALUATION 83

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000

 0 20 40 60 80 100 120 140

A
ve

ra
ge

 In
te

rn
al

 L
at

en
cy

 (
m

s)

Number of active client sessions

WAS-DB
WAS-Cache-DB

Figure 3.6: Comparison of internal latency for plain 3-tier architecture with
and without content-blind caching system

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 50 100 150 200 250

A
ve

ra
ge

 C
lie

nt
 L

at
en

cy
 (

m
s)

Number of Clients

1 Edge
3 Edges

Figure 3.7: Comparison of client latency for single edge server and 3 edge
server system

their client load. The difference in client latency is negligible during low loads as
a single edge server is able to sustain the client load under these conditions. Under
high loads, the 3-edge server system is able to sustain more load. However, as can
be seen from the figure, the system does not offer a linear improvement and can
only sustain 50% more load than the single edge server. This is because in both
cases the database in the origin server remains the central scalability bottleneck.

Tunable consistency

For high workloads with a large number of updates (recall that the fraction of up-
date interactions is around 15%), immediate invalidations increase the system load
leading to a higher client latency. If more scalability is desired, such situations
demand relaxed consistency models. As noted earlier, we adopt a tunable consis-
tency model in which application developers or system administrators specify the
limits of weak consistency along the axes of time (TTI) and order (Max U pds).

84 GLOBECBC CHAP. 3

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

A
ve

ra
ge

 C
lie

nt
 L

at
en

cy
 (

m
s)

TTI (s)

Cache (10 clients)

(a) Effect of TTI for 10 clients

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 10 20 30 40 50 60

A
ve

ra
ge

 C
lie

nt
 L

at
en

cy
 (

m
s)

TTI (s)

Cache (100 clients)

(b) Effect of TTI for 100
clients

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20

A
ve

ra
ge

 C
lie

nt
 L

at
en

cy
 (

m
s)

MaxTransactions

(10 clients)

(c) Effect of Max U pds for 10
clients

Figure 3.8: Effect of TTI and Max U pds

In this experiment, we study the gains in client latency of relaxing consistency
with different values of TTI and Max U pds in a system with a single edge server
connected to the origin server through a WAN link. In the first set of experiments,
we fixed Max U pds at 0 and study the impact of TTI on client latency for a load
of 10 and 100 client sessions. The results are given in Figure 3.8(a) and 3.8(b). As
seen in these figures, for a TTI of 1 minute, we gain a factor of 3 in client latency
under low load and 30% improvement under high load. The difference in gains of
client latency is due to the increase in internal latency.

In the second set of experiments, we studied the effect of Max U pds on client
latency. The results are given in Figure 3.8(c). With a Max U pds value of 10, we
can now gain a factor of 2 in client latency.

The objective of this study is not to recommend the best value of TTI or
Max U pds, as the best values depend on the application needs and system costs.
This experiment is rather meant to demonstrate that, provided the application can
support it, controlled relaxation of consistency can produce significant gains in
performance.

SEC. 3.4 PERFORMANCE EVALUATION 85

3.4.2. Performance results: TPC-W benchmark

We evaluated the performance of different systems for the TPC-W benchmark,
an industry standard e-commerce benchmark that models an online bookstore like
Amazon.com [Menasce, 2002]. We used the open source PHP implementation of
TPC-W.5 We modified the client workload behavior such that the book popularity
follows a Zipf distribution (with alpha = 1), which was found in a study that
observed data characteristics of the Amazon online bookstore [Brynjolfsson et al.,
2003].

For this application, we studied the performance of four systems: edge com-
puting, content-aware caching, content-blind caching and full replication. For
content-blind caching, we studied the client latency for two kinds of invalidations:
coarse-grained and fine-grained invalidation. The objective is to examine the po-
tential benefits in employing the finer invalidation. Recall that fine-grained inval-
idation takes into the account the parameter of the update template to invalidate
conflicting simple queries.

We studied the client latencies of these systems for two kinds of workloads:
browsing (which consists of 95% browsing and 5% ordering interactions) and or-
dering workload (50% browsing and 50% shopping interactions). As seen in Fig-
ure 3.9, edge computing performs the worst in client latency while full replication
performs the best. In particular, full replication performs better than content-blind
caching because the TPC-W benchmark workload exhibits poor temporal locality
and yields a hit ratio of at most 35% in our experiments. In such cases, data repli-
cation helps as each query can be answered locally. However, during high loads,
the gain in latency decreases as the internal latency of full replication increases.
These results are in line with our earlier results, where we demonstrated that ap-
plications whose workload exhibit poor temporal locality or has many updates are
best hosted using data replication schemes [Sivasubramanian et al., 2005].

Content-blind caching performs better than content-aware caching as both are
able to capture temporal locality and the former benefits from reduced internal
latency. Note that the gain in client latency in content-blind caching compared to
edge computing in TPC-W benchmark is only about 50%, while it was a factor
of 3 for the Slashdot application. This is again due to the poor temporal locality
exhibited by the workload.

Between the two invalidation mechanisms of content-blind caching system,
the fine-grained one consistently performs better than its coarse-grained counter-
part. The difference in latency is especially high for the ordering workload. This
is because the fraction of simple queries in this workload is higher than that of the
browsing workload (recall that simple queries are those accessing data in a single

5http://pgfoundry.org/projects/tpc-w-php/

86 GLOBECBC CHAP. 3

 0

 200

 400

 600

 800

 1000

 1200

 1400

 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 C
lie

nt
 L

at
en

cy
 (

m
s)

Number of active client sessions

Edge Computing

Content-blind (coarse)

Content-blind (fine)

Content-aware

Full Replication

(a) Browsing

 0

 500

 1000

 1500

 2000

 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 C
lie

nt
 L

at
en

cy
 (

m
s)

Number of active client sessions

Edge Computing

Content-blind (coarse)

Content-blind (fine)

Content-aware

Full Replication

(b) Ordering

Figure 3.9: Performance of our architecture compared to edge computing
for TPC-W benchmark

table with primary keys). As fine-grained invalidation performs fewer invalida-
tions for instances of simple query templates, it improves overall client latency6.

3.4.3. Discussion

As can be seen with these experiments, content-blind caching performs better than
the other architectures while providing the same level of consistency guarantees,
provided the application’s data workload exhibits high temporal locality. Further-
more, for these applications, we also showed that our system allows administrators
to achieve higher scalability employing relaxed consistency by simply tuning two
variables, TTI and Max U pds.

On the other hand, for applications that exhibit poor locality (such as the TPC-
W benchmark), data replication schemes perform better than content-blind cach-
ing. Our hypothesis is that there exists no single solution that can perform the
best for all Web applications and workloads. Different techniques are optimal
for different applications. As we show in Chapters 4 and 5, applications with
poor temporal locality can be hosted scalably using data replication. As shown
in this section, applications that exhibit high locality can benefit to a large extent
from content-blind caching and outperform its replication counterparts. The per-
formance of an integrated system that employs a combination of GlobeCBC and
database replication is presented in Chapter 5.

6The performance difference between these invalidation schemes in Slashdot application was
negligible. This is because fine-grained invalidation improves performance only in the presence of
simple queries. In the Slashdot application, the majority of the query workload consists of complex
queries.

SEC. 3.5 CACHE REPLACEMENT 87

3.5. CACHE REPLACEMENT

An important issue in any caching system is to determine which query results
to cache and which ones to evict from the cache. This is usually not an issue if
the edge server has unlimited memory and storage resources. However, in CDNs,
the edge servers are usually simple desktop servers with limited memory resources
and simple disk access resources (for example, most of the servers use IDE disks).
In such an environment, it is desirable to keep as many query results in main mem-
ory as possible and hence the problem of which results to keep in the cache gains
significance. This issue is especially relevant in a collaborative CDN environment
such as Globule [Pierre and van Steen, 2006] where the edge servers are usually
end-user machines.

3.5.1. Cache replacement

Cache replacement is simple in content-blind caching compared to content-aware
caching. For example, in the latter, evicting a query result from the cache requires
appropriate checks to ensure that query containment conditions of other query
templates are not violated as results are merged. However, since content-blind
caching stores results independently, each result can be replaced independently.
GlobeCBC uses an online cache replacement mechanism to determine which re-
sults are more beneficial to retain in the cache when the cache is full. The query
result replacement mechanism works as follows: When the cache is full, it must
select one or more cached results to be removed so that resource constraints are
met again.

The performance of the caching system depends to a large extent on the ef-
fectiveness of the cache replacement algorithm. An ideal cache replacement algo-
rithm must take into account several metrics such as temporal locality, cost of the
query, update characteristics of the database, etc. In this chapter, we evaluate the
average query latency of different cache replacement algorithms that operate on
one or more of these metrics to find the one most suited for our system.

We designed and evaluated the performance of the following cache replace-
ment algorithms:

1. Least Recently Used (LRU). LRU always deletes the recently used cached
result with the new result. The intuition is that the most recently accessed
queries are most likely to be accessed again. Previous research on Web page
caching suggests that strategy performs best if all cached items are equal.

2. Least Cost (LC). Each query takes different time to execute in the database
server. This is usually modelled by a query cost parameter, which is used in

88 GLOBECBC CHAP. 3

the query planning. LC replaces the new result with the cache item that has
the least query cost. The intuition is that a cache hit on a high cost query is
more valuable than hit on a low cost query as it will offload the origin server
to a great extent.

3. Most Updated (MU). Each edge server counts the number of invalidations
received by each template. The system replaces the result whose parent tem-
plate is most invalidated. The intuition is caching the least updated queries
might improve the cache hit ratio.

4. Greedy-Cost (GC). LC optimizes on internal latency but does not exploit the
locality of requests. On the other hand, LRU exploits the locality of requests
but ignores the individual characteristics of the cached items. Greedy-cost
aims to capture the best properties of these two algorithms. The algorithm
associates a value, Ci, with each cached query result qi. Initially, when a
result is brought into the cache, Ci is set to be the time incurred in bringing
it. When a replacement needs to be made, the result with the lowest C
value, Cmin, is replaced, and then all results reduce their C values by Cmin. If
a query result is accessed, its C value is restored to its initial value. Thus, the
C values of recently accessed results retain a larger portion of the original
cost than those of results that have not been accessed for a long time. This
way, GC exploits temporal locality and takes query cost into account at the
same time. This algorithm is similar to the Greedy-Dual algorithm used in
Web caching [Cao and Irani, 1997].

3.5.2. Evaluation results

We evaluated the performance of different cache replacement algorithms using
trace-driven simulations. We collected query traces of the RUBBoS and TPC-W
benchmark (shopping mix). Each trace represents two hours of execution with a
workload of 10 active client sessions. The cost of each query template is assigned
as the average query response time of all query instances of the given template.
This was also used as the internal latency in calculating the overall query response
time. We fixed the WAN latency to be 100ms.

We replayed these traces with different replacement algorithms, assuming that
the latency of a cache hit is 0 and the latency of a cache miss is the sum of inter-
nal latency and WAN latency (if incurred). Note that the average query latency is
different from the client-perceived latency as each client request may trigger mul-
tiple query requests to generate a page. Our experiments were started with a cold
cache and the measurements were taken for the entire run. We report the average
query latency for various cache sizes.

SEC. 3.5 CACHE REPLACEMENT 89

 0

 50

 100

 150

 200

 250

 0 5000 10000 15000 20000

A
ve

ra
ge

 Q
ue

ry
 L

at
en

cy
 (

m
s)

Cache Size

LRU
LC
MU
GC

(a) Slashdot

 0

 50

 100

 150

 200

 250

 300

 350

 0 1000 2000 3000 4000 5000 6000

A
ve

ra
ge

 Q
ue

ry
 L

at
en

cy
 (

m
s)

Cache Size

LRU
LC
MU
GC

(b) TPC Shopping

Figure 3.10: Performance of different cache replacement algorithms for
different cache sizes

90 GLOBECBC CHAP. 3

The results of our experiment are given in Figure 3.10. For both applications,
GC performs the best or close to the best. LRU performs the best for the Slash-
dot application due to the high temporal locality of the query workload and GC
performs almost as good as LRU. However, LRU performs poorly for the TPC-W
application as the query workload does not exhibit high locality. As a conse-
quence, it constantly replaces high-cost queries (which form almost the 30% of
query workload). This leads to an increase in internal latency of queries.

LC performs poorly for the Slashdot application as it is not capable of ex-
ploiting temporal locality. However, it does well for TPC-W as it retains the high
cost queries and hence is able to optimize on high cost queries which exhibit high
locality. MU performs poorly for both applications as it does not exploit locality
and also does not take into account the cost of the queries. MU can be useful
only if the workload generates a significant number of invalidations. However, in
the TPC-W application, even though many updates are issued, the template-based
query invalidation does a reasonable job in reducing the number of invalidations
thereby reducing MU’s performance gain.

In summary, among all strategies, GC performs (close to) the best by virtue of
being able to exploit locality and keeping a good balance in managing high-cost
queries.

3.6. RELATED WORK

As shown in Figure 3.1 and described in the previous chapter, a number of
systems have been developed to handle Web application hosting. As we have
shown in our evaluations, edge computing systems perform poorly as they incur
WAN latency for each data access and direct all the load to the central database.

Database caching systems such as [Amiri et al., 2003a], [Amza et al., 2005],
and [Luo and Naughton, 2001] aim to address this limitation. These systems fall in
the category of content-aware caching systems. They store the database tuples that
form the results of queries in the DBMS running in the edge server (provided the
query is on a single table) and merge different query results. A similar approach
known as semantic caching was also proposed for client-server database systems
in [Dar et al., 1996]. These systems are built to be very flexible and can support
different types of applications (i.e., not just to template-based Web applications).

However, this flexibility comes at a cost. As shown in Figure 3.3(a), in these
systems, each query needs to be subject to a local query containment check proce-
dure to determine if the edge database server has all the data required to answer the
query completely. Even if the containment test results in a cache hit, the system
incurs query planning and execution overhead. Moreover, inserting and remov-

SEC. 3.7 RELATED WORK 91

ing items from the local cache also is a non-trivial process. On the other hand,
GlobeCBC is limited in flexibility and is suited only for Web applications whose
workload usually consists of a small set of read and write templates. This allows
the system to avoid query execution overheads and achieve better client perfor-
mance even under heavy loads, provided the workload exhibits good locality as
we have shown in our performance results. Furthermore, content-blind caching
also allows the system to add or remove items from the cache easily as each item
is treated and stored separately.

Many middleware systems have been proposed for scalable replication of a
database in a cluster of servers [Amza et al., 2003; Cecchet, 2004; Chen et al.,
2006; Lin et al., 2005; Plattner and Alonso, 2004]. However, the focus of these
works is to improve the throughput of the backend database within a cluster en-
vironment. On the other hand, the focus of our work is to improve the client-
perceived latency in a CDN environment where edge servers are spread across a
wide-area network. Furthermore, as we showed earlier, data replication is ben-
eficial if the workload exhibits poor locality and low number of updates. If the
number of updates increases, then autonomic replication solutions can be envis-
aged [Sivasubramanian et al., 2005].

In [Olston et al., 2005], the authors investigate the use of a similar query cach-
ing system. Compared to their work, we explore the potential performance gains
of content-blind caching systems for different applications through extensive eval-
uations of different edge computing architectures in an emulated wide-area net-
work. We also propose and evaluate different cache replacement algorithms to
address the case of resource-constrained edge servers. These issues and experi-
ments were not studied in [Olston et al., 2005].

In [Manjhi et al., 2007], the authors study the issue of privacy and security if
the database queries are cached in untrusted edge servers. In such environments,
the issue of ensuring the privacy and security of the cached data is an important
requirement. To this end, the authors propose to encrypt the query results and in-
validations. However, this makes the problem of invalidation harder as the caching
modules in edge servers cannot inspect the encrypted queries to determine which
queries need to invalidated. To address this, the authors propose a technique called
invalidation clues that enables caches to reveal little data to the third party servers
yet limit the number of unnecessary invalidations. Compared to this work, we fo-
cus on an enterprise CDN environment where all edge servers are assumed to be
trusted. Hence, we do not face this problem. However, the techniques presented
in [Manjhi et al., 2007] can be easily applied to GlobeCBC as well.

92 GLOBECBC CHAP. 3

3.7. CONCLUSION

In this chapter, we presented GlobeCBC, a content-blind query caching mid-
dleware for hosting Web applications in an edge computing infrastructure. Unlike
existing data caching middleware systems, content-blind caching systems do not
merge different query results and store the query results as result structures inde-
pendently. We studied the potential performance of this approach using extensive
experimentations on our prototype implementation and compared it with the other
systems over an emulated wide-area network. Our evaluations show that content-
blind caching performs well in terms of client latency for applications that exhibit
high locality and is also able to sustain more load by offloading the origin server
database. We also showed that when applications can support it, the system ad-
ministrators can still improve performance by relaxing the data consistency in
a simple fashion. We proposed and evaluated different online query replacement
algorithms which will be useful for resource-constrained edge servers. In our eval-
uations, we found that the best algorithm must take into account both the query
execution cost and the temporal locality.

Even though GlobeCBC performs very well for applications with high query
locality, it is outperformed by database tuple replication when the workload has
poor locality. This shortcoming is addressed by the database replication tech-
niques proposed in the subsequent chapters. As shown in Chapter 5, integrating
GlobeCBC with the our database replication solutions allows the database tier
to achieve significantly higher performance and scalability compared to existing
database replication solutions.

CHAPTER 4

GlobeDB: Autonomic Replication
for Web Applications

4.1. INTRODUCTION

In this chapter, we explore a different approach to hosting Web applications.
The idea is to replicate not the pages (as done in fragment caching [Challenger
et al., 2005; Datta et al., 2002; Douglis et al., 1997; Li et al., 2003; Rabinovich
et al., 1997]) but the data residing in the underlying database. This way, the dy-
namic pages can be generated by the edge servers without having to forward the
database requests to a centralized server.

As observed in the previous chapter, database replication performs better than
query result caching if the temporal locality of database queries is low. Moreover,
in cases where the temporal locality of the database queries and their update rate
are high, an application may benefit by moving (part of) the underlying database,
along with the code that accesses the data, to the location where most updates
are initiated. This allows the edge servers to generate documents locally thereby
resulting in improved client-perceived performance. However, replication of the
entire application data at all edge servers can result in significant network usage
due to the update traffic incurred in keeping the replicas consistent.

We are thus confronted with the problem of sustaining performance through
distribution and replication of (parts of) an application, depending on access and
usage patterns. In general, we need to address the following three issues: (1)
determine which parts of an application and its data need to be replicated, (2) find
where these parts need to be placed in a wide-area network, and (3) decide how
replicated data should be kept consistent in the presence of updates.

These issues are currently handled by human experts who manually partition
the databases of a Web application, and subsequently distribute the data and code

94
GLOBEDB: AUTONOMIC REPLICATION

FOR WEB APPLICATIONS CHAP. 4

among various servers around the Internet. Not only is this a difficult and time-
consuming process, it is also not very feasible when usage and access patterns
change over time [Sivasubramanian et al., 2003]. In addition, consistency in these
systems tends to be ad-hoc and largely application-dependent.

In this chapter we present the design and implementation of GlobeDB, a
system for hosting Web applications. GlobeDB handles distribution and partial
replication of application data automatically and efficiently. It provides Web-
based data-intensive applications the same advantages that CDNs offer to tradi-
tional Web sites: low latency and reduced network usage. We substantiate these
claims through extensive experimentation of a prototype implementation running
the TPC-W benchmark over an emulated wide-area network.

Using GlobeDB, we demonstrate that the configuration of Web applications
for data and code replication can be largely automated, and in such a way that
it yields a substantial performance improvement in comparison to simple or non-
replicated approaches. As such, GlobeDB improves upon other research demon-
strating that application-specific replication improves performance as well (e.g.,
[Gao et al., 2003]). In particular, we argue that there is often no compelling rea-
son to adapt the functional design of an application in order to support replication.
By automatically partitioning and replicating an application’s associated database,
we can achieve the same results without involving the application designer or re-
quiring other human intervention.

The rest of the chapter is organized as follows. Section 4.2 presents several
design issues involved in building the system and motivates our design choices.
Section 4.3 presents GlobeDB’s architecture and Section 4.4 describes the de-
sign of the data driver, the central component of GlobeDB. Section 4.5 describes
GlobeDB’s replication and clustering algorithms. Section 4.6 presents an overview
of our prototype implementation and its internal performance. Section 4.7 presents
the relative performance of GlobeDB and different edge service architectures for
the TPC-W benchmark. Finally, Section 4.8 discusses the related work and Sec-
tion 4.9 concludes the chapter.

4.2. DESIGN ISSUES

To illustrate the benefits of autonomic replication, consider the scenarios pre-
sented in Figure 4.1 that show edge server(s) hosting a Web application. As seen
in the figure, there is a fraction of data accessed only by clients of server 1, another
fraction by clients of server 2 and the rest are accessed by clients of both servers.
Not replicating at all (centralized system) can result in poor client response time.
Replicating all data everywhere (full replication) can result in significant update

SEC. 4.2 DESIGN ISSUES 95

����

������
��������
�����
�����
�����
����������
�����
�����

�����
�����
�����

�����
�����
�����
�����

����������

����������

���
���
���
���

�
�
�
�
��

������
����
����

������

Replication
Full

Server 1

 Data

Server 1 Server 2

 Data

Server

Autonomic Replication

System
Centralized

Updates

Updates

 Data

GlobeDB

Autonomic Replication

Server 2

 Data

 Data

 Data Data

���
���
���
���

������
����
����

������

���
���
���
���

����

������

��
��
��
������
��
��
��
��

����
����
����
����

��
��
��
��

������Clients accessing

Clients accessing

Clients accessing

���
���
���
���

��
��
��
��

������

����
����
����

����
����
����
����

��
��
��
��

����

�
�
�
�

���
���
���

���
���
���

����
����
����

Figure 4.1: Example of benefits of autonomic replication.

traffic between servers for data they barely access. In such scenarios, GlobeDB
can be very useful as it places the data in only those servers that access them
often. This can result in a significant reduction in update traffic and improved
client-perceived response time.

Building a system for autonomic replication of Web application data requires
addressing many issues such as identifying the granularity and constituents of the
data segments, finding the optimal placements for each data unit, and maintaining
consistency of replicated data units. This section discusses these issues in detail.

4.2.1. Application transparency

An important issue is to decide the extent to which an application should be aware
of data replication. Replication can yield the best performance if it is completely
tuned to the specific application and its access patterns [Gao et al., 2003]. How-
ever, this requires significant effort and expertise from an application developer.
As a consequence, optimal performance is often not reached in practice. Fur-
thermore, changes in access pattern may warrant changes in in the replication
strategies, thereby making the design of an optimal strategy even more complex.

In our system, we chose a transparent replication model. The application de-
veloper need not worry about replication issues and can just stick to the functional
aspects of the application. The system will automatically find a placement and
replication strategy, and adapt it to changing access patterns when needed.

96
GLOBEDB: AUTONOMIC REPLICATION

FOR WEB APPLICATIONS CHAP. 4

4.2.2. Data granularity

The underlying principle behind our system is to place each data unit only where
it is accessed. In our previous research on replication for static Web pages, we
showed that the optimal replication performance in terms of both client-perceived
latency and update bandwidth can be achieved if each Web page is replicated ac-
cording to its individual access patterns [Pierre et al., 2002]. A naive transposition
of this result would lead to replicating each database record individually. How-
ever, such fine-grained replication can result in significant overhead as the system
must maintain replication information for each record.

In our system, we employ an approach where the data units are initially de-
fined at a very fine grain. Data units having similar access patterns are then auto-
matically clustered by the system. The system subsequently handles replication at
the cluster level, thereby making the problem of managing a cluster feasible with-
out losing the benefits of partial replication. However, a caveat of this approach is
that if the access patterns change, then the system must perform re-clustering to
sustain good performance. More information on the clustering algorithm used in
our system is presented in Section 4.5.

4.2.3. Consistency

One important issue in any replicated system is consistency. Consistency man-
agement has two main aspects: update propagation and concurrency control. In
update propagation, the issue is to decide which strategy must be used to propa-
gate updates to replicas. GlobeDB uses a push strategy where all updates to a data
unit are pushed to the replicas immediately. Pushing data updates immediately
ensures that replicas are kept consistent and that the servers hosting replicas can
serve read requests immediately.

Yet, propagating updates is not sufficient to maintain data consistency. The
system must also handle concurrent updates to a data unit emerging from multiple
servers. Traditional non-replicated DBMSs perform concurrency control using
locks or multiversion models [Gray and Reuter, 1993]. For this, a database re-
quires an explicit definition of transaction, which contains a sequence of read/write
operations to a database. For example, PostgreSQL uses a variant of multiversion
model called snapshot isolation to handle concurrent transactions.1 When query-
ing a database each transaction sees a snapshot of consistent data (a database ver-
sion), regardless of the current state of the underlying data. This protects the
transaction from viewing inconsistent data produced by concurrently running up-
date transactions.

1http://www.postgresql.org/

SEC. 4.3 DESIGN ISSUES 97

However, concurrency control at the database level can serialize updates only
to a single database server and does not handle concurrent updates to replicated
data units at multiple edge servers. Traditional solutions such as two-phase com-
mit are rather expensive as they require global locking of all databases, thereby
reducing the performance gains of replication. To handle this scenario, the sys-
tem must serialize concurrent updates from multiple locations to a single location.
GlobeDB does not guarantee full transaction semantics for the entire database,
but enforces consistency for each data unit individually. In other words, it im-
poses that each transaction be composed of a single query/operation which at most
modifies a single data unit. Note that the granularity of updates can be extended
to a data cluster level as all data items within a single cluster are always repli-
cated together. The concurrency control adopted in our system is explained in
Section 4.3.

4.2.4. Data placement

Automatic data placement requires the system to find a set of edge servers to
host the replicas of a data cluster according to certain performance criteria. One
can measure the system performance by metrics such as average read latency,
average write latency, amount of update traffic, etc. But a naive approach based
on optimizing the system performance for one of these metrics alone can easily
result in degrading the performance according to other metrics. For example, a
system can be optimized for minimizing read latency by replicating the data to
all replica servers. However, this can lead to huge update traffic if the number of
updates is high.

In general, there is a clear tradeoff between the performance gain due to repli-
cation and the performance loss due to consistency enforcement. However, there
is no universal definition of “best” tradeoff. In fact, each system administrator
should specify a particular tradeoff based on the system needs. For example, the
administrator of a CDN with (theoretically) unlimited bandwidth may choose to
optimize on client response time alone. The same administrator, when facing a
bottleneck at the central server, may prefer to minimize update traffic.

In our system, the system administrator specifies relative performance trade-
offs as the weights of a cost function. This function aggregates multiple perfor-
mance metrics into a single abstract metric. Optimizing the cost function is equiv-
alent to optimizing the global system performance. This function therefore acts
as a measure of the desired system performance and aids the system in making its
placement decisions. The cost function and placement algorithms are presented in
Section 4.5.

98
GLOBEDB: AUTONOMIC REPLICATION

FOR WEB APPLICATIONS CHAP. 4

Requests/Responses

Client

Database

Server

Data Data

DriverAccess

Read/

Write

Code
Application

ServerWeb

��������

�����
�����
�����

�����
�����
�����

����
����
����
����
����

����
����
����
����
����

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 4.2: Application Model

4.3. SYSTEM ARCHITECTURE

4.3.1. Application model

The application model of our system is shown in Figure 4.2. An application is
made of code and data. The code is written using standard dynamic Web page
technology such as PHP and is hosted by the Web server (or the Web application
server). It is executed each time the Web server receives an HTTP request from
its clients, and issues read/write accesses to the relevant data in the database to
generate a response.

Access to the data is done through a data driver which acts as the interface
between code and data.2 The data driver preserves distribution transparency of
the data and has the same PHP interface as regular PHP drivers. It is responsible
for finding the data required by the code, either locally or from a remote server,
and for maintaining data consistency.

We assume that the database is split into n data units, D1, D2,· · · , Dn, where
a data unit is the smallest granule of replication. Each unit is assumed to have a
unique identifier, which is used by the data driver to track it. An example of a data
unit is a database record identified by its primary key.

GlobeDB enforces consistency among replicated data units using a simple
master-slave protocol: each data cluster has one master server responsible for se-
rializing concurrent updates emerging from different replicas. GlobeDB assumes
that each database transaction is composed of a single query which modifies at
most a single data unit. When a server receives an update request, it forwards the
request to the master of the cluster, which processes the update request and prop-
agates the result to the replicas. Note that this model is sometimes called eventual
consistency. If stronger consistency is needed, then models such as session guar-
antees can be envisaged [Terry et al., 1994].

2This driver is different from conventional PHP drivers as it not just an interface driver but also
responsible for functional aspects such as location of replicated data.

SEC. 4.3 SYSTEM ARCHITECTURE 99

4.3.2. System architecture

Web Server

Data

Access

Data
Driver

Read/

Write
Server

Database

Web Server

Data

Access

Data
Driver

Read/

Write
Server

Database

Web Server

Data

Access

Data
Driver

Read/

Write
Server

Database

Consistency Updates

Consistency Updates

Consistency Updates

Internet

...Edge Server 1 Edge Server m

Origin Server

Web
Clients

����
����
����
����
����
����

����
����
����
����
����
����

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

����
����
����
����
����
����

����
����
����
����
����
����

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

����
����
����
����
����
����

����
����
����
����
����
����

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 4.3: System Architecture - Edge servers serving clients close to
them and interactions among edge servers goes through Wide-area network.

The architecture of GlobeDB is presented in Figure 4.3. An application is
hosted by m edge servers spread across the Internet. Communication between
edge servers is through wide-area networks incurring wide-area latency. Each
client is assumed to be redirected to its closest edge server using enhanced DNS-
based redirection [Dilley et al., 2002; Fei et al., 1998]. Furthermore, for each
session, a client is assumed to be served by only one Web server.

When a client issues an HTTP request to a Web server, the request is for-
warded to the application code (e.g., PHP) residing in the server. The application
code usually issues a number of read/write accesses to its data through the data
driver. The application data are partially replicated, so the local database hosts
only a subset of all data clusters. The data driver is responsible for finding the
relevant data either locally or from a remote edge server if the data are not present
locally. Additionally, when handling write data accesses, the driver is also respon-
sible for ensuring consistency with other replicas.

To perform autonomic replication, the system must decide on the placement of
replicas for each data cluster and choose its master according to its access pattern.
To this end, each application is assigned one origin server, which is responsible
for making all application-wide decisions such as clustering data units and placing
clusters on edge servers. The origin server performs replica placement periodi-

100
GLOBEDB: AUTONOMIC REPLICATION

FOR WEB APPLICATIONS CHAP. 4

cally to handle changes in data access patterns and the creation of new data units.
For reasons explained below, the origin server also has a full database replica.

Consistency is enforced using a simple master-slave protocol: each data clus-
ter has one master server responsible for serializing concurrent updates emerging
from different replicas. When a server holding a replica of a data cluster receives
a read request, it is answered locally. When it receives an update request, it is
forwarded to the master of the data cluster. If the server does not have a replica,
then requests are forwarded to the origin server. More information on locating
data units is presented in Section 4.4.

GlobeDB does not support the notion of transaction boundaries (where mul-
tiple read and write queries are grouped together as a single execution unit) as
usually defined in the traditional database. GlobeDB handles each read and write
query individually and guarantees eventual consistency. Note that eventual con-
sistency does not guarantee that all replicas are identical at all times. The master
of a cluster delivers updates to all replicas in the same order without any global
locking. This can lead to transient situations where the latest updates have been
applied only to a fraction of the replicas. We assume that this can be tolerated
by the application as each client session is handled by only one edge server in
the network. Note that even existing solutions over commercial database systems
such as DBCache [Bornhövd et al., 2004] and MTCache [Larson et al., 2004] face
similar issues and guarantee the same level of consistency as GlobeDB.

4.4. DATA DRIVER

The data driver is the central component of GlobeDB. It is in charge of locating
the data units required by the application code and maintaining consistency of the
replicated data.

4.4.1. Types of queries

The primary functionality of the data driver is to locate the data units required
by the application code. Data access queries can be classified into write and read
queries based on whether or not an update to the underlying database takes place.
Another way of classifying queries is based on the number of rows matched by the
query selection criterion. We refer to the queries based on primary keys of a table
or that result in an exact match for only one record as simple queries. An example
of a simple query is “Find the customer record whose userid is ‘xyz’.” Queries
based on secondary keys and queries spanning multiple tables are referred to as
complex queries. An example of a complex query is “Find all customer records
whose location is ‘Amsterdam’.”

SEC. 4.4 DATA DRIVER 101

As noted earlier, we assume that each data unit has a unique identifier. For
fine-grained data units, such as database records, we use the primary key as the
record’s unique identifier. This allows the data driver to map simple queries to
required data units, which makes locating data units relatively straightforward.

For answering a complex query, the driver cannot restrict its search to its local
database but needs to inspect the entire database. Such a query can be answered by
forwarding it to a subset of servers that jointly have the complete database table.
For the sake of simplicity, we stipulate that the origin server has a replica of all
data units. For this reason all complex queries are forwarded to the origin server
which will incur a wide-area latency.

At the outset, being able to answer only simple queries locally might ap-
pear very limiting. However, typical Web applications issue a majority of sim-
ple queries. To get an idea of the percentage of simple queries used on real
e-commerce applications, we examined the TPC-W benchmark which models a
digital bookstore [Menasce, 2002]. We collected the SQL traces generated by ex-
ecution of the benchmark’s ordering mix workload.3 We analyzed the accesses to
the book tables (which contains the records pertaining information about individ-
ual books) and found that more than 80% of the accesses to the table consist of
simple queries or can be easily re-written as simple queries. Similarly, about 80%
of accesses to the customer tables use simple queries. Similar figures are seen
for other workload mixes of TPC-W. In TPC-W, updates to a database are always
made using simple query.

4.4.2. Locating data units

The data driver of each edge server maintains three tables. The cluster-membership
table stores the identifiers of data units contained in each cluster. The cluster-
property table contains the following information for each data cluster: the origin
server, the master replica, and the list of servers that host a copy of this cluster.
These two tables are fully replicated at all edge servers. Each driver also main-
tains an access table to keep track of the number of read and write accesses to
each cluster.

To answer simple queries, the driver locates a data unit by identifying the
cluster to which the data unit belongs, using the cluster-membership table. Once
the appropriate cluster is identified, the driver uses the cluster-property table to
find details about the location of the cluster and its master. Upon each read or write
access, the driver updates the access table accordingly. The data driver forwards
all complex queries to the origin server.

A naive design of the cluster-membership table can be a scalability bottleneck.

3http://www.ece.wisc.edu/~pharm/tpcw.shtml

102
GLOBEDB: AUTONOMIC REPLICATION

FOR WEB APPLICATIONS CHAP. 4

if complex query then
Execute query at the origin server and return result;

else
if read then

Execute query locally;
if execution returns result then

return result;
else

execute on origin server and return result;
end

else
Get cluster id of data unit from (local or origin server);
Find master for cluster from cluster-property table;
Execute query on master server and return result;

end
end

Algorithm 1: Pseudocode used by data driver for executing queries

In our initial implementation, we used bit arrays for numerical primary key IDs
and bloom filters for non-numerical IDs [Bloom, 1970]. A typical bit-array based
cluster membership table will have a size of only 125 Kbits for each cluster to
represent a database with a million data units. Such a small size allows the ta-
ble to reside in main memory thereby resulting in faster access. However, these
filters have several disadvantages. First, storing non-numerical IDs using Bloom
filters can result in potential inaccuracies that result in redundant network traffic.
Second, the system needs to allocate enough memory for filters to accommodate
creation of new data units in the future, which poses a scalability problem.

To overcome these shortcomings, in our current implementation the cluster-
membership table is stored along with the respective database records. In this
implementation, each database record has an extra attribute that indicates which
cluster the record belongs to. The pseudocode for executing queries by the data
driver is shown in Algorithm 1. As seen in the figure, simple queries with read
accesses are always first executed locally. If a record is returned, the result is
returned immediately.4 Otherwise, the query is forwarded to the origin server
(which contains a full copy of the database). For update queries, the driver first
runs a query to find the cluster ID. If the data record is replicated locally, its
cluster ID will be returned and the information regarding who its master is can be
obtained from the cluster-property table. Then, the update query is forwarded to
the master. In case of update queries to a data unit not present locally, the query
to find cluster information for the data unit will return no result and this query is

4This is also done for exact match queries (queries that match a single data unit) based on non-
primary queries.

SEC. 4.5 REPLICATION ALGORITHMS 103

then run on the origin server. Subsequently, the update query will be sent to the
appropriate master server. The cluster-property table is simply implemented as a
file. This table is created and updated (whenever necessary) by the origin server
and is replicated to the edge servers.

4.5. REPLICATION ALGORITHMS

Replicating an application requires that we replicate its code and data. For the
sake of simplicity, in this chapter we assume that the code is fully replicated at
all replica servers. In this section, we present the algorithms we use for clus-
tering data units, placing the data cluster, and selecting their master. For the
placement of data, we use a cost function that allows the system administrator
to tell GlobeDB his/her idea of optimal performance. As we explain in detail in
this section, GlobeDB uses this function to assess the goodness of its placement
decisions.

4.5.1. Clustering

As we mentioned earlier, in GlobeDB, data units with similar access patterns are
clustered together. A similar problem was addressed in [Chen et al., 2002b] in the
context of clustering static Web pages to reduce the overhead in handling replicas
for each Web page. The authors propose several spatial clustering algorithms
to group pages into clusters and incremental clustering algorithms to handle the
creation of new pages. They show that these clustering algorithms perform well
for real-world Web traces. We use similar algorithms for clustering data units.

The origin server is responsible for clustering the data units during the initial
stages of system. The origin server collects access patterns of data units from all
edge servers into its access table. Each data unit Di’s access pattern is modelled
as a 2∗m-dimensional vector, Ai =< ri,1,ri,2,· · · ,ri,m,wi,1,· · · ,wi,m >, where ri, j and
wi, j are respectively the number of read and write accesses made by the edge
server Rj to the data unit Di. The origin server runs a spatial clustering algorithm
that uses correlation-based similarity on the access vectors of the data units. As a
result, two data units Di and Dj are grouped into the same cluster if and only if Ai

and Aj are similar. In correlation-based similarity, the similarity between two data
units Di and Dj is given by

Sim(i, j) =
∑2∗m

k=1(ai,k − āi)(a j,k − ā j)√
∑2∗m

k=1(ai,k − āi)2 ∑2∗m
k=1(a j,k − ā j)2

where < ai,1,ai,2,· · · ,ai,m > = < ri,1,ri,2,· · · ,ri,m > and < ai,m+1,ai,m+2,· · · ,ai,2∗m >

104
GLOBEDB: AUTONOMIC REPLICATION

FOR WEB APPLICATIONS CHAP. 4

= < wi,1,· · · ,wi,m >. Data units Di and Dj are clustered together if Sim(i, j) ≥ x,
for some threshold value x, where 0 ≤ x ≤ 1.

The origin server iterates through data units that are yet to be clustered. If a
data unit Di is sufficiently close to the access vector of an existing cluster, it is
merged into it. Otherwise, a new cluster with Di as the only member is created.
Once the data clusters are built, the origin server creates the appropriate cluster-
membership table for each cluster. Obviously, the value of x has an impact on the
effectiveness of the replication strategy. In all experiments from Section 4.6 we
fix the threshold x to 0.95. We will study the process of determining the optimal
threshold value in the near future.

Data clustering works well if data units once clustered do not change their ac-
cess pattern radically. However, if they do, then the clusters must be re-evaluated.
The process of re-clustering requires mechanisms for identifying stale data units
within a cluster and then re-clustering them. We do not study the issue of (re-
)clustering in detail in this thesis. Clustering is orthogonal to the replication strat-
egy and it mainly involves determining when to re-cluster and how to re-cluster
efficiently. Also note that re-clustering can be done by progressively invalidating
and validating copies at the different edge servers as it is done for data caches.
For an in-depth study of different clustering algorithms that can be applied for
GlobeDB, we refer interested readers to [Yang, 2005].

4.5.2. Selecting a replication strategy

The origin server must periodically select the best replication strategy for each
cluster. A replication strategy involves three aspects: replica placement, consis-
tency mechanism, and, in our case, master selection. As we use push strategy as
our consistency mechanism, the selection of a replication strategy for a cluster
boils down to deciding about replica placement and selecting the master.

As noted earlier, to select the best replication strategy, the system administra-
tor must specify what “best” actually means. In GlobeDB, we represent overall
system performance into a single abstract figure using a cost function. A cost
function aggregates several evaluation metrics into a single figure. By definition,
the best configuration is the one with the least cost. An example of a cost function
which measures the performance of a replication strategy s during a time period t
is:

cost(s, t) = α∗ r(s, t)+β∗w(s, t)+ γ∗b(s, t)
where r is the average read latency, w is the average write latency, and b is the
amount of bandwidth used for consistency enforcement.

The values α, β and γ are weights associated to metrics r, w, and b respec-
tively. These weights must be set by the system administrator based on system
constraints and application requirements. A larger weight implies that its associ-

SEC. 4.5 REPLICATION ALGORITHMS 105

ated metric has more influence in selecting the “best” strategy. For example, if
the administrator wants to optimize on client performance and is not concerned
with the bandwidth consumption, then weights α and β can be increased. Finding
the “best” system configuration now boils down to evaluating the value of the cost
function for every candidate strategy and selecting the configuration with the least
cost.

In GlobeDB we use the cost function as a decision making tool to decide on
the best server placements and master server for each cluster. Ideally, the system
should periodically evaluate all possible combinations of replica placement and
master server configurations for each cluster with the cluster’s access pattern for
the past access period. The configuration with the least cost should be selected as
the best strategy for the near future. This relies on the assumption that the past
access patterns are a good indicator for the near future. This assumption has been
shown to be true for static Web pages and we expect the dynamic content will
exhibit similar behavior [Pierre et al., 2002].

Ideally, the system should treat the master selection and replica placement as a
single problem and select the combination of master-slave and replica placement
configuration that yields the minimum cost. However, such a solution would re-
quire an exhaustive evaluation of 2m ∗m configurations for each data cluster, if
m is the number of replica servers. This makes this solution computationally in-
feasible. In GlobeDB, we use heuristics to perform replica placement and master
selection (discussed in the next subsections). We propose a number of possible
heuristics for placement and a method for optimal selection of master server. This
reduces the problem of choosing a replication strategy to evaluating which com-
bination of master server and placement heuristics performs the best in any given
situation. After selecting the best replica placement and master for each data clus-
ter, the origin server builds the cluster-property table and installs it in all edge
servers.

4.5.3. Replica placement heuristics

Proper placement of data clusters is important to obtain good client latencies and
reduced updated traffic. We define a family of placement heuristics Py where an
edge server hosts a replica of a data cluster if its server generates at least y% of
data access requests.

Obviously, the value of y affects the performance of the system. A high value
of y will lead to creating no replica at all besides the origin server. On the other
hand, a low value of y may lead to a fully replicated configuration.

Expecting the system administrator to determine the appropriate value for y
is not reasonable, as the number of parameters that affect system performance
is high. Instead, in GlobeDB, administrators are just expected to define their

106
GLOBEDB: AUTONOMIC REPLICATION

FOR WEB APPLICATIONS CHAP. 4

preferred performance tradeoffs by choosing the weight parameters of the cost
function. The origin server will then evaluate the cost value for placement config-
urations obtained for different values of y (where y=5,10,15,20,25), and select the
one that yields the least cost as the best placement configuration. Note that these
heuristics are designed primarily to reduce the network latency to fetch a data unit
and assumes that the edge servers are well provisioned (using a cluster of physical
servers) to handle their query load.

4.5.4. Master selection

Master selection is essential to optimize the write latency and the amount of band-
width utilized to maintain consistency among replicas. For example, if there is
only one server that updates a data cluster, then that server should be selected as
the cluster’s master. This will result in low write latency and less update traffic as
all updates to a cluster are sent to its master and then propagated to the replicas.

We use a method for optimal selection of a master server that results in the
least average write-latency. Let wi, j be the number of write access requests re-
ceived by edge server Rj for cluster i and l jk be the latency between edge server j
and k (we assume that latency measurements between servers are symmetric, i.e.,
lk j=l jk). The average write latency for data cluster i whose master is k is given
by: wlki = (∑m

j=1 wi, j ∗ l jk)/(∑m
j=1 wi, j). The origin server selects the server with

lowest average write latency as the master for a data cluster .

4.6. IMPLEMENTATION AND ITS PERFORMANCE

In this section, we discuss the salient components of our prototype system
and also present performance measurements on the overhead that the data driver
introduces to a single edge server.

4.6.1. Implementation overview

The salient components of our prototype system are shown in Figure 4.4. We
implemented our data driver by modifying the existing Apache PHP driver for
PostgreSQL, by adding new query interfaces to the existing PHP driver. This
driver can be added as a module to the Apache Web server.

Each edge server runs a logger service, which is responsible for collecting
information regarding which cluster was accessed by the Web clients. The logger
is implemented as a stand-alone multi-threaded server that collects information
from the driver and periodically updates the access database.

SEC. 4.6 IMPLEMENTATION AND ITS PERFORMANCE 107

Apache

Clustering
Service

Access table

Placement
Service

Stores/reads access table
for clustering

Origin Server

Read access
table for
placement

Edge Server

Data Driver

Database
 Server

Database

Logger

 Server

Service

Figure 4.4: Salient components of the system

As seen in the figure, the origin server runs two special services, clustering
and replica placement services. The clustering service performs the clustering of
data units during the initial stages of system deployment. It periodically collects
access patterns from the edge servers and stores it in its database. Subsequently, it
performs clustering with the algorithm described in Section 4.5. The origin server
acts only a back-end database so it does not need to have a Web server or logger
service.

The replica placement service in the origin server finds the “best” locations
for hosting a replica and master for each cluster. It does so by evaluating the
cost obtained by different replica placement strategies and master selection for
the cluster’s access pattern in the previous period. Note that once data units are
clustered, the logger service in the edge servers starts collecting access patterns at
the cluster level. This information is then used by the replica placement service
to place the replicas. Upon deciding which servers would host which clusters, the
placement service builds the cluster-property table for each cluster and copies it
to all edge servers.

To perform periodic adaptation, the replica placement service is invoked pe-
riodically. We note that the period of this adaptation must be set to a reasonable
value to ensure good performance and stability. We intend to study the need and
support for continuous adaptation and effective mechanisms for them in the future.

The clustering service is also run periodically. The bulk of its work is done
during the initial stages when it has to cluster large numbers of data units. Later,
during every period, it performs incremental clustering of newly created data units.
The current prototype does not perform any kind of re-clustering.

108
GLOBEDB: AUTONOMIC REPLICATION

FOR WEB APPLICATIONS CHAP. 4

4.6.2. Measuring the overhead of the data driver

The data driver receives SQL queries issued by the application code and is re-
sponsible for locating the relevant data unit from the local server or from a remote
server. It does so by checking appropriate cluster-membership tables for each re-
quest. Performance gains in terms of latency or update traffic occur when the clus-
ters accessed by a given edge server can be found locally. However, it is important
to ensure that the gain obtained by replication is not annulled by the overhead due
to checking the cluster-membership table for each data access. To analyze this, we
study the response time of our driver when executing a query on a local replicated
data in comparison to the response time of the original PHP driver.

In our experimental setup, we ran the Apache Web server on a PIII-900MHz
Linux machine with 1 GB main memory. The PostgreSQL database also runs on
an identical machine. We created a book table with fields such as book id, book
name, author id, stock quantity and five other integer fields. The database was
populated with 100,000 random records.

We measured the execution latencies of read and write queries using the orig-
inal PHP driver and the GlobeDB PHP driver for different throughput values. In
both cases, the requested data is available locally; the only difference is that the
GlobeDB driver needs to check its cluster membership and cluster-property ta-
bles before each data access. Read queries read a random database record using a
simple query. Write queries increment the stock field of a randomly chosen book
record. To make sure that each access is local, the server is assumed to be the
master for all clusters. We computed the execution latency as the time taken by
the server to generate the response for a request. We do not include the network
latency between the client and server as the objective of this experiment is only to
measure the overhead of our driver in processing the request.

The results of this experiment are given in Figure 4.5. Even for high through-
puts, the overhead introduced by our implementation is between 0 and 5 millisec-
onds for read accesses, and at most 10 milliseconds for write accesses. This is less
than 4% of the database access latencies incurred by the original driver.

We conclude that the overhead introduced by our driver is very low and, as
we shall see in the next section, negligible compared to the wide-area network
latency incurred by traditional non-replicated systems. Clearly, this experiment
only shows that the overhead introduced by GlobeDB’s driver is low and does not
give any insights on the performance of GlobeDB’s replication mechanisms. This
is the focus of the experiments presented in the subsequent section.

SEC. 4.7 PERFORMANCE EVALUATION: TPC-W BOOKSTORE 109

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0 2 4 6 8 10 12 14 16

R
es

po
ns

e
T

im
e(

s)

Requests/second

Original
GlobeDB

(a) Read Accesses

0.045
0.06

0.075
0.09

0.105
0.12

0.135
0.15

0.165
0.18

0.195
0.21

0.225
0.24

0.255
0.27

0 2 4 6 8 10 12 14 16

R
es

po
ns

e
T

im
e(

s)
Requests/second

Original
GlobeDB

(b) Write Accesses

Figure 4.5: A comparative study of GlobeDB driver implementation with
original PHP driver for reading and updating local data units

4.7. PERFORMANCE EVALUATION: TPC-W BOOKSTORE

The experiments presented in the previous section show that the overhead in-
troduced by GlobeDB’s driver in a single edge server is low. However, it does
not offer any insight into the performance gains of GlobeDB. In this section, we
study the performance gain that could be obtained using GlobeDB while hosting
an e-commerce application. We chose the TPC-W benchmark and evaluated the
performance of GlobeDB in comparison to other existing systems for different
throughput values over an emulated wide-area network. As the experiment re-
sults presented in this section will show, GlobeDB can reduce the client access
latencies for typical e-commerce applications with large mixture of read and write
operations without requiring manual configurations or performance optimizations.

4.7.1. Experiment setup

We deployed our prototype across 3 identical edge servers with Pentium III 900
Mhz CPU, 1-GB of memory and 120GB IDE hard disks. The database servers
for these edge servers were run on separate machines with the same configura-
tion. Each edge server uses Apache 2.0.49 Web servers with PHP 4.3.6. We use
PostgreSQL 7.3.4 as our database servers. The origin server uses an identical con-
figuration as the edge servers except that it acts just as a backend database and does
not run a Web server. We emulated a wide-area network (WAN) among servers by
directing all the traffic to an intermediate router which uses the NIST Net network
emulator.5 This router delays packets sent between the different servers to simu-
late a realistic wide-area network. In the remaining discussion, we refer to links

5http://snad.ncsl.nist.gov/itg/nistnet/

110
GLOBEDB: AUTONOMIC REPLICATION

FOR WEB APPLICATIONS CHAP. 4

via NISTNet with a bandwidth of 10Mbps and a latency of 100ms as WAN links
and 100Mbps as LAN links. We use two client machines to generate requests
addressed to the three edge servers. A similar setup to emulate a WAN was used
in [Gao et al., 2003].

We deployed the TPC-W benchmark in the edge servers. TPC-W models an
on-line bookstore and defines workloads that exercise different parts of the system
such as the Web server, database server etc. The benchmark defines activities such
as multiple on-line browsing sessions using Remote Browser Emulators (RBEs),
dynamic page-generation from a database, contention of database accesses and
updates. The benchmark defines three different workload scenarios: browsing,
shopping and ordering. The browsing scenario has mostly browsing related in-
teractions (95%). The shopping scenario consists of 80% browsing related inter-
actions and 20% shopping interactions. The ordering scenario contains an equal
mixture of shopping and browsing interactions. In our experiments, we evaluate
GlobeDB for the ordering scenario, as it generates the highest number of updates.
The performance metrics of the TPC-W benchmark are WIPS (Web Interactions
Per Second), which denotes the throughput one could get out of a system and
WIRT, which denotes the average end-to-end response time that would be experi-
enced by a client.

The benchmark uses the following database tables: (i) t pcw item stores details
about books and their stocks; (ii) t pcw customer stores information about the cus-
tomers; (iii) t pcw author stores the author-related information; (iv) t pcw order
and t pcw orderline store order-related information. In our experiment, we study
the effects of replication only for the t pcw customer and the t pcw item tables as
these are the only tables that receive updates and read accesses simultaneously.
The t pcw author table is replicated everywhere as it is never updated by Web
clients.

In our experiments, we want to compare the performance of GlobeDB with
traditional centralized and fully replicated scenarios. In principle, a fully repli-
cated system should replicate all tables at all edge servers. However, each record
of ordering-related tables is mostly accessed by only a single customer. In addi-
tion, the entire order database is used to generate the “best sellers” page. In such a
scenario, full replication of ordering-related tables would be an overkill as it would
result in too much update traffic among edge servers. Any reasonable database ad-
ministrator would therefore store ordering-related database records only in servers
that created them and maintain a copy at the origin server (which would be respon-
sible for generating responses to “best sellers” queries). So, for a fair comparison
with GlobeDB, we implemented this optimization manually for the fully repli-
cated system.

SEC. 4.7 PERFORMANCE EVALUATION: TPC-W BOOKSTORE 111

We use the open source PHP implementation of TPC-W benchmark.6 We
disabled the image downloading actions of RBEs as we want to evaluate only
the response time of dynamic page generation of the edge server. To account for
the geographical diversity of the customers, we defined three groups of clients
which respectively issue their requests to a different edge server. We believe this
is a realistic scenario as customers typically do not move often and are usually
redirected to the server closest to them.

The t pcw item table stores fields such as its unique integer identifier, author
identifier, item name, price and stock. In addition to these fields, it also stores five
integer fields that have identifiers of books that are closely related to it and have
a similar customer base. These fields are read by the application code to gener-
ate promotional advertisements when a client reads about a particular book. For
example, related fields of a Harry Potter book may contain identifiers of the other
Harry Potter books. In our experiment, we filled these related identifiers as fol-
lows: the item records are classified into three groups and related entries of each
item is assigned to an item in the same group. In this way, the related field truly re-
flects books with similar customer base. Furthermore, TPC-W stipulates that each
Web session should start with a book for promotion. In our experiments, clients
of edge server i receive the starting random book id only from item group i. At the
outset, this might look as if each client group request books from only one item
group. However, this is not the case as the RBE clients select the books to view
also from other interactions, such as best-sellers and search result interactions,
which have books spanning across multiple item groups.

Even though the assumptions we make about the clients access patterns are
realistic, they do not capture all kinds of client access patterns. In one of our ear-
lier studies, we simulated our proposed replication techniques for different kinds
of access patterns from uniform popularity (all clients are interested in all data)
to a very skewed popularity (only a small set of clients are interested in a partic-
ular piece of data) using statistical distributions [Sivasubramanian et al., 2004a].
We found that our techniques perform well in all cases compared to traditional
fully replicated and centralized systems. Hence, in this experiment we restrict
our evaluations to only the workload described in this setup and study the relative
performance of different system implementations.

In our experiments, for each run we ran the benchmark for 8 hours. After this,
the origin server collected the access patterns from the edge servers and performed
clustering and replication. Analysis of the t pcw customer table resulted in three
clusters. Each of these clusters were mostly accessed by only one edge server
(different one in each case). Analysis of t pcw item accesses led to four clusters.
Three out of the four clusters are characterized by accesses predominantly from

6http://pgfoundry.org/projects/tpc-w-php/

112
GLOBEDB: AUTONOMIC REPLICATION

FOR WEB APPLICATIONS CHAP. 4

System

Origin Server

Origin Server

Origin Server

3 Edge servers

3 Edge servers

Full Repl.
 &
GlobeDB

Edge Service
Simple

Centralized

WAN

WAN

WAN

������

��������

����
����
����
����

����
����
����

����
����
����

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��������

��������

���
���
���
���

���
���
���
���

���
���
���

���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���

���
���
���
���

��������

����
����
����
����

���
���
���
���

���
���
���
���

��������

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

��������

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

Figure 4.6: Architectures of different systems evaluated

only one edge server (a different one in each case). However, the fourth cluster
represents data units that are accessed by clients of all the three edge servers.

4.7.2. Experiment results

0

200

400

600

800

1000

1200

1400

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

W
eb

 In
te

ra
ct

io
n

R
es

po
ns

e
T

im
e

(m
s)

WIPS

SES

Centralized

GlobeDB

Full

Figure 4.7: Performance of different system architectures running TPC-W
benchmark

We evaluated the performance of four different systems: (i) a traditional cen-
tralized architecture where the code and the database is run in a server across a
WAN (Centralized), (ii) a simple edge server architecture where three edge servers
run a Web server and the database is run in a server across the WAN (SES), (iii)
our proposed system with 3 edge servers (GlobeDB) and (iv) a full replication

SEC. 4.7 PERFORMANCE EVALUATION: TPC-W BOOKSTORE 113

system (Full) which is similar to the GlobeDB setup - the only difference being
that the t pcw item and t pcw customer tables are fully replicated at all edge server
unlike GlobeDB.

As we noted earlier, replication decisions are made through evaluation of the
cost function and its weights α, β and γ as described in Section 4.5. In our ex-
periments, we assumed the system administrator wants to optimize the system for
improved response time and assigned higher weights to α and β compared to γ.
We set α=2/rmax; β=2/wmax; and γ=1/bmax, where rmax, wmax and bmax are max-
imum values of average read latency, write latency, and number of consistency
updates, respectively. These values effectively tell the system to consider client
read and write latency to be twice as important in comparison to update band-
width (on a normalized scale). These weights result in the following placement
configuration: For the three clusters of the customer table, three different place-
ment configurations are obtained where a different edge server is the master while
hosting a replica of the cluster. Similar placement configurations are obtained for
three out of the four clusters of the book table. The fourth cluster (which contains
data units that were accessed from all edge servers) was automatically placed at
all the three edge servers as it represents book records popular among all clients.

In our experiments, we study the WIRT for different WIPS until the database
server cannot handle more connections. The results of our experiments are given
in Figure 4.7. Even for low throughputs GlobeDB performs better than the tradi-
tional Centralized and SES architectures and reduces response time by a factor 4.
GlobeDB performs better than SES and a centralized system as it is able to save
on wide-area network latency for each data access because it is able to find many
data records locally. Moreover, this shows that replicating application code is not
sufficient to obtain good performance.

The difference in WIRT between the GlobeDB and Full setup varies from
100 to 400ms. This is because the GlobeDB system is capable of performing
local updates (the server that writes most to a database cluster is elected as its
master) but the Full setup forwards all updates to the origin server. These updates
constitute 30% of the workload. On the other hand, the Full setup gains in the
fact it can handle some complex queries such as search result interactions locally,
while GlobeDB forwards it to the origin server.

It is obvious that the fully replicated system produces more update traffic than
GlobeDB as it propagates each update to all edge servers. In this experiment, we
found that GlobeDB reduces the update traffic by a factor 6 compared to Full repli-
cation. This is because GlobeDB prevents unnecessary update traffic by placing
data only where they are accessed. Reducing the update traffic potentially leads
to significant cost reduction as CDNs are usually charged by the data centers for
the amount of bandwidth consumed.

114
GLOBEDB: AUTONOMIC REPLICATION

FOR WEB APPLICATIONS CHAP. 4

200

400

600

800

1000

1200

1400

1600

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

W
eb

 In
te

ra
ct

io
n

R
es

po
ns

e
T

im
e

(m
s)

WIPS

GlobeDB (2,2,1)

GlobeDB (1,1,0)

GlobeDB (0,0,1)

Figure 4.8: Relative Performance of Autonomic System architectures

The centralized and SES systems pay the penalty for making connections over
a WAN link. Note that between these systems the Centralized setup yields lower
response time as each client request travels only once over the WAN link. In the
SES setup, each Web request triggers multiple data accesses that need to travel
across WAN links thereby suffering huge delays. However, among these tra-
ditional systems, the SES architecture yields better throughput as it uses more
hardware resources, i.e., the Web server and the database system are running in
separate machines. SES yields a throughput of 7.9 req/s, while the centralized
architecture yields much less (1.9 req/s) as it runs both Web server and database
on the same machine.

Replication also affects throughput. GlobeDB attains a throughput of 16.9
req/s and is 2 WIPS better than the Full setup and 8 WIPS better than SES. It per-
forms better than SES because the data handling workload is shared among many
database servers. While the Full setup has the same number of database servers
as GlobeDB, the latter sustains higher throughput as a server does not receive
updates to data that it accesses rarely. This reduces the workload of individual
database servers in addition to reducing overall consumed bandwidth.

In conclusion, the results of the experiments show that the GlobeDB’s auto-
matic data placement can reduce client access latencies for typical e-commerce
applications with a large mixture of read and write operations. With these exper-
iments we have shown that automatic placement of application data is possible
with very little administration. We believe this is a promising start for realizing a
truly scalable self-managing platform for large-scale Web applications.

SEC. 4.8 RELATED WORK 115

4.7.3. Effect of the cost function

In our earlier experiments, we showed that autonomic placement of data can yield
better performance than traditional strategies. As we noted in Section 4.5, the
underlying decision making tool used for autonomic placement is the cost function
and its weights α, β, and γ.

The objective of the results presented in this section is not to show what are
the right weights for a system. Rather, this experiment is just a guide to show the
utility of our cost function and the simplicity with which it can attain different
objectives (latency optimization, bandwidth optimization or a mixture of it).

We evaluated the relative performance of autonomic systems that uses three
different weight parameters, in effect three different criteria for placement. The
three systems evaluated are: (i) GlobeDB(0, 0, 1): a system with weights (α,β,γ)
=(0,0,1), which implies the system wants to preserve only the bandwidth and does
not care about latency, (ii) GlobeDB (1, 1, 0): a system whose weights are set
such that the system cares only about the client latency and does not have any
constraints on the amount of update bandwidth. Effectively, this situation leads to
creating more replicas. (iii) GlobeDB(2, 2, 1): a system that prefers to optimize
latency twice as much as the update bandwidth.

As can be seen, these systems are designed for different conditions. For ex-
ample, GlobeDB(0, 0, 1) is useful for a system that cannot afford to pay for the
wide-area bandwidth consumed in its remote edge servers and GlobeDB(1, 1, 0)
is useful for a CDN that values its client quality of service (QoS) more than its
maintenance costs consumed for maintaining consistency among replicas.

The goal of this experiment is to analyze the impact of different cost function
parameters on the client response time of the TPC-W benchmark and the results
are given in Figure 4.8. As seen in the figure, GlobeDB(0, 0, 1) performs the worst
in terms of WIRT, as it leads to a placement where the data are not replicated at
all. Furthermore, its throughput is saturated because all transactions are sent to a
single database server. The other two systems perform equally well and yield good
throughput. With respect to update traffic, GlobeDB(2, 2, 1) performs better than
GlobeDB(1, 1, 0) and reduces update traffic by a factor of 3.5. Note that, while
GlobeDB(1, 1, 0) and a fully replicated system have similar goals, the former
yields better WIRT as it is able to perform local updates.

4.8. RELATED WORK

As noted in previous chapters, edge computing systems are not suited for
data-intensive Web applications. For such applications, the database often turns
out to be the bottleneck. Commercial database caching systems such as DB-

116
GLOBEDB: AUTONOMIC REPLICATION

FOR WEB APPLICATIONS CHAP. 4

Cache [Bornhövd et al., 2004] and MTCache [Larson et al., 2004] cache the results
of selected queries and keep them consistent with the underlying database. Such
approaches offer performance gains provided the data accesses contain few unique
read and/or write requests. However, the success of these schemes depends on the
ability of the database administrator to identify the right set of queries to cache.
This requires a careful manual analysis of the data access patterns to be done pe-
riodically. Query caching systems such as [Amza et al., 2005], DBProxy [Amiri
et al., 2003a],and GlobeCBC perform well only if the query locality is high. As
we showed in our evaluations in the previous chapter, applications with poor query
locality can benefit from data replication and GlobeDB is suited for these kinds of
applications.

In [Gao et al., 2003], the authors propose an application-specific edge ser-
vice architecture, where the application itself is supposed to take care of its own
replication. In such a system, access to the shared data is abstracted by object
interfaces. This system aims to achieve scalability by using weaker consistency
models tailored to the application. However, this requires the application devel-
oper to be aware of an application’s consistency and distribution semantics and to
handle replication accordingly. This is in conflict with our primary design con-
straint of keeping the process of application development simple. Moreover, we
demonstrated that such an awareness need not be required, as distribution of data
can be handled automatically.

Traditional database replication systems such as Postgres-R [Kemme and Alonso,
2000] and MySQL cluster7 replicate the entire database across servers within
a cluster environment. Other database replication middleware systems, such as
C-JDBC [Cecchet, 2004], Ganymed [Plattner and Alonso, 2004], [Amza et al.,
2003], [Lin et al., 2005] and [Chen et al., 2006], perform similar replication at
the middleware level. The focus of these works is to improve the throughput of
the underlying backend database within a cluster environment, while the focus of
GlobeDB is to improve the client-perceived performance and reducing wide-area
update traffic. We note that these works can be combined with GlobeDB to scale
the database server at both the edge and the origin.

4.9. CONCLUSION

In this chapter, we presented GlobeDB, a system for hosting Web applica-
tions that performs efficient autonomic replication of application data. We pre-
sented the design and implementation of our system and its performance. The
goal of GlobeDB is to provide data-intensive Web applications the same advan-

7http://www.mysql.com/products/database/cluster/

SEC. 4.9 CONCLUSION 117

tages CDNs offered to static Web pages: low latency and reduced update traffic.
We demonstrated this with experimental evaluations of our prototype implemen-
tation running the TPC-W benchmark over an emulated wide-area network. In
our evaluations, we found that GlobeDB significantly improves access latencies
and reduces update traffic by a factor of 6 compared to a fully replicated system.
The major contribution of our work is to show that the process of application de-
velopment can be largely automated and in such a way that it yields substantial
improvement in performance.

GlobeDB faces a throughput bottleneck as all the complex queries and updates
need to processed by the origin server. Traditional database replication solutions
can help here by distributing the read workload across a cluster of replicas at
the origin server. However, traditional database replication algorithms used by
most databases still face a throughput bottleneck as they require to apply all up-
date, insertion and deletion (UDI) queries to every database replica. The system
throughput is therefore limited to the point where the quantity of UDI queries
alone is sufficient to overload one server, regardless of the number of machines
employed [Fitzpatrick, 2004]. This observation forms the motivation behind our
database replication technique, GlobeTHR, presented in the next chapter.

118
GLOBEDB: AUTONOMIC REPLICATION

FOR WEB APPLICATIONS CHAP. 4

CHAPTER 5

GlobeTP: Template-Based
Database Replication for
Scalable Web Applications

5.1. INTRODUCTION

In the previous chapters, we have looked at different database caching and
replication systems that are built for scalable hosting of Web applications. How-
ever, although these techniques can be very effective depending on the applica-
tion, their ultimate scalability bottleneck resides in the throughput of the origin
database where the authoritative version of the application state is stored. For
instance, in GlobeCBC, if the application’s query locality is poor then very few
database accesses are handled at the edge thereby making origin server the bot-
tleneck. Similarly, in GlobeDB, all complex queries are handled at the origin.
So, if a Web application has a large fraction of complex queries, the origin server
becomes the bottleneck.

Database replication techniques can of course help here, but the generic repli-
cation algorithms used by most databases do not scale linearly as they require to
apply all update, deletion and insertion (UDI) queries to every database replica.
The origin server’s throughput is therefore limited to the point where the quantity
of UDI queries alone is sufficient to overload one server, regardless of the number
of machines employed [Fitzpatrick, 2004]. The only solutions to this problem are
to increase the throughput of each individual server or to use partial replication so
that UDI queries can be executed at only a subset of all servers. However, partially
replicating a database is in turn difficult because queries can potentially span data
items which are stored at different servers. Current partially replicated solutions
rely on either active participation of the application programmer (e.g., [Gao et al.,

120
GLOBETP: TEMPLATE-BASED DATABASE REPLICATION

FOR SCALABLE WEB APPLICATIONS CHAP. 5

Cache

Edge server Edge server Edge server

Clients Clients Clients

Origin
database

Cache Cache Cache

Figure 5.1: Typical Edge-Server Architecture.

2003]) or one special server holding the full database to execute complex queries
(e.g., GlobeDB).

In this chapter, we present GlobeTP, a database replication system that exploits
the fact that the database queries issued by typical Web applications belong to a
relatively small number of query templates. Prior knowledge of these templates al-
lows one to select database table placements such that each query template can be
treated locally by at least one server. We demonstrate that careful table placements
based on the data span and the relative execution costs of different templates can
provide major scalability gains in terms of sustained throughput. We further show
that this technique can easily be used in combination with any existing template-
based database query caching system, thereby obtaining reduced access latency
and yet some more throughput scalability.

The rest of this chapter is organized as follows: Section 5.2 presents the related
work. Section 5.3 discusses our system model, and Section 5.4 details our table
placement algorithms. Section 5.5 presents performance results and Section 5.6
discusses a number of issues that arise from our approach. Finally, Section 5.7
concludes the chapter.

5.2. BACKGROUND AND RELATED WORK

A typical edge-server architecture followed by many advanced systems to host
Web applications is depicted in Figure 5.1. Client requests are issued to edge
servers located across the Internet. Each edge server has a full copy of the appli-
cation code but no database. Database queries are sent out to a local query cache
that can answer previously issued queries without incurring wide area latency.
Cache misses and UDI queries are issued to the origin server. Queries are then

SEC. 5.2 BACKGROUND AND RELATED WORK 121

potentially intercepted by another cache and, in the case of another miss, reach
the origin database server to be processed. This architecture has been defined in
many versions depending on the specifics of each system.

The first type of edge-server architecture is edge computing infrastructures,
where the application code is replicated at all edge servers and no cache is present
(see Chapter 2). As noted earlier, the centralization of the database limits the
scalability of the approach as the origin database remains the bottleneck.

To remove this bottleneck, various techniques have been proposed to cache
the results of database queries at the edge servers (see Chapters 2 and 3). As de-
scribed in the previous chapters, database caching techniques reduce the database
query latency as a number of queries can be answered locally. The total sys-
tem throughput is also increased because less queries are addressed to the origin
server. However, database caching systems have good hit ratio only if the database
queries exhibit high temporal locality and contain relatively few updates.

As described in Chapter 2, a common technique used to improve the perfor-
mance of a database is replication (e.g., Postgres-R [Kemme and Alonso, 2000],
C-JDBC [Cecchet, 2004], Ganymed [Plattner and Alonso, 2004], [Amza et al.,
2003], [Lin et al., 2005] and [Chen et al., 2006]). Database replication improves
throughput as the incoming read query workload is shared among multiple servers.
However, if the workload contains a significant fraction of UDI queries, then these
systems incurs a limited throughput as all UDI queries must be applied to all
replicas. As we show in our experiments, when the load of UDI queries alone is
sufficient to overload any one of the servers, then the system cannot improve its
throughput any more.

To reduce the overhead of processing UDI workload, some databases such as
Oracle use log shipping wherein only the primary executes the UDI query and
ships the update logs to the secondary replicas. Usually, the overhead in applying
the update logs is cheaper than executing the update query. However, again here
primary becomes the throughput and availability bottleneck as it has to handle all
the UDI workload.

In [Gao et al., 2003], the authors propose an edge computing infrastructure
where the application programmers can choose the data replication and distribu-
tion strategies that are best suited for the application. This approach can yield con-
siderable gains in performance and availability, provided that the selected strate-
gies are well suited for the application. However, coming up with the right strate-
gies requires significant insight of the application programmers in domains such
as fault-tolerance and weak data consistency. Contrary to this approach, we strive
for requiring minimum support from the application programmers, and try to keep
replication as transparent to the application as possible. Also the main focus of
GlobeTO is performance. We however return briefly to this issue in Section 5.6.2

122
GLOBETP: TEMPLATE-BASED DATABASE REPLICATION

FOR SCALABLE WEB APPLICATIONS CHAP. 5

to show how availability constraints can be taken into account in GlobeTP.
In the previous chapter, we showed how GlobeDB’s partial database repli-

cation can be used to improve the performance of Web applications. However,
GlobeDB’s architecture relies on record-level replication granularity. This design
choice offers excellent query latency, but does not improve on throughput as a
central server must maintain a copy of the full database (and therefore constitutes
the throughput bottleneck of the system). Note that replication for throughput and
replication for latency do not contradict each other. We show in Section 5.5.5
how GlobeTP can easily be coupled with GlobeCBC so that both throughput and
latency can be improved at the same time.

5.3. SYSTEM MODEL

5.3.1. Application model

Web applications are usually implemented by some business logic running in an
application server, which is invoked each time an HTTP request is received. This
business logic, in turn, may issue any number of SQL queries to the underlying
database. Queries can be used to read information from the database, but also to
update, delete or insert information. We refer to the latter as UDI queries. We
assume that the queries issued by a given Web application can be classified as
belonging to a relatively small number of query templates.

The explicit definition of query templates is at the basis of several database
caching systems as it allows an easy definition of cache invalidation rules (e.g.,
GlobeCBC, DBProxy). In contrast, GlobeTP uses the same notion of query tem-
plates but in a different manner: it exploits the list of templates to derive table
placements that guarantee that at least one server is able to execute each query
from the application.

5.3.2. System model

The aim of the work presented in this chapter is to increase the scalability of
the origin database depicted in Figure 5.1 in terms of the maximum throughput
it can sustain, while maintaining reasonable query execution latency. As shown
in Figure 5.2, in our system the origin database is implemented by an array of
database servers. We assume that all origin database servers are located within a
single data center. The replication granularity in our system is the database table,
so each database server hosts a replica of one or more table(s) from the application.

Since not all servers contain all the data, it is necessary to execute each query
at a server that has all the necessary data locally. This is ensured by the query

SEC. 5.3 SYSTEM MODEL 123

DB server
Tables 1,2 Table 3

DB serverDB server
Tables 2,3

Edge servers

Query router

Figure 5.2: Architecture of a partially replicated origin server.

router, which receives all incoming queries and routes each query to a server that
contains all the necessary tables to answer the query. To this end, the query router
knows the current placement of tables onto databases servers. It is also in charge
of maintaining the consistency of the replicated databases. It issues UDI queries
to all the servers that hold the tables to be modified; if all queries are successful
then the operation is committed, otherwise it is rolled back.

In our implementation, all read and write queries are first received by the
query router which in turn executes the query at appropriate replica. Since all
UDI queries are queued in a single location at the query router, the router serves a
serialization point and maintains consistency across replicas. Note that the current
implementation of our system does not support transactions. We believe that this
is not a major restriction, as most Web applications do not require transactional
database behavior. However, should transactions be required, adding support for
them in our system would be relatively straightforward. Since the query router
receives all incoming queries before they are executed, it can also act as the trans-
action monitor and implement any classical protocol such as two-phase commit.

In this chapter, we focus on the structure of a Web application’s origin database.
Consequently, we make no assumption about the origin of the queries addressed
to our system. In the simplest setup, queries can be issued directly by one or more
application server(s). However, our system can also be easily coupled with a dis-
tributed database query cache such as GlobeCBC. In this case, the same definition
of query templates can be used both by the caching system in order to maintain
consistency, and the origin database in order to optimize throughput.

5.3.3. Issues

GlobeTP’s design is motivated by the observation that the explicit definition of
query templates of a Web application allows to select the placement of partially
replicated data such that the total system throughput is optimized. We consider
that such knowledge allow us to avoid two pitfalls that generic replicated databases
necessarily face. First, application-unaware database systems do not know in ad-
vance the full set of query templates that will be issued to them. In particular, this

124
GLOBETP: TEMPLATE-BASED DATABASE REPLICATION

FOR SCALABLE WEB APPLICATIONS CHAP. 5

means that it is impossible for them to determine a priori which tables must be
kept together, and which ones can be separated. Generic database systems usually
address this issue by supporting only full replication, so that the data necessary
to answer any query are always available at the same place. However, this has
an important impact on the system’s throughput. Second, the middleware that
determines which replica should treat each read query does not take query char-
acteristics into account. However, the execution times of different queries issued
by a given Web application may vary by several orders of magnitude. In such a
context, simple round-robin algorithms may not lead to optimal load balancing as
shown in [Amza et al., 2003].

To be able to determine the placement of database tables on replica servers that
allows to sustain the highest throughput, we must solve three main issues. First,
not all possible placements of tables onto servers will allow to find at least one
server capable of executing each of the application’s query templates. We there-
fore need to analyze the set of query templates to determine a subset of placements
that are functionally correct. Second, we must take the respective query execution
times of different templates and their classification as read or UDI queries to de-
termine the best placement in terms of throughput. Besides requiring accurate
estimations of query execution times, finding the optimal placement incurs a huge
computational complexity, even for relatively small systems. We therefore need a
good heuristic. Finally, once the resulting system is instantiated we need to define
a load balancing algorithm that allows the query router to distribute read queries
efficiently across the servers that can treat them.

5.4. DATA PLACEMENT

The underlying idea behind our approach is to partially replicate the database
so that UDI workload can be split across different replicas. This process involves
the following three steps: (i) Cluster Identification: the process by which we
determine the set of database tables that needs to be replicated together, (ii) Load
Analysis: the process by which we determine the load received by each of the
cluster, and (iii) Cluster Placement: determining the placement of the identified
clusters across the set of database servers so that the load incurred by each of the
database replica is minimized.

5.4.1. Cluster identification

Our system relies on placement of individual tables on database servers to mini-
mize the number of servers that must process UDI queries. However, not all place-
ments are functionally correct as all tables accessed by a query template must be

SEC. 5.4 DATA PLACEMENT 125

present in the same server for the query to be executed. The goal of cluster iden-
tification is to determine sets of tables that must be placed together on at least
one server, such that there is at least one server where each query template can be
executed.

We must characterize each query template with two attributes: (i) whether it
is a read or a UDI query; (ii) the set of tables (also called table cluster) that it
accesses. For instance, in the aforementioned query templates, template QT1 will
be associated to a single-table cluster {book}, while QT2 will be associated to
{book,author}. Clusters can overlap, as a table can belong to multiple clusters.

The problem of finding functionally correct table placements can then be re-
duced to a cluster placement problem; any table cluster placement will be func-
tionally correct.

5.4.2. Load analysis

Even though any cluster placement will lead to a functionally correct system, not
all placements will lead to the same system throughput. To maximize throughput,
it is crucial that no database server is overloaded. In other words, we need to
place the table clusters such that we minimize the load of the most loaded server.
This process is done in two steps. First, we evaluate the load imposed on each
of the identified clusters for a representative workload. Second, we identify the
placement that will create the best repartition of load across the servers.

Estimation of load on table clusters

The load that each table cluster will impose on the server(s) where it is hosted
depends on three factors: (i) the classification as belonging to a read or UDI
template: read queries can be executed on one server, while UDI queries must
be applied on all servers holding the corresponding cluster; (ii) the occurrence
frequency of the template in the expected workload; and (iii) the computational
complexity of executing the query on a given database server. Classifying queries
as read or UDI can be done by simple query analysis. Similarly, the occurrence
frequency of templates can be derived from observation of an existing workload.
However, estimating the load that each query imposes on the database where it is
run requires careful attention.

Mature database systems such as MySQL and PostgreSQL make their own
estimations of the internal execution of different queries as part of their query op-
timization procedure. These execution time estimations are made available, for ex-
ample using PostgreSQL’s EXPLAIN <query> and EXPLAIN ANALYZE <query>
commands. However, these estimations take only the actual execution time into

126
GLOBETP: TEMPLATE-BASED DATABASE REPLICATION

FOR SCALABLE WEB APPLICATIONS CHAP. 5

E
st

im
at

ed
 e

xe
cu

tio
n

co
st

 (
se

c)

 100

 10

 1

 0.1

0.01

1e−4

1e−5

1e−6

1e−3

1e−6 1e−51e−4 0.01 0.1 1 10 100
Real execution cost (sec)

1e−3

(a) EXPLAIN.

E
st

im
at

ed
 e

xe
cu

tio
n

co
st

 (
se

c)

10

1

0.1

0.01

0.001

1e−4

1e−5
1e−5 1e−4 0.001 0.01 0.1 1 10

Real execution cost (sec)

(b) EXPLAIN ANA-
LYZE.

E
st

im
at

ed
 e

xe
cu

tio
n

co
st

 (
se

c)

10

1

0.1

0.01

0.001
0.001

Real execution cost (sec)
0.01 0.1 1 10

(c) Measurement under
low load.

Figure 5.3: Accuracy of different methods for query cost estimation.

account, and ignore other factors such as the connection overhead. Another possi-
ble method consists of simply measuring the response time of each query template
in a live system. The advantage of this method is that it measures the end-to-end
response time of the database tier and includes connection overhead. Note that
query execution times should be measured under low load to avoid polluting mea-
surements with load-related overheads such as the queuing latency [Urgaonkar
et al., 2005].

Figure 5.3 shows the accuracy of the three cost estimation techniques applied
to the query templates from the RUBBoS benchmark. In each graph we estimated
the cost of each query template and compared it with the actual execution time
under high load. A perfect estimator would produce points located on the y = x
diagonal line. Clearly, the estimations produced by the database query optimizers
are not as accurate as actual measurements made under low loads. Hence, in
GlobeTP, we use the last method.

Estimation of load on database servers

In a replicated database, read queries are executed at one database node, whereas
UDI queries are executed at all nodes that hold the data modified by the UDI query.

SEC. 5.4 DATA PLACEMENT 127

Distribute clusters uniformly across server nodes;1

S = set of server nodes ;2

while S �= /0 do3

/*We want to minimize the maximum server load*/
while (max(estimated server load) is decreased) do4

N = Most loaded server in S ;5

foreach Cluster C placed in N do6

Try to reduce N’s load by migrating or replicating C to other7

servers;
end

end
S = S - (the most loaded server in S);8

end

Algorithm 2: Pseudocode of the cluster placement algorithm.

To determine the load that each database server incurs for a given table placement
and a given query workload, we must distinguish the two types of queries.

Each UDI query in the studied workload will result in applying the associated
execution cost to each of the database servers holding the corresponding table(s).
On the other hand, each read query will create execution cost on only one server;
we count that, on average, each database server holding the corresponding cluster
will incur the execution cost of the query, divided by the number of replicas.

This analysis allows us to roughly compute the execution cost that each database
server will incur for a given table placement and a given query workload. To max-
imize the system throughput, it is essential that no database server is overloaded.
We therefore aim at balancing the load such that the cost of the most loaded server
is minimized.

5.4.3. Cluster placement

Finding the optimal table placement can be realized by iterating through all valid
table placements, evaluating the respective cost of each database server under each
placement, and selecting the best one. However, the computational complexity of
this exhaustive search is O(2N∗T /N!), where T is the number of table clusters to be
placed and N is the number of nodes to place them on. This very high complexity
makes it unpractical even for relatively small system sizes. We must therefore find
a heuristic instead.

As shown in Algorithm 2, our heuristic starts with a very roughly balanced
placement, and iteratively tries to improve it by applying simple transformations
in table placement.

128
GLOBETP: TEMPLATE-BASED DATABASE REPLICATION

FOR SCALABLE WEB APPLICATIONS CHAP. 5

The first step (step 1) is to place clusters uniformly onto servers to create an
initial configuration. The heuristic then iteratively attempts to improve the quality
of the placement (steps 3-8). Since the goal is to find the placement where the
maximum server load is minimized, we identify the most loaded server (step 5)
and try to offload some of its clusters to other servers (steps 6 and 7). Two tech-
niques can be used here (step 7): either migrating one of the clusters to another
server (thereby offloading the server of the whole associated load), or replicating
one of the clusters to another server (thereby offloading the server of part of the
read query load). The algorithm evaluates all possible operations of this type, and
checks if one of them improves the quality of the placement. This operation is re-
peated until no more improvement can be gained (step 4). The most loaded server,
which cannot be offloaded any more without overloading another one is consid-
ered to be in its ’optimal’ state and is removed from the working set of servers
(step 8). The algorithm then tries to optimize the load of the second most loaded
server, and so on until all servers have reached their ’optimal’ state.

Even though there is no guarantee that this heuristic will find the optimal
placement, in our experience it always identifies a reasonably good placement
within seconds (whereas the full search algorithm would take days).

5.4.4. Query routing

Query routing is an important issue that affects the performance of replicated
databases. Simple round-robin schemes are efficient only when all the incoming
queries have similar cost. However, when applications tend to have queries with
different execution costs, round-robin scheduling can lead to load skews across
database servers, resulting in poor access latencies.

Query routing gains a higher significance in GlobeTP. In a partially replicated
database system such as ours, queries can no longer be sent to arbitrary database
nodes. The query router used in GlobeTP thus differs from the traditional query
routers used in fully replicated databases in the following aspects. First, read
queries can be scheduled only among a subset of database servers instead of all
servers. Second, UDI queries must executed at all database servers that store the
tables modified by the incoming UDI query.

The process of selecting a database server to route an incoming read query
has considerable impact on the overall performance of the system. This is usually
determined by the routing policy adopted by the replication system. In our work,
we experimented with the following policies.

SEC. 5.5 PERFORMANCE EVALUATION 129

RR-QID: Round-robin per query ID

RR-QID is an extension to the round-robin policy that is suitable for partially
replicated databases. In this policy, the query router maintains a separate queue
for each query template identified by its query identifier, QID. Each queue is asso-
ciated with the set of database servers that can serve the incoming queries of type
QID. Subsequently, each incoming read query is scheduled among the candidate
servers (associated with its queue) in a round-robin fashion.

Cost-based routing

The underlying idea behind the cost-based routing policy is to utilize the execution
cost estimations to balance the load among database servers. To this end, upon
arrival of an incoming query, the query router first estimates the current load of
each database server. Subsequently, it schedules the incoming query to the least
loaded database server (that also has the required set of tables).

To this end, the query router maintains a list of queries that have been dis-
patched to each database server and still awaiting response. This list contains the
list of queries currently under (or awaiting) execution at a database server. Subse-
quently, the load of a database server is approximated as the sum of the estimated
cost of these queries. Finally, the server with least cost is scheduled to execute the
next incoming query.

We show the respective performance of these two routing policies in the next
section.

5.5. PERFORMANCE EVALUATION

In this section, we compare the performance of GlobeTP with full database
replication for two well-known Web application benchmarks: RUBBoS and TPC-
W. We selected these two applications for their different data access characteris-
tics. This allows us to study the behavior of our systems for different data access
patterns. In addition to these experiments, we also evaluate the benefit of adding
a database query caching layer to GlobeTP.

5.5.1. Experimental setup

The TPC-W application uses a database with seven tables, which are queried by
23 read and 7 UDI templates. In our experiments the database is initially filled
with 288,000 customer records. Other tables are scaled according to the TPC-W
requirements. TPC-W defines three standard workload mixes that exercise differ-

130
GLOBETP: TEMPLATE-BASED DATABASE REPLICATION

FOR SCALABLE WEB APPLICATIONS CHAP. 5

ent parts of the system: ‘browsing’ generates 5% update interactions; ‘shopping’
generates 20% update interactions; and ‘ordering’ generates 50% update interac-
tions. We use the ‘shopping’ mix, which results in a database workload containing
5.6% of UDI queries1.

The RUBBoS application consists of a set of PHP scripts and a database con-
taining five tables regarding users, stories, comments, submissions and moderator
activities. The database is initially filled with 500,000 users, out of which 10%
have moderator privileges, and 200,000 comments. The size of the database is ap-
proximately 1.5 GB. The application defines 36 read and 8 UDI query templates.
In our experiments, we used the default user workload which generates 0.76% of
UDI queries.

The client workload for both applications is generated by Emulated Browsers
(EBs). The run-time behavior of an EB models a single active client session.
Starting from the home page of the site, each EB uses a Customer Behavior Graph
Model (a Markov chain with Web pages acting as nodes and navigation action
probabilities as edges) to navigate among Web pages and perform a sequence of
Web interactions. The behavior model also incorporates a think time parameter
that controls the amount of time an EB waits between receiving a response and
issuing the next request, thereby modeling a human user more accurately. We set
the average think time to 6 seconds.

To generate flexible yet reproducible workloads, we run each benchmark un-
der relatively low load (i.e., with 30 to 100 EBs) multiple times and collect the
corresponding database query logs. Query logs from different runs can then be
merged to generate higher load scenarios. For instance, to evaluate the perfor-
mance of our system for 600 EBs, we merge the query logs from six different runs
with 100 EBs, and stream the result to the query router. This allows us to study
the performance of the database tier alone independently of other tiers.

The query router is implemented as a stand-alone server written in Java. It
maintains a pool of connections to each database server and schedules each in-
coming query based on the adopted routing policy. Database servers run Post-
greSQL version 8.1.3. Both full and partial database replication are performed at
the query router level as described in Section 5.3.2.

All our experiments are performed on a Linux-based server cluster. Each
server is configured with dual-processor Pentium III 900 MHz CPU, 2 GB of
memory and a 120 GB IDE hard disk. These servers are connected to each other
with a gigabit LAN, so the network latency between the servers is negligible.

1Note that one must distinguish the update interactions from the UDI queries. Update interac-
tions are user-generated HTTP requests that lead to at least one UDI query, plus any number of
read queries. Since GlobeTP only operates at the database query level, the proportion of update
interactions is irrelevant here.

SEC. 5.5 PERFORMANCE EVALUATION 131
R

ed
uc

tio
n

ra
tio

 o
f U

D
I q

ue
ry

 n
um

be
r 3

 2.5

 2

 1.5

 1

 0.5

 0
 0 5 10 15 20 25

Number of servers

RuBBoS
TPC−W

(a) Reduction of the number of
UDI queries.

R
ed

uc
tio

n
ra

tio
 o

f t
ot

al
 e

xe
cu

tio
n

co
st 2

 1.8

 1.6

 1.4

 1.2

 1

 0.8
 0 10 20 30 40 50

Number of servers

TPC−W
RuBBoS

(b) Reduction of estimated execu-
tion cost per server.

R
ed

uc
tio

n
ra

tio
 o

f t
ot

al
 e

xe
cu

tio
n

co
st 1.2

 1.15

 1.1

 1.05

 1

 0.95
 1 2 3 4 5 6 7 8

RuBBoS
TPC−W

Number of servers

(c) Reduction of estimated execu-
tion cost per server (zoom).

Figure 5.4: Potential Reduction of UDI queries.

5.5.2. Potential reductions of UDI queries

One important goal of GlobeTP is to reduce the replication degree of individual
database tables to reduce the number of UDI queries to be processed. However,
the extent to which this is feasible greatly depends on the query templates issued
by the application and the workload distribution.

Figure 5.4(a) shows to which extent table-level partial replication allows to
reduce the number of UDI queries to be processed, expressed as the ratio of UDI
queries to execute between full and partial replication. The higher the ratio, the
greater the gain. Obviously, with just one server to host the database, partial and
full replication are identical so the ratio is equal to 1. As the number of servers
increases, partial replication allows to reduce the number of UDI queries by a ratio
close to 3 for both applications.

To evaluate more accurately the potential load reduction that we can expect
from partial replication, we should take into account the respective estimated costs

132
GLOBETP: TEMPLATE-BASED DATABASE REPLICATION

FOR SCALABLE WEB APPLICATIONS CHAP. 5

of different query templates, as well as the read queries from the workload. Fig-
ure 5.4(b) shows the reduction ratio of estimated costs imposed on each server, for
different numbers of servers. As we can see, the reduction factor is much lower
than when counting UDI queries alone. The reason is that both workloads are
dominated by read queries, which are equally spread in full and partial replica-
tion.

The experiments described in the remaining of this chapter are based on con-
figurations using up to 8 database servers. Figure 5.4(c) shows the respective
potential of partial replication for both benchmarks under these conditions. TPC-
W shows a relatively good potential, up to 15% reduction in workload per server.
On the other hand, RUBBoS has a lower potential. This is mainly due to the fact
that RUBBoS generates very few UDI queries; reducing their number even further
by ways of partial replication can therefore have only a limited impact.

Note that other workloads may show somewhat different behavior. For ex-
ample, RUBBoS defines a workload where search queries are disabled. Since
searches are implemented as very expensive read queries, removing them from
the workload mechanically improves the cost ratio of UDI queries and thereby the
gains to be expected from GlobeTP. Conversely, we cannot exclude that other Web
applications may dictate to keep all database tables together, making our form of
partial replication equivalent to full replication. For these, GlobeTP will not pro-
vide any improvement unless the application itself is updated (see Section 5.6.1).

Here, we focus on standard benchmarks which offer real yet limited potential
for use in our system. However, as we will see in the following sections, even the
relatively modest reductions in estimated costs shown here allow for significant
gains in execution latency and in total system throughput.

5.5.3. Partial replication and template-aware query routing

To illustrate the benefits of GlobeTP, we measured the query execution latencies
using different configurations. For each of the two benchmarks, we compared
the performance of full replication, GlobeTP using RR-QID query routing, and
GlobeTP using cost-based query routing. In all cases we used 4 database servers
and one query router. We selected a load of 900 EBs for TPC-W and 330 EBs for
RUBBoS, so that the tested configurations would be significantly loaded.

Figure 5.5 shows the cumulative latency distributions from both sets of exper-
iments. As one can see, in both cases GlobeTP processes queries with a much
lower latency than full replication. For example, in RUBBOS GlobeTP processes
40% more queries than full replication within 10 ms. In TPC-W, GlobeTP pro-
cesses 20% more queries within 10 ms than full replication.

In TPC-W, the RR-QID query routing policy delivers better performance than
its cost-based counterpart. This can be explained by the fact that in TPC-W the

SEC. 5.5 PERFORMANCE EVALUATION 133
C

um
ul

at
iv

e
di

st
rib

ut
io

n
(%

)

 100

 80

 60

 40

 20

 0 0.001 0.01

GlobeTP−cost−based

Full Replication

GlobeTP−RRID

Query execution latency (s)
 0.1 1 10

(a) TPC-W, 900 EBs.
C

um
ul

at
iv

e
di

st
rib

ut
io

n
(%

)

 100

 80

 60

 40

 20

 0
 0.001 1

Query execution latency (s)
 10 0.1 0.01

GlobeTP−cost−based

Full Replication

GlobeTP−RRID

(b) RUBBoS, 330 EBs.

Figure 5.5: Query latency distributions using 4 servers.

costs of different query templates are relatively similar. The unavoidable inaccu-
racy of our cost estimations therefore generates unbalanced load across servers,
which leads to sub-optimal performance. On the other hand, RR-QID is very
effective at balancing the load when queries have similar cost.

In RUBBoS, GlobeTP combined with cost-based routing outperforms both
other configurations. In this case, the costs of different queries vary by three
orders of magnitude (as shown in Figure 5.3(c)). In this case, cost-based routing
works well because even relatively coarse-grained estimations of the cost of each
query helps avoiding issuing simple queries to already overloaded servers.

In the following experiments we restrict ourselves to the most effective routing
policy for each application. We therefore use RR-QID for measurements of TPC-
W, and cost-based routing for RUBBoS.

One should note that GlobeTP has greater effect on the latency in the case
of RUBBoS than for TPC-W. This may seem contradictory with results from the
previous section. However, the difference in latency characteristics is due to the
difference in query execution costs. Moreover, as we will see in the next section,
the throughput improvements that GlobeTP provides are significantly greater for
TPC-W than RUBBoS.

5.5.4. Achievable throughput

To evaluate the scalability of our approach, we measured the maximum sustain-
able throughput of different approaches when using identical hardware resources.
We first set a performance target in terms of query execution latency: in our exper-
iments we aim at processing at least 90% of database queries within 100 ms. Note
that this performance target is quite challenging, as several query templates have
execution times greater than 100 ms, even under low loads (see Figure 5.3(c)).

We then exercise system configurations with full and partial replication, and

134
GLOBETP: TEMPLATE-BASED DATABASE REPLICATION

FOR SCALABLE WEB APPLICATIONS CHAP. 5
N

um
be

r
of

 e
m

ul
at

ed
 b

ro
w

se
rs

 500

 400

 300

 200

 100

 0
 2 3 4 5 6 7 8 1

Number of servers

GlobeTP

Full replication

(a) TPC-W.
N

um
be

r
of

 e
m

ul
at

ed
 b

ro
w

se
rs

 0

 50

 100

 150

 200

 250

 300

 350

 1 2 3 4 5 6 7 8
Number of servers

Full replication

GlobeTP

(b) RUBBoS.

Figure 5.6: Maximum achievable throughputs with 90% of queries pro-
cessed within 100ms.

increase the workload by steps of 50 EBs for TPC-W and 30 EBs for RUBBoS. For
each configuration we record the maximum number of EBs that each configuration
can serve while respecting the latency target. The results are shown in Figure 5.6.

In TPC-W, one server alone can sustain up to 50 EBs. As we increase the
number of database servers, partial replication performs significantly better than
full replication. In particular, the maximum throughput of the fully replicated
system does not improve with more than four servers. This corresponds to the
point when the treatment of UDI queries alone saturates each server. This can
be explained by the fact that the execution time of a UDI query is typically an
order of magnitude higher than that of a simple read query. On the other hand,
GlobeTP can sustain up to 150% higher throughput while using identical hardware
resources. Unlike full replication, it is capable of exploiting 8 servers to sustain
higher throughput than when using only 4. This is due to the fact that each server
has less UDI queries to process, and thereby experiences lower load and better
execution latency.

In RUBBoS, GlobeTP again performs better than full replication, yet with a
lower difference. With 4 and 8 servers, GlobeTP sustains 120 more EBs than
full replication, which accounts for 57% of throughput improvement. Given that
RUBBoS generates very few UDI queries, little improvement can be gained by
further reducing their number with partial replication. In this case, the major
reason for throughput improvement is the cost-aware query routing policy which
takes the relative costs of different queries into account to better balance the load
between servers.

SEC. 5.6 DISCUSSION 135

Table 5.1: Maximum throughput of different configurations.
TPC-W RUBBoS

Full replication (4 servers) 200 EBs 150 EBs
GlobeTP (4 servers) 450 EBs 210 EBs
GlobeTP (4 servers) + 1 cache 600 EBs 330 EBs

5.5.5. Effect of query caching

As noted in Section 5.3.2, GlobeTP can easily be coupled with a database query
caching system as most query caching systems rely on the same assumption as
GlobeTP regarding the explicit definition of query templates. However, GlobeTP
focuses on improving the throughput of the application’s origin database, while
query caching systems aim at reducing the individual query execution latencies.
We therefore consider that both types of system complement each other very well.
As a side effect, a query caching system can also improve the system throughput,
as it prevents a number of read queries from being issued to the origin database.

In our experiments, we use our own in-house query caching solution, GlobeCBC.
In our experiments, we limited the cache size to approximately 5% of the size of
the database itself.

Table 5.1 shows the effect of adding a single cache server in front of the query
router when using four database servers. In TPC-W, the cache had a hit rate of
18%. This relatively modest hit rate is due to the fact that the standard TPC-W
workload has very low query locality compared to real e-commerce sites [Arlitt
et al., 2001]. However, even in this case the system throughput is increased by
33%, from 450 to 600 EBs.

Unlike TPC-W, the RUBBoS workload has quite high database query locality.
In this case the query cache delivers 48% hit ratio, which effectively increases
the throughput by 57%, from 210 to 330 EBs. This result is quite remarkable
considering that search queries, which are by far the most expensive ones in the
workload, are based on random strings and are therefore always passed to the
origin database for execution.

5.6. DISCUSSION

5.6.1. Potential of query rewriting

The above results demonstrate that relatively simple techniques allow to signif-
icantly improve the throughput of standard benchmarks, without requiring any
modification to applications themselves. However, we believe that increased through-
put can also be gained from simple changes of the application implementation.

136
GLOBETP: TEMPLATE-BASED DATABASE REPLICATION

FOR SCALABLE WEB APPLICATIONS CHAP. 5

The main limitation of the approach of table-granularity partial replication
comes from database queries that span multiple tables. Such queries oblige the ta-
ble placement algorithm to place all relevant tables together on at least one server,
which in turn increases the replication degree and reduces the maximum through-
put. Of course, queries spanning multiple tables are occasionally indispensable
to the application. But we have observed from the TPC-W and RUBBoS bench-
marks that many such queries can easily be rewritten as a sequence of simpler
queries spanning one table each.

One simple example is the following query from TPC-W, which aims at ob-
taining all contact information about a given customer:

SELECT c id, c passwd, c name, c addr id, co id, [. . .] FROM tpcw customer
JOIN tpcw address on addr id=c addr id JOIN tpcw country on addr co id=co id

WHERE c uname=?

This query spans three tables. However the tables tpcw address and tpcw country
are used here only to convert ZIP and country codes into their corresponding full-
text descriptions. It is then trivial to rewrite the application to first issue a query
to table tpcw customer alone, then two more to convert the address and country
codes separately.

We found such unnecessarily complex queries to be very frequent in the ap-
plications that we studied. Rewriting them into multiple simpler queries can only
reduce the constraints put on the table placements, and therefore result in higher
throughput.

5.6.2. Fault-tolerance

Although the main focus of GlobeTP is not replication for availability, one cannot
ignore this issue. With increased number of server machines involved in a given
application, the probability that one of them fails grows quickly. However, the
most general form of fault-tolerance for this kind of system cannot be realized, as
providing both consistency and availability in the presence of network partitions
is impossible [Brewer, 2000; Gilbert and Lynch, 2002]. On the other hand, if we
ignore the possibility of network partitions and restrict ourselves to server failures,
then the problem has an elegant solution.

To guarantee that the partially replicated database remains able to serve all the
expected query templates, it is essential that each query template be available at
one or more servers. Therefore, to tolerate the failure of at most N servers one
only has to make sure that each query template is placed on at least N +1 servers.
This requires database replication algorithms suitable for fault-tolerance, which is
a well-understood problem.

SEC. 5.7 CONCLUSION 137

Failure of query router can result in losing queries that are awaiting execution
and queries which have been successfully executed but whose response have not
been sent back to the clients yet. Replication and recovery of the query router is
an open issue and requires further study.

Starting from a configuration designed for throughput only, planning for fault-
tolerance can be done in two different ways. First, one may keep the number of
servers unchanged but artificially increase the replication degree of table clusters
across the existing machines. However, this will likely degrade system through-
put as more UDI queries must be processed per server. Alternatively, one may
provision for additional servers, and adjust table placement to keep the worst-case
throughput constant. As long as not too many servers fail, this configuration will
exceed its throughput requirements, which may have the desirable side-effect of
protecting the Web site to a certain extent against unexpected variations in load.

5.7. CONCLUSION

In this chapter we have presented GlobeTP, a database replication system that
employs partial replication to optimize the system throughput. GlobeTP relies
on the fact that the query workload of Web applications is composed of a re-
stricted number of query templates, which allows us to determine efficient data
placements. In addition, the identification of query templates allows for efficient
query routing algorithms that take the respective query execution costs to better
balance the query load. In our experiments, these two techniques allow to increase
the system throughput by 57% to 150% compared to full replication, while using
identical hardware configuration.

A natural extension of GlobeTP is to combine it with a database query cach-
ing system such as GlobeCBC, as both systems rely on the same definition of
query templates. These systems complement each other very well: query caching
improves the execution latency in a wide-area setting by filtering out many read
queries, while GlobeTP shows its best potential for improving throughput under
workloads that contain many UDI queries. In our experiments, the addition of a
single query cache allows to improve the achievable throughput by approximately
30% to 60%.

138
GLOBETP: TEMPLATE-BASED DATABASE REPLICATION

FOR SCALABLE WEB APPLICATIONS CHAP. 5

CHAPTER 6

SLA-driven Resource
Provisioning of Multi-tier
Internet Applications

6.1. INTRODUCTION

Modern Web systems have evolved from simple monolithic systems to com-
plex multi-tiered architectures. Web sites such as Amazon.com, yahoo.com and
ebay.com often use such systems to generate content customized for each user.
For instance, the Web page generated in response to each client request to Ama-
zon.com is not generated by a single application but by hundreds of smaller Web
applications operating simultaneously [Vogels, 2006]. Such elementary software
applications, designed to be composed with each other are commonly referred to
as services.

As shown in Figure 6.1, a service generates a response to each request by
executing some application-specific business logic, which in turn typically issues
queries to its data store and/or requests to other services. A service is exposed
through well-defined client interfaces accessible over the network. Examples of
services include those for processing orders and maintaining shopping carts. In
such environments, providing low response latency is often considered a crucial
business requirement and forms an integral component of customer service-level
agreements (SLAs) [Shneiderman, 1984; Vogels, 2006].

In the previous chapters, we presented different database caching and replica-
tion techniques that aim to improve the application performance by alleviating the
database bottleneck. Similarly, as we discussed in Chapter 2, various techniques
have been proposed in the literature that replicate the database, application or
Web servers to ensure that a service can meet its target SLA [Amiri et al., 2003a;

140
SLA-DRIVEN RESOURCE PROVISIONING OF

MULTI-TIER INTERNET APPLICATIONS CHAP. 6

Logic
Business

Data

External
service requests

Responses

Requests

Figure 6.1: Simplified Application Model of an Internet Service

Bornhövd et al., 2004; Chen et al., 2006; Doyle et al., 2003; Menasce, 2003; Plat-
tner and Alonso, 2004; Rabinovich et al., 2003; Seltzsam et al., 2006]. Each of
these techniques aims to optimize the performance of a single tier of a service, and
can be of great value for achieving scalability. However, from the viewpoint of an
administrator, the real issue is not optimizing the performance of a single tier, but
hosting a given service such that its end-to-end performance meets the SLA.

In the most general case, effective hosting of an Internet service involves repli-
cating its code to a number of application servers and its data to an array of data
store machines. Furthermore, different caching layers such as service response
caches and database caches can be deployed to improve performance. As we
demonstrate in this chapter, the widely adopted technique of scaling each tier of
a service individually can result in gross overprovisioning and even poor perfor-
mance. Instead, effective hosting of a service requires careful deployment of sev-
eral techniques at different tiers. The underlying challenge then is, given a service
and its workload, to find the best resource configuration for hosting the service in
order to meet its SLA. We define the best resource configuration as the configura-
tion that meets the SLA with the smallest quantity of resources.

Efficient provisioning of a multi-tier service poses three important challenges.
First, choosing the right set of techniques to host a service in a scalable manner
is not trivial as different techniques are best suited for different kinds of services.
The best resource configuration for a service is therefore dependent on its char-
acteristics and its workload. For example, if requests to the service exhibit high
temporal locality and generate very few data updates, caching service responses
might be beneficial. On the other hand, if the bottleneck is the retrieval of the
underlying data, then database caching or replication might be preferable depend-
ing on the temporal locality of database queries. Sometimes, a combination of
these techniques might be required to meet a certain SLA. Second, choosing the
best resource configuration as the workload changes is challenging. This is be-
cause changes in the request workload have different impact on the performance
of different tiers. For example, changes in the temporal locality of the requests
will affect the performance of caching tiers but not that of the business logic tier.
Third, the benefits of adding a resource to different tiers vary, and are highly de-

SEC. 6.1 INTRODUCTION 141

pendent on the nature of the service. For example, a computationally intensive tier
such as a business logic tier can benefit from a linear decrease in queueing latency
when adding a server. On the other hand, caching tiers follow a law of diminishing
returns, and the benefit of increasing the number of cache servers decreases after
a certain threshold.

The motivation behind the work presented in this chapter is based on the fol-
lowing observation: since the SLA of a multi-tier service is based on its end-to-
end performance, it is not obvious that one can simply optimize the performance
of each tier independently. As we will show, due to the complex interaction be-
tween tiers, such an approach does not allow to explain the overall performance
of the service effectively, and moreover can lead to poorly performing or over-
provisioned resource configurations. Instead, we claim that effective hosting of
services requires a good understanding of the dependency between different tiers,
and requires to make provisioning decisions based on an end-to-end performance
model.

In this chapter, we present a novel approach to resource provisioning of multi-
tier Internet services. Provisioning decisions are made based on an analytical
model of the end-to-end response time of a multi-tiered service. A key observa-
tion behind our solution is that resource provisioning algorithms based on queue-
ing models alone are not sufficiently effective as they do not capture the temporal
properties of the workload such as the cache locality and the update characteris-
tics. The proposed approach addresses this limitation by employing a combination
of queueing models and runtime cache simulations. We have implemented a pro-
totype system based on our approach for provisioning database-driven Web ser-
vices. The implementation continuously gathers the required performance metrics
(such as execution times at each tier, the incoming request rate, and cache hit ratio)
using sensor software plugged into the different tiers. These data are passed to the
resource provisioning system to decide on the right resource configuration for a
given service to ensure that it meets its SLA. We demonstrate using several indus-
try standard benchmarks that our approach makes the correct choices for different
types of services and workloads. In many cases, our approach reaches the required
performance-related SLA with less servers than traditional resource provisioning
techniques. Finally, we discuss the problem of availability-based resource provi-
sioning and discuss how we can extend our approach to meet availability related
SLAs.

The rest of the chapter is structured as follows. Section 6.2 presents the back-
ground and overview of techniques used in hosting multi-tiered Internet services.
Sections 6.3 and 6.4 present our analytical model and resource provisioning ap-
proach respectively. Section 6.5 presents experiments that demonstrate the ef-
fectiveness of our approach. Section 6.6 discusses the issues that arise from our

142
SLA-DRIVEN RESOURCE PROVISIONING OF

MULTI-TIER INTERNET APPLICATIONS CHAP. 6

Load
Balancer

App
Server

App
Server

App
Server

Cache

Cache

Cache

Cache

Data

Data
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

Cache

Cache

Cache

External
service
requests

Database

Client-side service
caches

Data
Tier

service cache
Server-side

Business Logic
Tier Caches

Distributor
Request

Tier 0 Tier 1 Tier 2 Tier 3

Tier 2 a

b

Figure 6.2: Generalized hosting architecture of a multi-tier service.

approach and the mechanisms to address them. Section 6.7 presents the related
work and Section 6.8 concludes the chapter.

6.2. BACKGROUND

6.2.1. Infrastructure model

Typically, large-scale e-commerce enterprises deploy their software system across
multiple data centers. A data center is built out of cluster(s) of servers connected
to each other and to the Internet through a high-speed network. In this chapter, we
assume that the resources allocated to a service are located within a single data
center. Furthermore, we assume that each data center has a pre-allocated rescue
pool of resources.

We assume that each service is assigned a performance and availability goal
(usually referred to as an SLA). For sake of simplicity, we will initially restrict
ourselves to performance-related SLAs. We define the SLA of a service such
that its average response time should be within a [LowRespTime,HighRespTime]
interval. Availability related SLAs are discussed in Section 6.6.

We treat a single PC machine as the smallest unit of resource allocation. This
approach is primarily motivated by the infrastructure model used by organizations
such as Google and Amazon. Such organizations build their infrastructure out
of inexpensive PCs instead of high-end multiprocessor server machines [Barroso
et al., 2003; Vogels, 2006].1 When a service hosted in a data center does not meet
its SLA, one or more machines from the rescue pool are added to the service to

1For more description of the infrastructure model of Google, also see: http://www.nytimes.com/
2006/06/14/technology/14search.html

SEC. 6.2 BACKGROUND 143

ensure that it meets its desired performance. However, a service should not use
more resources from the pool than necessary as these resources are shared with
other services hosted in the data center.

6.2.2. Generalized service hosting architecture

As shown in Figure 6.1, a service conceptually consists of business logic that
generates responses to incoming requests. To do so, it may issue (zero or more)
queries to a service-specific database and (zero or more) requests to other services.
Usually, the business logic of a Web service is hosted by a Web application server
(e.g., IBM’s Websphere2 or JBoSS3). The data tier can use a relational DBMS
(e.g., IBM’s DB24, or MySQL5) or an object store such as [Ghemawat et al.,
2003; Kubiatowicz et al., 2000]. In our work, we focus on relational DBMS-
driven services. Moreover, we assume that services do not share their database
but interact with each other only through their service interfaces.

The objective of our work is to determine the resource configuration for a
service such that it can meet its SLA with the minimum number of resources. To
do so, we need to identify the relevant tiers and their interrelationships. Instead
of contrasting different caching and replication techniques, we claim that they
are in fact complementary as they aim at improving the performance of different
tiers. We define a generalized service hosting architecture encompassing several
techniques that can be applied to improve the performance of a given service in
addition to the functional tiers of business logic and data (see Figure 6.2). Any
resource configuration where each tier of a service is provisioned with one or more
servers (zero or more for non-functional tiers) will lead to a workable system.
The problem of choosing the best resource configuration can now be translated
to choosing one such workable resource configuration that will ensure that the
service meets its SLA with minimum number of resources. We briefly explain the
techniques used in our generalized service hosting architecture.

In Server-side service-response caching (done at tier 0), the system stores the
response to each service request (identified by the requested method name and
parameters), so that future identical requests are not forwarded to the business
logic tier. The cached responses are often formed as XML messages if the service
is implemented as a Web service. This technique can improve the throughput of
the service as a cache hit in this tier reduces the load on the business logic tier (and
other subsequent tiers). However, this technique is beneficial only if the service
requests exhibit high temporal locality. Note that this is functionally similar to

2http://www.ibm.com/software/websphere
3http://www.jboss.org
4http://www.ibm.com/db2
5http://www.mysql.com

144
SLA-DRIVEN RESOURCE PROVISIONING OF

MULTI-TIER INTERNET APPLICATIONS CHAP. 6

HTML fragment caching done for Web applications that deliver HTML pages.
We discuss the mechanisms used to maintain the consistency of caches below.

Business-logic replication (done at tier 1) is a technique used when the compu-
tational load forms a bottleneck [Rabinovich et al., 2003; Seltzsam et al., 2006].
Usually, replicating a service’s business logic translates to running multiple in-
stances of the application across multiple machines. Examples of computationally
intensive business logic include the page generation logic of an e-commerce site
(that combines the responses from multiple services using XSL transformation to
generate an HTML page) and Grid services.

Client-side service-response caching (done at tier 2a) is used to cache the re-
sponses of the requests made by the business logic to the external services. As the
external services can reside at other data centers, deploying a client-side service-
response cache can be beneficial as it alleviates the wide-area network bottleneck.
Intuitively, client-side response caches are useful only if there is high network la-
tency between the client and the service or if the external service does not meet its
SLA.

Database caching (done at tier 2b) is a technique used to reduce the load on
the data tier (see Chapters 2 and 3). In our prototype, we use our in-house database
caching solution presented in Chapter 3, GlobeCBC. However, the approach and
results presented in this chapter also apply to any other database caching system.

Database replication (done at tier 3) is another widely adopted technique to
alleviate the database bottleneck. As discussed in Chapter 2, data are replicated
usually to achieve better throughput and/or higher availability [Chen et al., 2006;
Kemme and Alonso, 1998; Plattner and Alonso, 2004; Sivasubramanian et al.,
2005]. If we restrict ourselves to performance considerations, then data replica-
tion is more beneficial than database caching only if the database queries exhibit
low temporal locality [Sivasubramanian et al., 2006b]. On the other hand, if the
underlying database receives many updates, then the benefit of database replica-
tion reduces due to the overhead of consistency maintenance.

6.2.3. Request distribution

In our service hosting architecture, each tier of a service can be provisioned with
one or more servers (zero or more for caching tiers). This allows for increased
service capacity but requires the use of load balancers to route the requests among
the servers in a given tier. Usually, this task can be performed by hardware load
balancers such as CISCO GSLBs6, which are designed to uniformly distribute
requests across a cluster of servers. However, balancing the request load across a
distributed set of cache servers requires more sophisticated algorithms. A simple

6http://www.cisco.com/en/US/products/hw/contnetw/ps813/index.html

SEC. 6.3 MODELING END-TO-END SERVICE LATENCY 145

(weighted) round-robin request distribution technique can lead to a very poor hit
rate as the request distribution is not based on where the requested object might
be cached. We use consistent hashing to distribute requests across a distributed
set of cache servers [Karger et al., 1999]. This design avoids redundant storage of
objects across multiple cache servers. This means that adding cache servers will
increase the number of unique cached objects, and can potentially improve the hit
ratio. Another important feature of consistent hashing is that relatively few objects
in the cluster become misplaced after the addition/removal of cache servers.

6.2.4. Cache consistency

Caching service responses (at tier 0 and tier 2a) and database query responses
(at tier 2b) introduces a problem of consistency maintenance. A cached response
at any of these tiers might become inconsistent when the underlying database of
the service gets updated. In our system, we expect the developer to specify a
priori which query template conflicts with which update template. As described
in Chapter 3, these template definitions are used by our database caching sys-
tem (GlobeCBC) to invalidate the cached query responses when the underlying
database get updated. We use similar template-based invalidation technique for
service-response caching.

6.3. MODELING END-TO-END SERVICE LATENCY

To choose the best resource configuration for a given service and its workload,
we must be able to estimate the end-to-end latency of the service for any valid re-
source configuration. We first present a multi-queue-based analytical model for
estimating the end-to-end latency of a multi-tiered Internet service. We then de-
scribe how an operational service can be fit to the model for estimating its latency
under different resource configurations.

6.3.1. Analytical model

In general, multi-tiered systems can be modeled by open Jackson queueing net-
works [Jackson, 1957]. To illustrate this model, consider a system with k tiers.
Let us assume that external requests arrive according to a Poisson process with
a mean arrival rate γi to tier i. This assumption is usually true for arrivals from
a large number of independent sources and has been shown to be realistic for e-
commerce Web sites [Villela et al., 2004]. The requests at tier i receive service
with an exponentially distributed duration with mean Ei. When a request com-
pletes service at tier i, it is routed to tier j with probability ri j (independent of the

146
SLA-DRIVEN RESOURCE PROVISIONING OF

MULTI-TIER INTERNET APPLICATIONS CHAP. 6

system state). There is a probability ri0 that the customer will leave the system
upon completion of the service. In this model, there is no limit on the queueing
capacity at each tier, thus a request is never blocked.

Jackson found the solution to the steady-state probabilities of the number of
requests at each tier which is popularly known as a product form. Let λi be the
total mean flow arrival into tier i (external requests and internally routed requests).
Then, we have

λi = γi +
k

∑
j=1

r jiλ j. (6.1)

We define ρi to be λi.Ei. Let Ni be the random variable for the number of requests
at tier i in steady state. Jackson showed that

P(N1 = n1, . . . ,Nk = nk) = (1−ρ1)ρn1
1 · · ·(1−ρk)ρnk

k .

This result states that the network acts as if each node could be viewed as an
independent tier modeled by an M/M/1 queue with parameters λi and Ei. In fact,
the network does not decompose into individual queues with Poisson arrivals,
prohibiting the derivation of performance measures such as higher moments and
variances. However, averages can be easily obtained for individual tiers, since the
expected response time Ri of tier i is given by Ri = ρi/[λi(1−ρi)]. The expected
total response time of a customer depends highly on the routing matrix (ri j)i j. Let
z = (z1, . . . ,zm) be a path through the network, then the expected response time
along this path is given by ∑m

i=1 Rzi . By taking the expectation over all paths, the
overall expected response time can be obtained. Naturally, for specific routing
matrices, such as systems aligned in a serial order, this is straightforward.

The multi-tier systems considered in this chapter differ from the standard Jack-
son network in two aspects. First, the tiers should be modeled by processor-
sharing systems instead of strict waiting queues. Second, the tiers have caches
in front of them. However, [Baskett et al., 1975] tell us that the tiers can also
be replaced by processor-sharing nodes with general service times. The given
formulas and results still hold. Caching tiers also naturally fit into this model.
For example, let us consider a scenario where a tier i− 1 makes a request to a
caching tier i to check if the response is already cached. If the response is found
in the cache, then it is returned immediately else the request is forwarded to tier
i+1 which generates the response. If pi denotes the cache hit ratio for tier i, then
the routing probabilities between the tiers can be formulated as r(i−1)i = pi and
r(i−1)(i+1) = 1− pi.

From the above results, we conclude that the expected end-to-end response
time of our system can be obtained by taking the expectation of the response
times taken by a request along its path. As shown in Figure 6.2(b), each incoming
request is received by the first tier which in turns serves the request locally or

SEC. 6.3 MODELING END-TO-END SERVICE LATENCY 147

triggers calls to other tiers. Consider a tier Ti that receives a request that can be
serviced locally with a probability pi or can trigger multiple requests to more than
one tier. Let Ki be the set of tiers that Ti calls for servicing its incoming requests,
i.e., Tj ε Ki if Tj is called by Ti. For example, in Figure 6.2, T1 makes requests
to T2a and T2b , so K1 = {T2a ,T2b}. Let Ni, j denote the average number of requests
sent to Tj by Ti for serving a single incoming request to Ti, i.e., Ni, j = ri j ∗λi/γi .
For example, if a single request to the business logic tier (T1) results in 1.5 queries
to the data cache tier (T2b), then N1,2b = 1.5. The average response time, Ri, to
service a request at Ti is given by:

Ri = Qi + pi ∗Ei + ∑
jεKi

Ni, j ∗Rj (6.2)

where Qi is the average queueing latency experienced by a request at Ti before be-
ing serviced and Ei is the average time taken by tier Ti to execute the request (ex-
cluding the response times of other tiers). Equation 6.2 can capture the response
times of tiers with different characteristics (e.g., caching or computational). For
example, for a server-side caching tier (T0), p0 denotes the average cache hit ratio,
N0,1 = 1− p0 (each request to the cache goes to T1 only if it is a cache miss) and
K0 = {T1} (as all outgoing requests of T0 are always sent to T1). In the business
logic tier, p1 = 1, as all services always have to do some business logic computa-
tion, and K2 = {T2a ,T2b} as the business logic can make requests to the external
service tier (T2a) and data tier (T2b).

We can then perceive a service as a 4-tiered system, whose end-to-end re-
sponse time can be obtained from equation 6.2 as follows:

R0 = Q0 + p0 ∗E0 +(1− p0)∗ (E1 +N1,2a ∗R2a

+N1,2b ∗R2b)
(6.3)

where R1, R2a and R2b are the average response time for the business logic tier,
client-side service-caching and database-caching, tiers respectively. These re-
sponse times can be derived in a similar way from equation 6.2. We will discuss
our model to compute variances and percentiles of response times in Section 6.6.

6.3.2. Service characterization

In this model, a service is characterized by parameters pi, Ei and Ni, j. To estimate
the average response time of a given service, these parameters must be measured.
Most of these values can be obtained by instrumenting the cache managers and
application servers appropriately. For example, the execution time of caches can
be obtained by instrumenting the cache manager so that the average latency to

148
SLA-DRIVEN RESOURCE PROVISIONING OF

MULTI-TIER INTERNET APPLICATIONS CHAP. 6

Server/
service
caching

Business
Logic
Repln.

Data
Caching

Data
Repln.

Client
service
caching

Initial
Configuration

+/- +/- +/-
+/-

Uncontrollable parameters

Service
metrics

Observed

Controller

Metric
Estimation

response time

Observed

Response time
SLA

Figure 6.3: Logical Design of an Adaptive Hosting System for Internet
Services

fetch an object from cache is logged. Note that all measurements of execution
times should be realized during low loads to avoid measuring the queueing latency
in addition to the service times [Urgaonkar et al., 2005]. Also, measuring the
execution time of the business logic tier is less straightforward as instrumentation
at this tier can obtain only the mean response time to service a request at the
application server, i.e., R1. However, R1 is an aggregated value that encompasses
E1 and the response times of the subsequent tiers (see Equation 6.3). So, we must
compute E1 as R1 −R2a −R2b . Note that the above model assumes that the calls
made between tiers are synchronous. Modeling asynchronous calls is beyond the
scope of this work.

Using this model only to estimate the current average response time of a ser-
vice would be useless, as this value can also be measured directly. However, the
model allows us to estimate the response time that the service would provide if
its resource configuration (and therefore the parameters) was changed. In our ex-
periments, we observed that the average response time estimates derived from our
model have a high accuracy with an error margin less than 10%.

6.4. RESOURCE PROVISIONING

Once a service is running in our platform, we must monitor its end-to-end
performance and, if necessary, decide on the necessary changes in its resource
configuration. In the event of an SLA violation, the system may need to adapt
the number of servers allocated to one or more tiers to ensure that its response
time returns to and remains within its SLA. To this end, the system estimates the

SEC. 6.4 RESOURCE PROVISIONING 149

response times that would result from different resource configurations using the
model described in Section 6.3, and then choose the valid resource configuration
that meets the SLA with the least resources.

In a sense, we can perceive the resource provisioning system as a typical con-
tinuous feedback system with appropriate sensors and controllers (shown in Fig-
ure 6.3). The system must detect changes in performance using sensors and trigger
the controller to change the resource configuration (i.e., the number of servers pro-
visioned for each tier) to bring the average response time back to the acceptable
interval.

To do so, the controller needs to determine the improvement in response time
that would result from adding a machine at each tier, and then choose the tier that
gives the greatest improvement in end-to-end response time as the one to provision
the resource. Adding an extra server to a tier Ti reduces the queueing latency Qi

as the tier has more processing capacity. Moreover, for caching tiers, this can
improve the hit ratio (pi) as the distributed cache has more storage capacity. To
make good decisions, the controller therefore needs to determine the expected
values of these parameters for each tier if the number of servers provisioned in Ti

were changed.

6.4.1. Estimating Qi

In general, the queueing latency, Qi for a tier Ti with n servers can be computed
using Little’s law [Trivedi, 2002] as Qi = λi ∗Ei/n, where λi is the arrival rate
of requests to Ti and Ei is their mean execution time. Using this equation, the
improvement in queueing latency of adding a new server can be easily estimated
(assuming that the servers are homogeneous).

The above equation assumes that the request workload is uniformly shared
among different servers in a tier. While this assumption is true for caching and
business logic tiers, it is not the case for the databases (tier 3). In replicated
databases, an update query must be processed by all database replicas, while read
queries are processed by only one replica. Let w denote the fraction of update
queries and Edbwrites be the average execution time for database updates. Similarly,
let Edbreads denote the average read execution time. Then, the average queueing
latency at a data tier with n database replicas is given as:

Qdb = λdb ∗w∗Edbwrite +((λdb ∗ (1−w)∗Edbreads)/n) (6.4)

where λdb is the arrival rate of requests to the data tier. For estimating this value,
we need the value of w, which requires explicit identification of update queries.
As noted earlier, in our implementation we assume that each query is explicitly

150
SLA-DRIVEN RESOURCE PROVISIONING OF

MULTI-TIER INTERNET APPLICATIONS CHAP. 6

marked and belongs to one of the read/write query templates. This allows us to
obtain accurate measurements of w and average execution times.

6.4.2. Estimating improvement in cache hit ratio

For caching tiers, in addition to the execution time and queueing latency, the cache
hit ratios have a major influence on the response time. Estimating the improve-
ment in cache hit ratio when a new server is added is not trivial due to the non-
linear behavior in hit ratio improvement. However, our approach relies on the
ability to precisely estimate the gain in cache hit ratio that can be obtained by
adding a new server to each distributed caching layer.

We estimate the possible gain in hit ratio due to the addition of a new server
by running virtual caches. A virtual cache behaves like a real cache except that
it stores only the metadata such as the list of objects in the cache, their sizes, and
invalidation parameters. Objects themselves are not stored. By applying the same
operations as a real cache, virtual caches can estimate the hit rate that would be
offered by a real cache with the same configuration. Since a virtual cache stores
only metadata, it requires relatively less memory. For example, to estimate the hit
ratio of a cache that can hold millions of data items, the size of a virtual cache
will be in the order of only a few megabytes. A virtual cache is usually run next
to the real caches. When the resource configuration has no caches, virtual caches
are run at the application server and database driver.

Let us assume the storage capacity of each cache server is M objects. In
addition to running the real cache, each cache server runs a virtual cache with a
capacity of M + ∆ and logs its corresponding virtual cache hit ratio, number of
cache hits and misses. The hit ratio of the virtual cache is what the server would
have obtained if it had been given an extra ∆ storage for caching. Consider a
scenario where the caching tier runs N cache servers and ∆ is set to M/N. Let
hitsvc denote the total number of cache hits at the virtual caches and numreqs be
the total number of requests received by the caching tier. Then, hitsvc/numreqs is
the possible hit ratio the distributed cache would obtain when an extra M memory
is added to it. This is equivalent to adding another server with memory M to the
distributed cache. This estimation relies on the properties of consistent hashing:
N servers each with capacity M + M/N have the same hit ratio as N + 1 servers
with capacity M.

The hit ratio of the virtual cache is used by the controller to compute the gain in
response time due to the addition of another server to the distributed cache (using
equation 6.3). Similarly, the possible increase in response time due to removal of a
server from the distributed cache can be estimated by maintaining another virtual
cache in each cache server with a M−∆ storage capacity.

SEC. 6.4 RESOURCE PROVISIONING 151

6.4.3. Decision process

In general, a change in resource configuration can be triggered by periodic evalua-
tions or when the system observes an increase in end-to-end response time beyond
the HighRespTime threshold set by the SLA. In such scenarios, the controller can
use one or more servers from the rescue pool and add them to the service in-
frastructure to bring the response time back to the SLA interval. To do so, the
controller must decide the best tier(s) to add the server(s). The controller obtains
values of Ei, pi, and Ni, j for each tier from the metric measurement system. For
caching tiers, it also obtains the estimated cache hit ratio for M +∆ memory. With
these values, the controller computes R0 values for the five different resource con-
figurations that would be obtained when a server is added to one of the 5 tiers.
Subsequently, it selects the configuration that offers the least end-to-end response
time. This process is repeated until the response time falls within the acceptable
interval or until the rescue pool is exhausted.

In multi-tiered systems, the software components at each tier have limits on
the number of concurrent requests they can handle. For example, the Tomcat
servlet engine uses a configurable parameter to limit the number of concurrent
threads or processes that are spawned to service requests. This limit prevents the
resident memory of the software from growing beyond the available RAM and
prevents thrashing. Requests beyond this limit are dropped by the server. A pro-
visioning system must therefore ensure that the servers in each tier of a chosen
resource configuration will be handling requests well within their concurrency
limit. This additional requirement can be handled by a simple refinement to the
decision process. For a given resource configuration, in addition to estimating its
response time the model can also estimate the concurrency degree at each tier, λi

(using Equation 6.1). Subsequently, while selecting a resource configuration, we
must ensure that the following two conditions are met: (i) the selected configura-
tion meets the SLA with minimum number of resources and (ii) λi of each tier is
less than its concurrency limit.

Continuous addition of servers without appropriate scaling down (over time)
can lead to resource overprovisioning, thereby increasing operational costs of the
system. To avoid this, the controller must periodically check if the observed re-
sponse time is lower than the LowRespTime threshold. If so, the service is prob-
ably overprovisioned. The controller can then use the same technique to release
the least useful resources, provided it does not lead to an SLA violation.

6.4.4. Prototype implementation

We implemented a prototype resource-provisioning system for evaluation pur-
poses. The prototype is targeted for provisioning Java-based Web services that

152
SLA-DRIVEN RESOURCE PROVISIONING OF

MULTI-TIER INTERNET APPLICATIONS CHAP. 6

transmit SOAP messages over HTTP. The prototype is based on Apache Jakarta
Tomcat 4.1.31 running the Axis 1.5 SOAP engine, and MySQL MaxDB 5.0.19. In
addition to these, we implemented our own service caches (server side and client
side) and database cache in Java.

A service cache is essentially a simple server that receives service requests in
XML over HTTP. Each request is assigned a unique identifier, requestID, which
is a concatenation of the method name and its parameters. For example, if a
service getStockQuote() is invoked to find the quote of a stock id1234 then its
requestID value is set to getStockQuote(id1234). Each request carries zero or
more invalidationID fields which identify the service requests whose invocation
would invalidate the cached response of the request. For instance, in the above
example if the service getStockQuote() conflicts with updateStockQuote(), then
its invalidationID must be set to updateStockQuote(id1234).

We modified the Axis call object to add the fields requestID and invalidationID
to each SOAP request. In our prototype, we require the application developer to
explicitly set the requestID and invalidationID parameters for each request. This
allows the cache servers to maintain the consistency of the cached service re-
sponses easily. We believe that such a requirement is not unrealistic, as usually
application developers are well aware of the application’s consistency semantics.

For database caching (T2b), we used GlobeCBC (described in Chapter 3).
Database replication is implemented at the middleware level. We did not use the
standard MySQL database cluster solution as it would require us to modify their
code base to add the appropriate instrumentations for metric collection. Instead,
database updates were serialized and scheduled from a single server. An update is
applied only if it is successful at all replicas, else it is rolled back. Database reads
are scheduled to replicas in a round-robin fashion.

In addition to the implementation of caching tiers, we instrumented the Jakarta
Tomcat server and the caching tiers to log their execution times. These data are
periodically collected by a monitor program and fed to a machine that runs the
controller. The controller collects data from different tiers and constantly checks
if the service’s SLA is violated. If so, it decides on and triggers a change to the
resource configuration based on the most recent data fed from different tiers.

As depicted in Figure 6.2, load balancers are responsible for distributing the
load among application servers uniformly. In our experiment, we did not use any
hardware load balancers but rather built a software-level request dispatcher that
dispatches requests among application servers using a randomized round-robin
algorithm. This allowed us to plug this component into the caches and service
clients. The hash function and the membership table that describes the portion of
object space covered by each cache server is essential for routing requests to them.
In our experiments, this information was replicated at all cache clients. To notify

SEC. 6.5 PERFORMANCE EVALUATION 153

Response Time vs. Req. Rates

0 50 100 150

40

80

160

R
eq

u
es

ts
/s

ec

Response Time (ms)

Adaptive
Strawman

1 C-2 AS-1 DB

4 AS-1 DB

3 AS-1 DB

1 C-2 AS-1 DB

1 AS-1 DB

Figure 6.4: Performance of the Page Generator Service

other tiers regarding the addition/removal of servers in a tier, each tier implements
an abstract method changeResCfg(RoutingInfo) and exposes it as a Web service.
The controller invokes this method to notify the servers in a tier when the resource
configuration of the tiers called by them is changed.

6.5. PERFORMANCE EVALUATION

In this section, we determine the effectiveness of our resource-provisioning
approach in identifying the right configuration for different kinds of services and
workloads. To this end, we evaluate the performance of our prototype for four
different services: a page generator service, a customer personalization service,
the TPC-App and RUBBoS benchmarks. These services are chosen to represent
applications with different characteristics: a compute-intensive service, a data-
intensive service, a business-to-business application encompassing several busi-
ness interactions and a bulletin-board Web application. All the experiments were
performed on dual processor Pentium III 900Mhz machines with 2GB memory
running the Linux 2.4 kernel.

We compare the performance of our approach (which we call adaptive) against
a strawman approach. The strawman approach adds or removes a server to the tier
which is observed to have the highest bottleneck (measured in terms of the average
CPU utilization of each server). This approach does not examine the temporal
locality of request patterns. It is straightforward, and also widely used as it allows
to provision resources independently across each tier [Rabinovich et al., 2003;
Seltzsam et al., 2006].

154
SLA-DRIVEN RESOURCE PROVISIONING OF

MULTI-TIER INTERNET APPLICATIONS CHAP. 6

6.5.1. Page generator service

A single request to an e-commerce Web site (like Amazon.com) often results in
hundreds of service calls whose responses are aggregated by a front-end service
to deliver the final HTML page to the clients [Vogels, 2006]. In this experiment,
we compared the two resource-provisioning approaches for such a page generator
service. We implemented a page generator service that, upon receipt of one client
request, sends out requests to many other services and aggregates their responses.
Emulating a page generator service of the scale of a large Web site requires us
to run hundreds of other services. To reduce the experimentation complexity, we
devised the page generator service as follows: Each request to the service triggers
requests to two types of services. The first one is a customer detail service which
returns customer information (first name, last name) based on a client identifier
contained in the request. The second type of service is called a simple service,
which is implemented as a TCP/IP socket server and returns the same XML re-
sponse to all requests. By returning the same XML response to all requests, the
simple service avoids the overhead of XML processing and hence does not become
a bottleneck. In our experiments, the page generator service invokes one request
to a customer detail service and separate requests to five different instances of the
simple service. It then aggregates all the XML responses using XSL transforma-
tion, which is a CPU intensive operation. The customer identifiers in the request
were generated according to a Zipf distribution with α = 0.4 from a sample of
1 million customer identifiers. Similar values were observed on a measurement
study profiling the workload of an e-commerce Web site [Arlitt et al., 2001]. The
SLA of the service is arbitrarily set to [50,300]ms.

In our experiments, we studied the response times for the resource configura-
tions recommended by both provisioning systems for different request rates. The
resulting configurations and their response times are shown in Figure 6.4. For all
request rates the adaptive resource provisioning yields lower or equal response
time than the strawman approach. In particular, for 160 req/sec, the adaptive pro-
visioning is able to deliver better performance than the strawman approach while
using less servers. This is primarily due to the fact that our approach accounts
for and analyzes the temporal locality of the request workload. This enables the
system to recommend adding a server-side service cache server rather than adding
another application server. In our experiments, the hit ratio of the service cache
is around 23% which significantly relieves the other tiers. In our experiments, we
observed that the difference between the estimated response time derived from the
model and the observed values were less than 7% of the latter.

It must be pointed out that since the primary differences between different cus-
tomer responses arise from the customer service, in theory one could also install
caches at tier T2a with excellent hit rates. However, as confirmed by the model,

SEC. 6.5 PERFORMANCE EVALUATION 155

Response Time vs. Req. Rates

0 100 200 300 400

90

200

300

R
eq

u
es

ts
/s

ec

Response Time (ms)

Adaptive
Strawman

5 AS-1 DBC- 1 DB

6 AS-1 DB

6 AS-1 DB

3 AS-1 DB

5 AS-1 DBC- 1 DB

Figure 6.5: Performance for the promotional service

running cache servers at tier T0 is better as the benefit of a cache hit is higher. On
the other hand, the strawman approach observes that the application servers do the
most load intensive task and addresses the bottleneck by adding more instances of
the application server. This will only reduce the queueing latency by reducing the
load imparted on each server. On the other hand, by introducing caching servers
the adaptive provisioning also avoids execution latency (in addition to the queue-
ing latency) incurred at subsequent tiers.

6.5.2. Promotional service

The second service we experimented with is a promotional service modeled after
the “Recommended for you” service in Amazon.com. This service recommends
products based on the user’s previous activity. It maintains two database tables:
(i) the item table contains details about each product (title, author, price, stock)
and also identifiers of other items related to it; (ii) the customer table contains
information regarding customers and the list of previous items bought by each
customer. The business logic of this service executes two steps to generate a
response. First, it queries the customer table to find the list of product identifiers
to which a customer has shown prior interest. Second, it queries the item table
to generate the list of items related to these products and their information. This
service is mostly data intensive.

In our experiments, the item table was populated with 20 million randomly
generated database records and the customer table was populated with 10 million
records. We expect that such volumes of data are representative of a real-world
application. The related items field of each record in the item table were populated
randomly. The popularity of items among customers follows a Zipf distribution
with α = 1 (as shown in the analysis of a major e-commerce site [Arlitt et al.,
2001]). For each type of query made by the business logic, the appropriate query

156
SLA-DRIVEN RESOURCE PROVISIONING OF

MULTI-TIER INTERNET APPLICATIONS CHAP. 6

indices are created, which is a usual performance optimization technique used by
enterprise database administrators. The client identifiers for each request were
chosen randomly. The SLA of the service is set to [50,200]ms.7

Figure 6.5 shows the performance of both provisioning approaches for dif-
ferent request rates. For all request rates, the adaptive approach is able to obtain
lower or equal latencies using the same number of servers. When the request rate
for the service is increased from 90 req/sec to 200, the strawman approach simply
looks at the tier with the highest load (which is the application server as it incurs
XML parsing overhead) and adds 3 more servers. However, the bottleneck quickly
turns out to be the database and hence the service fails to meet its SLA for a load
of 300 requests/sec. In contrast, the adaptive approach collects information from
different tiers regarding their execution times and hit ratios. In particular, the vir-
tual database cache detected a high temporal locality among database queries and
predicted a cache hit ratio of 62.5% with addition of one database cache server.
On the other hand, the hit ratio of the virtual cache at tier T0 was under 1% as
the generated XML responses are different for each client. Using these values,
the adaptive controller derived a configuration that reduces both the bottleneck at
the business logic tier (by creating more instances of the application server) and
at the database tier (by creating an instance of the database cache server). In this
experiment, the error margin in mean response time estimations derived by the
model were 3%, 6% and 9.5% for 90, 200 and 300 req/sec load respectively.

With these two experiments, we can draw the (preliminary) conclusion that
for efficient resource provisioning we must: (i) optimize the end-to-end latency of
the complete system and not just alleviate the bottleneck at individual tiers; and
(ii) take into account the temporal properties of the request workload to derive ac-
curate estimations of the impact of provisioning additional resources for different
caching tiers. Furthermore, we can also see that the model has a high accuracy in
deriving its response time estimations thereby allowing us to derive the right re-
source configuration for different workloads. In our subsequent experiments, we
conduct an in-depth study of the performance of our resource provisioning system
alone.

6.5.3. TPC-App: SOA benchmark

TPC-App is the latest Web services benchmark from the Transactions Process-
ing Council.8 It models an online shopping site like Amazon.com and performs
business functionalities such as providing product details, order management and

7Once again, the SLA values are chosen arbitrarily. The SLA values only impact the decision
regarding when to make a change in resource configuration and do not affect the performance of a
running service.

8http://www.tpc.org/tpc_app/default.asp

SEC. 6.5 PERFORMANCE EVALUATION 157

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200 250 300 350 400 450 500

Av
er

ag
e R

es
po

ns
e T

im
e (

ms
)

Number of EBs

1AS-1DB 1AS-1DBC-1DB

1AS-1DBC-2DB

Change in Resource
Configuration

SLA (HighRespTime)

Figure 6.6: Performance for TPC-App benchmark

tracking, customer management, and shipment tracking and management. In con-
trast to its predecessor TPC-W9, the interactions between the application and its
clients are done through SOAP-based Web service interactions. The benchmark
mandates the application to expose the following service interactions: change
item, product detail, order status, new products, change payment method, new
customer, and create order. The benchmark requires the clients to be imple-
mented as Emulated Browsers (EBs) and to add some think time between sub-
sequent requests. In our experiments, we used the mix workload recommended
by the benchmark under which the workload received by each service interaction
is split as follows: New Customer (1%), Change Payment (5%), Create Order
(50%), Order Status (5%), New Products (7%), Product Detail (30%), Change
Item (2%). The application uses 8 database tables that respectively store infor-
mation on authors, customers, addresses, country, items, orders, orderlines, and
stock. Even though the benchmark defines multiple service interactions they all
share the same database, thereby effectively making it a single service (according
to our application model definition).

We built our experiments upon the open source implementation of TPC-App.10

However, this OSDL implementation implements the business logic as a Java-
based servlet. The services were not implemented as Web services and the in-
teraction between clients and services were not done using the SOAP protocol.
To make this implementation conform to the TPC App benchmark, we ported it
to the Jakarta Tomcat and Axis SOAP engine environment. We wrapped each
service interaction into a Web service and the client EBs were modified appropri-
ately. In our experiments, we filled the customer database with 288,000 customer
records. The other tables are scaled accordingly in conformance with the bench-

9http://www.tpc.org/tpcw/tpcw_ex.asp
10http://www.sourceforge.net/projects/osdldbt

158
SLA-DRIVEN RESOURCE PROVISIONING OF

MULTI-TIER INTERNET APPLICATIONS CHAP. 6

mark regulations. The EBs issue requests to the application according to the mix
workload with an average sleep time of 5 seconds. Contrary to the benchmark
requirements, however, we do not guarantee ACID consistency as the database
caches and service caches perform asynchronous invalidations.

We measured the response time of different resource configurations recom-
mended by our system for different number of EBs. The SLA of the application
is arbitrarily set to [50,300] ms as no standard values are recommended in the
benchmark specifications. Changes in resource configuration are triggered when-
ever the running average of the response time fails to meet the SLA. Again, in
this experiment, the model does a reasonable job in predicting the response time
and the error margin is less than 10%. As can be seen in Figure 6.6, the resource
configuration of the benchmark varies as the load increases. During low loads,
a resource configuration with a single application server and one DBMS is suf-
ficient for the system to meet its SLA. However, as expected, the response time
increases with increase in client load. When the number of EBs grows beyond
90, the application fails to meet its SLA. Under such loads, the provisioning sys-
tem diagnoses the underlying DBMS to be the bottleneck. Indeed, offline analysis
confirms this observation as each service invocation to TPC-App leads to an av-
erage of 5.5 queries to the underlying database. Under this scenario, the virtual
cache that is profiling the hit ratio of a database cache predicts a hit ratio of 52%
which leads to a recommendation of adding a database cache to the resource con-
figuration. As seen in Figure 6.6, this configuration keeps the end-to-end latency
within its SLA until 300 EBs, beyond which the significant number of database
query cache misses make the DBMS the bottleneck again. Under this scenario,
the model recommends the addition of a DBMS instance. Note that in contrast to
the addition of (service/database) caches or application servers, the dynamic addi-
tion of a DBMS instance is harder as it requires copying the entire database on the
fly while processing updates without loss of consistency. In our experiments, we
did not perform this online but the experiment setup was shutdown and a database
replica was created and synchronized offline. We then measured the response time
of this configuration. We discuss the issue of dynamic provisioning of servers in
Section 6.6.

6.5.4. RUBBoS benchmark

Finally, we studied the resource configurations and response times obtained by
our provisioning approach for the RUBBoS benchmark, a bulletin board applica-
tion that models slashdot.org. In contrast to all previous studied applications, the
RUBBoS application models a Web site and not a Web service, i.e., it does not use
SOAP to interact with its clients. The main reason for studying this benchmark is
to demonstrate the applicability of our approach to a wide variety of multi-tiered

SEC. 6.6 PERFORMANCE EVALUATION 159

 0

 50

 100

 150

 200

 250

 300

 0 200 400 600 800 1000 1200 1400

Av
er

ag
e R

es
po

ns
e T

im
e (

ms
)

Number of EBs

1AS-1DB

1C-1AS-1DB

2C-1AS-1DB

config. due to
Change in res.

due to SLA violation.
Change in resource config.

HighRespTime concurrency limit

Figure 6.7: Resource configurations and response times of RUBBoS
benchmark for different loads.

applications. RUBBoS’s database consists of five tables, storing information re-
garding users, stories, comments, submissions, and moderator activities. We filled
the database with information on 500,000 users and 200,000 comments. Our ex-
periments were performed with the browse only workload mix. The average think
time between subsequent requests of a client session was set to 6 seconds. For our
experiments, we chose the open source implementation of these benchmarks11.
The SLA of the Web site was arbitrarily fixed to [10,150] ms.

Figure 6.7 presents the response times of the benchmark that runs a single ap-
plication server and a backend database. As expected, the response time increases
as the number of client EBs increases and when we reach beyond 700 EBs, the
SLA is violated. The virtual cache (corresponding to T0) running at the application
server predicts a hit ratio of 91%. The high hit ratio can be explained by the fact
that for a news Web site like Slashdot, many readers exhibit the same browsing
patterns such as viewing the abstracts of the top stories of the day, details of the
top stories. This observation leads the controller to recommend the addition of
a server at T0, i.e., an HTML cache. The addition of a HTML cache makes the
latency drop by almost an order of magnitude, which is consistent with a hit ratio
of 90%. This also allows the resource configuration to sustain a much higher load.

Interestingly, even though the response time is well within its SLA, the T0’s
cache concurrency limit is reached when the number of EBs is increased to 1100
EBs. Under this load, the T0 cache starts dropping many incoming requests. At
this point, the system recommends addition of another T0 cache to keep the request
rate well within the concurrency limits of the cache.

11http://jmob.objectweb.org/rubbos.html

160
SLA-DRIVEN RESOURCE PROVISIONING OF

MULTI-TIER INTERNET APPLICATIONS CHAP. 6

6.6. DISCUSSION

6.6.1. Performance of reactive provisioning

A key issue in the design of any dynamic resource provisioning system is how
reactive the provisioning system is bringing the system behavior back to its SLA
when the workload changes. The time to get the system back to its SLA depends
on three factors: (i) the time taken to make a decision on the best resource config-
uration, (ii) the time taken to make the resource changes, and (iii) the time taken
for the new resource configuration to warm up. In our system, the controller is
constantly fed with performance metrics so making a decision on the changes in
resource configuration is purely a local constant time computation. The time in-
curred due to the second issue heavily depends on the availability of resources
and if the software systems in different tiers are “designed” to be dynamically
provisioned. If enough resources are available in the rescue pool, then dynamic
provisioning of software systems in each tier is the main issue. By the virtue of
virtualization, we believe caching systems and application servers can be installed
on a new server instantly. For instance, dynamically creating instances of a Java-
based application is now relatively well understood and even industry-standard
application servers such as WebSphere allow the dynamic creation of applica-
tion instances [Naik et al., 2004]. However, dynamic creation of a replica at the
database tier is more difficult, especially for RDBMSs. This is because creating a
replica of a relational database while the service is running requires copying the
entire database without affecting the database performance and ensuring that all
updates made on the original database during the process of copying are executed
consistently on the final replica. These issues are beginning to be addressed (see
e.g., [Chen et al., 2006]). However, current techniques are by no means highly
reactive. We acknowledge that this remains very much an open research issue.

Once the resource configuration has been put in place, the new configuration
does incur some “warm-up” overhead. This can be due to the initialization of
connection pools, thread pools or cache warmups. While connection and thread
pool initialization are not specific to the running service, cache warmup times
heavily depend on the service and workload. Cache warmup time is the time
incurred before the hit ratio of a cache stabilizes. It of course heavily influences
the time incurred by the system to fall back to its SLA as the virtual cache predicts
the hit ratio of a “warmed-up” cache. Cache warmup times heavily depend on the
workload’s request rate and temporal locality. To give an example of a typical
cache warmup time, we plotted the running average of the response time for the
TPC-App benchmark before and after the addition of a database cache (for the first
change in resource configuration shown in Figure 6.6). As shown in Figure 6.8,
the response time of the system decreases immediately after adding a database

SEC. 6.6 DISCUSSION 161

 0

 100

 200

 300

 400

 500

Ob
ser

ved
 Re

spo
nse

 Ti
me

 (m
s)

Timeline

(2 minutes)

Transition Point

Figure 6.8: Observed response time during a change in the resource con-
figuration: From a single application server and database to a configuration
with an application server, database cache and a database.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10 12 14 16 18

Me
an

 Pr
ed

icti
on

 Er
ror

 (%
)

Window (hours)

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 8

Pre
dic

tio
n E

rro
r (%

)

Timeline

(b)

Figure 6.9: (a) Impact of window size on hit ratio prediction error and (b)
Plot of the hit ratio prediction error of the fractals Web site during the flash
crowds.

cache server. In our experiment, the time taken for the response time to stabilize
was under 2 minutes.

We believe that virtualization allows us to dynamically provision different
tiers with considerable ease (as observed in [Clark et al., 2005]). However, dy-
namically provisioning databases still remains a major obstacle. This leads us
to conclude that, for the time being, the best option is to perform a pessimistic
provisioning of the database tier.

6.6.2. Predictability of cache hit rates

A key building block of the provisioning system is the use of a virtual cache for
predicting the effectiveness of caching techniques at different tiers. For accurate

162
SLA-DRIVEN RESOURCE PROVISIONING OF

MULTI-TIER INTERNET APPLICATIONS CHAP. 6

predictions, the hit ratios must be measured only over a relatively large time win-
dow. A small window size will make the prediction mechanism susceptible to
errors due to small load bursts and cache warmup effects. On the other hand, a
large window size will make the system unreactive to detect changes in temporal
locality.

To study the impact of window size on prediction accuracy, we examined
the access logs of a Web site that experienced flash crowds due to its posting
on the Google home page and subsequently on Slashdot the next day.12 The trace
contains all requests received by the server over a period of two months. In our
first experiment, we measured the impact of the window size on the quality of the
hit ratio prediction during the first month when there was no flash crowd. The
cache size was set to 0.1% of the total number of unique Web objects. In our
experiment, a prediction was made every sampling interval. The frequency of
sampling was set to 10% of the window length. Figure 6.9(a) plots the impact
of window sizes on the mean prediction error. The hit ratio prediction error is
the absolute difference between the hit ratio predicted for a given time period and
the actual value observed for the time period. The lower the value, the higher is
the prediction accuracy. As seen, the optimal window length for these traces is
around 2 hours, which gives the best prediction accuracy with a prediction error
lower than 0.3%. An important point to be noted here is that a history window of
2 hours seems to be reactive enough to capture the “time-of-the-day” effects.

As a next step, we wanted to see the effect of flash crowds on a system that
runs an optimal virtual cache predictor. To this end, we examined the requests
during the flash crowd and plotted the hit ratio prediction error during this pe-
riod. The size of the history window is set to 2 hours which was determined to
be optimal during stable load scenarios. The results of our experiment are given
in Figure 6.9(b). The prediction error turns out to be lower than 0.5% during sta-
ble loads and raises to 8% during flash crowds. Needless to say, this implies that
predictions made during the flash-crowd event are inaccurate. The reason is that
flash crowds for static Web sites are characterized by sudden and huge increase in
request rate for a small number of Web objects. This leads to a sudden increase
in hit ratio (a similar observation was made in [Jung et al., 2002b]). However, the
sudden increase in hit ratio leads to inaccurate predictions. Note that flash crowds
need not always lead to improved cache hit ratio. For instance, a flash crowd on a
customer service might result in lower locality as the response generated for each
customer will be different. As of now, we do not have any precise mechanisms to
handle predictions during flash crowds. We speculate that adaptations to be per-
formed during flash crowds might require mechanisms of different nature such as
enhanced admission control, and reduced consistency requirements. This means

12http://local.wasp.uwa.edu.au/~pbourke/fractals/quatjulia/google.html

SEC. 6.7 RELATED WORK 163

that the system would operate in an “emergency mode” during this period. It is
to be expected that the system should not use the measurements collected during
this mode to decide on its adaptations during normal operations.

6.6.3. Modeling variances and percentiles

In Section 6.3, we modeled the system as a Jackson queueing network. This model
has the appealing feature that the network acts as if each tier can be viewed inde-
pendently of the other tiers. This makes a mean-value analysis effective so that
performance measures that deal with averages can be easily obtained. However,
it does not allow us to derive other measures such as variance and percentiles.
Under some reasonable assumptions, it is possible to obtain tight bounds for these
performance measures. This is one of the primary focusses of the work presented
in the next chapter.

6.6.4. Availability-based provisioning

The model so far assumes that servers do not fail. This is of course unrealistic
as server failures lead to loss of processing capacity (thereby leading to high re-
sponse times) and sometimes even system outages. In that case, it is imperative
to base provisioning decisions not just on end-to-end response time but also on
availability requirements. Note that, availability is a fundamentally different per-
formance measure than the end-to-end latency. When the software system has a
tree structure, such as depicted in Figure 6.2(b), the total system availability is
dominated by the tier with the smallest availability measure. Hence, the availabil-
ity measure turns out to be a local performance measure. Therefore, to achieve
end-to-end availability of the system it is enough to optimize the availability of
each tier independently. This leads us to conclude that to achieve both perfor-
mance and availability SLAs, one can provision based on end-to-end performance
and subsequently add redundancy at each tier to achieve a desired level of avail-
ability.

6.7. RELATED WORK

As discussed in Chapter 2, a vast number of solutions have been proposed
for improving the performance of Web applications. Systems such as [Challenger
et al., 2005] cache application responses in HTML or XML. These techniques
(that correspond to T0 in the generalized hosting architecture given in Figure 6.2(b))
improve the throughput of the service as a cache hit in this tier offloads the com-
plete application from serving the request. Systems such as ACDN [Rabinovich

164
SLA-DRIVEN RESOURCE PROVISIONING OF

MULTI-TIER INTERNET APPLICATIONS CHAP. 6

et al., 2003] and Autoglobe [Seltzsam et al., 2006] aim at scalable hosting of
Web applications by replicating/migrating the application code across different
servers. Database replication middlewares [Kemme and Alonso, 1998; Plattner
and Alonso, 2004; Sivasubramanian et al., 2005] aim at alleviating the database
bottleneck by replicating the entire database. Database caching middlewares [Amiri
et al., 2003a; Bornhövd et al., 2004; Sivasubramanian et al., 2006b] aim to allevi-
ate the database bottleneck by caching database query responses. All these tech-
niques are studied independently and aim to address bottlenecks at different tiers
of a service. As shown in our evaluations, for effective hosting of Internet services
one should optimize the end-to-end performance of a tier instead of optimizing in-
dividual tiers.

Our problem is closely related to capacity provisioning and has been well
studied in the context of single-tiered applications [Doyle et al., 2003; Menasce,
2003]. A simple transposition of these techniques to our problem is, however,
not suitable as database, business logic, and service caches have very different
characteristics. Hence, it is imperative to treat each individual tier as a separate
entity. In a recent study [Urgaonkar et al., 2005], the problem of provisioning a
3-tier web site using multi-queueing models has been addressed. Unfortunately,
the study is entirely based on multi-queueing models and therefore cannot take
into account any caching techniques (such as client/server-side service caching
or database caching). This is a very limiting restriction as caching is one of the
widely used techniques used in boosting the performance of a service.

6.8. CONCLUSION

In this chapter, we presented a novel approach to resource provisioning of
multi-tier Internet services. In contrast to previous works on resource provision-
ing, our approach selects the resource configuration based on its end-to-end per-
formance instead of optimizing each tier individually. Our proposed approach
employs a combination of queueing models and on-line cache simulations and is
capable of analyzing the impact of temporal properties of the workload on the
end-to-end response time. We demonstrated through extensive experimentations
the effectiveness of our approach in achieving the best resource configuration for
different applications and industry standard benchmarks. Compared to the straw-
man approach, our approach maintains the SLA of a service with less number
of servers. Even though this work primarily focusses on maintaining average la-
tencies in an environment with no server failures, we discussed how our model
can be refined to take latency percentiles and server failures into account in the
provisioning decision.

CHAPTER 7

Analysis of End-to-End Response
Times of Multi-Tier Internet
Services

7.1. INTRODUCTION

In the previous chapter, we demonstrated how we can do effective resource
provisioning based on a simple analytical model. However, the aforedescribed
model allows us to estimate only the mean end-to-end response time of an ap-
plication and does not provide any bounds on its variability. In this chapter, we
present an analytical model for multi-tiered software systems and derive exact
and approximate expressions for the mean and the variance, respectively, of the
end-to-end response times.

In contrast to most previous works on modeling Internet systems, we do not
restrict ourselves to the mean value but also provide accurate approximations to
its variance. Such approximations are very desirable as most e-commerce orga-
nizations measure the client experience based on variability in the response times
in addition to the mean value [Vogels, 2006]. Hence, obtaining bounds on the
end-to-end response times, even if approximate, is highly beneficial.

Deriving an analytical model for multi-tier Internet applications involves the
following challenges. First, multi-tier applications often exhibit complex inter-
actions between different tiers. A single request to the application can lead to
multiple interactions between the business logic and database tiers. This creates
a strong dependence which prohibits derivation of higher moments, such as the
variance, whereas deriving the mean is still tractable. Second, the resource con-
figuration of multi-tier systems is highly dynamic in nature. For instance, caching
tiers can be added/removed based on the temporal properties of its workload. Un-

166
ANALYSIS OF END-TO-END RESPONSE TIMES

OF MULTI-TIER INTERNET SERVICES CHAP. 7

der such circumstances, the model should be flexible enough to accommodate the
changes in the resource configuration of the application. Finally, many multi-
tiered applications achieve scalability by employing caching techniques to allevi-
ate the load at different tiers. Examples of such caching techniques include [Amiri
et al., 2003a; Bornhövd et al., 2004; Olston et al., 2005; Li et al., 2003; Datta et al.,
2002]. Any performance model should be able to incorporate these techniques
such that performance measures are still accurate.

Contributions

We model a multi-tiered application as a system in which each request arrives at
a single entry node which in turn issues requests to other nodes (see Figure 7.2).
Each tier might have a cache in front of it which offloads its computational burden
with a certain probability. Otherwise, the request is executed by the computational
node. The request arrival distribution is assumed to be a Poisson process, which is
usually true for arrivals from a large number of independent sources and shown to
be realistic for many Internet systems [Villela et al., 2004]. The entry node can be
equated to a business logic tier that receives the service requests, and the service
nodes correspond to databases/other services that are queried upon for serving
the request. Using this model, we derive expressions for the mean end-to-end
response time and approximations to its variance.

The contributions of this chapter are threefold. First, we develop an analyti-
cal model for the end-to-end response times for multi-tiered Internet applications.
Second, we derive exact and approximate expressions for the mean and the vari-
ance, respectively, of the end-to-end response times. We validate these expres-
sions through simulation first. Subsequently, we validate the model using several
industry-standard benchmarks (running on a Linux-based server cluster). Our ex-
periments demonstrate that our model accurately predicts the mean response time
and its variance for different application and resource configurations. Finally, we
show how our model can be applied to several scenarios, such as resource provi-
sioning, admission control, and SLA-based negotiation.

Our proposed model has several advantages:

• Performance Prediction: The model allows designers and administrators to
predict the end-to-end performance of the system for a given hardware and
software configuration under different load conditions.

• Application Configuration Selection: To ensure that an application can meet
its performance targets, various techniques have been proposed that repli-
cate or cache the database, application, or Web servers [Menasce, 2003;
Doyle et al., 2003; Chen et al., 2006; Amiri et al., 2003a; Bornhövd et al.,
2004; Plattner and Alonso, 2004; Rabinovich et al., 2003; Seltzsam et al.,

SEC. 7.2 RELATED WORK 167

2006; Olston et al., 2005; Li et al., 2003; Datta et al., 2002]. Each of these
techniques aims to optimize the performance of a single tier of a service,
and can be of great value for achieving scalability. However, from the view-
point of an administrator, the real issue is not optimizing the performance
of a single tier, but hosting a given service such that its end-to-end perfor-
mance meets the SLA. For effective selection of the right set of techniques
to apply to an application, we need to identify its bottleneck tier(s). Again,
an end-to-end analytical model can help in identifying such bottlenecks and
allow us to tune the system performance accordingly.

• Capacity Planning: To ensure that a multi-tiered application meets its de-
sired level of performance, each tier must be provisioned with enough hard-
ware resources. Our model can enable the administrators to decide on the
right number of servers to allocate to each tier of an application such that
its end-to-end response time is within the bounds defined by the business
requirements.

• Request Policing: An application needs to reject excess number of requests
during overload situations to meet its performance targets. Our model en-
ables the application to determine the point when and which requests to
allow to enter the system.

The rest of the chapter is structured as follows. In Section 7.2 we present
the related work. In Section 7.3 we present our analytical model. Based on this
model, we derive the expressions for the mean response time and its variance in
Section 7.4. We first validate the model through simulations in Section 7.5. Sub-
sequently we demonstrate the accuracy of the model using two industry-standard
benchmarks running on a Linux-based server cluster in Section 7.6. In Section 7.7
we discuss and show the benefits of the model relating to issues such as resource
provisioning, service level agreement (SLA) negotiation, and admission control.
Section 7.8 concludes the chapter.

7.2. RELATED WORK

7.2.1. Modeling Internet systems

Various research works in the past have studied the problem of modeling Internet
systems. Typical works include those modeling Web servers, database servers,
and application servers [Menasce, 2003; Doyle et al., 2003; Chen et al., 2006;
Kamra et al., 2004]. For example, in [Menasce, 2003], the authors use a queue-
ing model for predicting the performance of Web servers by explicitly modeling

168
ANALYSIS OF END-TO-END RESPONSE TIMES

OF MULTI-TIER INTERNET SERVICES CHAP. 7

the CPU, memory, and disk bandwidth in addition to using the distribution of
file popularity. Bennani and Menasce [Bennani and Menasce, 2005] present an
algorithm for allocating resources to a single-tiered application by using simple
analytical models. Villela et al. [Villela et al., 2004] use an M/G/1/PS queueing
model for business logic tiers and to provision the capacity of application servers.
An G/G/1 based queueing model for modeling replicated Web servers is proposed
in [Urgaonkar and Shenoy, 2005], which is to perform admission control during
overload situations. In contrast to these queueing based approaches, a feedback
control based model was proposed in [Abdelzaher et al., 2002]. In this work, the
authors demonstrate that by determining the right handles for sensors and actu-
ators, the Web servers can provide stable performance and be resilient to unpre-
dictable traffic. A novel approach to modeling and predicting the performance of
a database is proposed in [Chen et al., 2006]. In this work, the authors employ
machine learning and use an K-nearest neighbor algorithm to predict the perfor-
mance of database servers during different workloads. However, the algorithm re-
quires substantial input during the training period to perform effective prediction.
In [Seltzsam et al., 2006], the authors propose the use of fuzzy logic controller to
change the number of instances of application code running in a system.

All the aforementioned research efforts have been applied only to single-tiered
applications (Web servers, databases, or batch applications) and do not study com-
plex multi-tiered applications which form the focus of this chapter. Some recent
works have focused on modeling multi-tier systems. In [Kamra et al., 2004], the
authors model a multi-tiered application as a single queue to predict the perfor-
mance of a 3-tiered Web site. As mentioned, Urgaonkar et al. [Urgaonkar et al.,
2005] model multi-tier applications as a network of queues and assume the re-
quest flows between queues to be independent. This assumption enables them to
assume a product-form network so that they can apply mean value analysis (MVA)
to obtain the mean response time to process a request in the system. Although this
approach can be very effective, MVA approaches can be limiting in nature as they
do not allow us to get variances which are also of crucial importance in large scale
enterprises [Vogels, 2006].

7.2.2. Performance analysis

There are few works that study the performance of Internet systems in the context
of multi-tier applications. Although the response time was made explicit for the
first time in [Mei and Meeuwissen, 2006], much research on modeling response
times has already been done for other systems. Results for the business logic,
modeled as a processor sharing (PS) node, are given in [Coffman et al., 1970],
where the Laplace-Stieltjes Transform (LST) is obtained for the M/M/1/PS node.
In [Morrison, 1985] an integral representation for this distribution is derived, and

SEC. 7.3 END-TO-END ANALYTICAL MODEL 169

in [Ott, 1984] the distribution is derived for the more general M/G/1/PS system
(in case a representation of the service times is given). The individual services,
behind the business logic, are usually modeled as first-come-first-served (FCFS)
queueing systems for which results are given in [Cooper, 1981].

The first important results for calculating response times in a queueing net-
work are given in [Jackson, 1957], in which product-form networks are intro-
duced. A multi-tier system modeled as a queueing network is of product-form
when the following three conditions are met. First, the arrival process is a Pois-
son process and the arrival rate is independent of the number of requests in the
network. Second, the duration of the services (behind the business logic) should
be exponentially distributed when FCFS queues are used, but can have a general
distribution in case of PS or infinite server queues. Moreover, the duration is not
allowed to depend on the number of requests present at that service. Finally, the
sequence in which the services are visited is not allowed to depend on the state
of the system except for the state of the node at which the request resides. Multi-
tier systems that satisfy these properties fall within the class of so-called Jackson
networks and have nice properties.

In [Boxma and Daduna, 1990], the authors give an overview of results on
response times in queueing networks. In particular, they give expressions for the
LST of the joint probability distribution for nodes which are traversed by requests
in a product-form network according to a pre-defined path. Response times in
a two-node network with feedback (such as at the business logic) were studied
in [Boxma et al., 2005]. The authors propose some solid approximations for the
response times with iterative requests. They show that the approximations perform
very well for the first moment of the response times. In [Mei et al., 2006], a single
PS node is studied with several multi-server FCFS nodes. The authors derive
exact results for the mean response time as well as estimates for the variance. The
performance analysis in this chapter is an extension of their work.

7.3. END-TO-END ANALYTICAL MODEL

In this section, we develop a model for multi-tier Internet services in the con-
text of a queueing-theoretical framework. For this purpose, consider a queueing
network with 2(N +1) nodes as depicted in Figure 7.2. Requests that are initiated
by an end-user arrive according to a Poisson process with rate λ to a dedicated
entry level 0. The request may be cached at caching tier 0 with probability p0. In
that case, the request is served by caching tier 0 and the response is directly de-
livered to the end-user. However, with probability 1− p0, the request needs to be
processed by service tier 0 and the other N levels in the queueing network, which

170
ANALYSIS OF END-TO-END RESPONSE TIMES

OF MULTI-TIER INTERNET SERVICES CHAP. 7

Figure 7.1: Application Model of a Multi-Tiered Internet Service.

Cache 0
Requests

Responses
...

Cache N

Cache 1

Service 0

Service 1

Service N

1-p
1

1-p
N

T
N

1
T

1-p
0

0
p

1
p

p
N

Figure 7.2: Analytical Model for Multi-Tiered Applications .

can be identified with the business logic and the existing basic services delivered
by the service provider, respectively, as depicted in Figure 7.1.

As mentioned before, when a request is not cached at caching tier 0, it tra-
verses the network by first visiting service tier 0. After service completion, the
request is routed to each of the N levels in sequence. At level i, the request is
served by caching tier i with probability pi. When the request is not cached at
the caching tier (which occurs with probability 1− pi), the request is served by
service tier i. After having received service at level i, the results are sent back for
processing to service tier 0 (which takes place with the same parameters as upon
first entry). We assume that a request that is sent from the business logic to level
i generates Ti requests back and forth, where Ti is a non-negative discrete random
variable. Note that this parameter allows us to accurately capture the typical be-

SEC. 7.4 MEAN RESPONSE TIME AND ITS VARIANCE 171

havior of Web applications. For instance, the business logic code of many Internet
applications makes multiple queries to its underlying databases (or other services)
to generate a single response. Thus, a request has fully completed its service at
level i after Ti service completions. Finally, every request that is served by the
service tier 0, passes this tier 1+T1 + · · ·+TN times, and finally leaves the system
after having visited all N levels.

We model each caching tier i by an infinite-server queue having general ser-
vice times with an average of βc,i time units for i = 0, . . . ,N. Each service tier
i is modeled by a processing sharing queue and draws its service times from a
general probability distribution with an average service time of βs,i time units for
i = 0, . . . ,N. The mean response time of the service is modeled as the sojourn time
of the request in the system. Let S(k)

i be the sojourn time of the k-th visit to level
i, and M = ET1 + · · ·+ETN . Then, the expected sojourn time ES of an arbitrary
request arriving to the system is given by

ES = E

[M+1

∑
k=1

S(k)
0 +

N

∑
i=1

Ti

∑
j=1

S(j)
i

]
.

Note that the system is modeled such that it satisfies the conditions of a
product-form network. First, the arrivals occur according to a Poisson process
with a rate that is not state dependent. This is not unrealistic in practice, since
arrivals from a large number of independent sources do satisfy the properties of
a Poisson process [Villela et al., 2004]. Second, the basic services are modeled
by mixtures of processor sharing and infinite server queues with a general service
distribution which does not depend on the number of requests at that node. Fi-
nally, since the sequence in which the service nodes are visited is fixed, and thus
does not depend on the state of the system, the network is of product-form.

7.4. MEAN RESPONSE TIME AND ITS VARIANCE

In the previous section we have seen that the queueing network is of product-
form. Consequently, when Lc,i and Ls,i denote the stationary number of requests
at caching tier i and service tier i for i = 1, . . . ,N, respectively, we have

P(Lc,i = lc,i,Ls,i = ls,i; i = 0, . . . ,N) =
N

∏
i=0

P(Lc,i = lc,i)
N

∏
i=0

P(Ls,i = ls,i),

with lc,i and ls,i = 0,1, . . . for i = 0, . . . ,N. From this expression, the expected
sojourn time at the entry node and the service nodes can be determined. First,

172
ANALYSIS OF END-TO-END RESPONSE TIMES

OF MULTI-TIER INTERNET SERVICES CHAP. 7

define the load on the entry nodes by ρc,0 = λp0βc,0 for the caching tier and ρs,0 =
(M +1)(1− p0)λβs,0 for the service tier. Similarly, the load for the basic services
is given by ρc,i = (1− p0)piλβc,i and ρs,i = (1− p0)(1− pi)λβs,i for i = 1, . . . ,N.
Then, by Little’s Law, the expected sojourn time ESc,i at caching tier i is given
by ESc,i = βc,i, whereas the expected sojourn time ESs,i at service tier i is given
by ESs,i = βs,i/(1−ρs,i) for i = 0, . . . ,N. Combining all the expressions for the
expected sojourn time at each tier in the network, we derive that the expected
response time is given by

ES = E

[M+1

∑
k=1

S(k)
0 +

N

∑
i=1

Ti

∑
j=1

S(j)
i

]
= p0 ESc,0 +

(1− p0)
[
ESs,0 +

N

∑
i=1

ETi
{

piESc,i +(1− pi)ESs,i
}]

= p0βc,0 +(1− p0)
(M +1)βs,0

1−ρs,0
+

(1− p0)
N

∑
i=1

ETi

[
piβc,i +(1− pi)

βs,i

1−ρs,i

]
.

Let us now focus our attention to the variance of the response times. It is no-
toriously hard to obtain exact results for the variance. Therefore, we approximate
the total sojourn time of a request at service tier 0 by the sum of M+1 independent
identically distributed sojourn times. Moreover, we approximate the variance by
imposing the assumption that the sojourn times at the entry node and the sojourn
times at the service nodes are uncorrelated. In that case, we have

Var S = Var

[M+1

∑
k=1

S(k)
0 +

N

∑
i=1

Ti

∑
j=1

S(j)
i

]

= Var

[M+1

∑
k=1

S(k)
0

]
+Var

[N

∑
i=1

Ti

∑
j=1

S(j)
i

]
.

To approximate the variance of the sojourn times at tier 0, we use the linear in-
terpolation of Van den Berg and Boxma in [Berg and Boxma, 1991] to obtain the
second moment of the sojourn time of an M/G/1/PS node. We adapt the expres-
sion by considering the M+1 visits together as one visit with a service time that is
a convolution of M +1 service times. Let cs,i denote the coefficient of variation of
the service times at service tier i for i = 0, . . . ,N. Then, we have that the variance
of the sojourn time Ss,0 at service tier 0 is approximately given by Var Ss,0(M +1),

SEC. 7.4 MEAN RESPONSE TIME AND ITS VARIANCE 173

with

Var Ss,i(K) = (K +1)c2
s,i

[
1+

2+ρs,i

2−ρs,i

][
βs,i

1−ρs,i

]2

−
[
(K +1)βs,i

1−ρs,i

]2

+
(
(K +1)2 − (K +1)c2

s,i

) ×
[

2β2
s,i

(1−ρs,i)2 −
2β2

s,i

ρ2
s,i(1−ρs,i)

(eρs,i −1−ρs,i)
]
.

In principle, the same expression for the variance of service tiers i can be used
with M = 0, yielding the expression Var Ss,i(1) for i = 1, . . . ,N. Recall that a
single request to tier 0 can lead to multiple interactions between tier 0 and tier
i. This introduces additional variability Wi due to various reasons such as context
switching, request and response processing. We estimate this variability generated
by the random variable Ti by Wald’s equation [Tijms, 1994] as follows.

Var Wi = Var Ti

{
Var Ss,0(ETi)+Var Ss,i(1)+(1− p0)2 ×

(
(ETi +1)βs,0

1−ρs,0
+ETi

[
piβc,i +(1− pi)

βs,i

1−ρs,i

])2}
.

Let β(2)
c,i denote the second moment of the service times at caching tier i for i =

0, . . . ,N. Then, the variance Var Sc,i for caching tier i is given by

Var Sc,i = β(2)
c,i −β2

c,i.

Finally, by combining all the expressions for the variances of the sojourn times at
each node in the network, we derive that the variance of the response time is given
by

Var S ≈ p2
0 Var Sc,0 +(1− p0)2

{
Var Ss,0(M +1) +

N

∑
i=1

[
p2

i Var Sc,i +(1− pi)2
Var Ss,i(1)+Var Wi

]}
.

Note that the expressions exhibit a lot of structure and clearly show how each
tier contributes to the mean and the variance. This makes the expressions highly
flexible so that changes in the resource configuration of the application can be
easily accommodated for. For instance, suppose that service tier i is replaced with
an FCFS queueing system with ci servers having exponentially distributed service
times with mean βs,i (note that this retains the product form solution). Then, only

174
ANALYSIS OF END-TO-END RESPONSE TIMES

OF MULTI-TIER INTERNET SERVICES CHAP. 7

βps c2
ps βfcfs Vars S Var S ∆Var %

0.1 0 0.1 0.9 82.51 81.05 −1.33
0.3 0 0.8 0.5 85.89 86.81 1.06
0.1 0 0.5 0.3 1.25 1.22 −1.76
0.3 0 0.9 0.1 147.49 150.82 2.25
0.1 4 0.1 0.9 80.83 81.33 0.62
0.3 4 0.8 0.5 274.00 278.46 1.63
0.1 4 0.5 0.3 1.54 1.50 −2.68
0.3 4 0.9 0.1 331.30 342.47 3.37
0.1 16 0.1 0.9 81.55 82.16 0.75
0.3 16 0.8 0.5 831.15 853.41 2.68
0.1 16 0.5 0.3 2.37 2.33 −1.86
0.3 16 0.9 0.1 871.49 917.42 5.27

Table 7.1: Response time variances of a queueing network with general
service times at the entry node and two asymmetrically loaded single-server
service nodes.

ESs,i and Var Ss,i have to be changed. To this end, let ρs,i = (1− p0)piλβs,i/ci, and
define the probability of delay πi by

πi =
(ciρs,i)ci

ci!

[
(1−ρs,i)

ci−1

∑
l=0

(ciρs,i)l

l!
+

(ciρs,i)ci

ci!

]−1

.

Then, the mean sojourn time ESs,i at service tier i is given by

ESs,i =
βs,i

(1−ρs,i)ci
πi +βs,i,

and the variance of the sojourn time Var Ss,i at service tier i is approximated by

Var Ss,i ≈
πi(2−πi)β2

s,i

c2
s,i(1−ρs,i)2

+β2
s,i.

7.5. VALIDATION WITH SIMULATIONS

In this section we assess the quality of the expressions of the mean response
time and the variance that were derived in the previous section. We perform some
numerical experiments to test validity of the expressions against a simulated sys-
tem. In this case, the mean response time does not need to be validated, because
the results are exact due to [Jackson, 1957]. Therefore, we can restrict our atten-
tion to validating the variance only.

SEC. 7.6 VALIDATION WITH EXPERIMENTS 175

We have performed extensive numerical experiments to check the accuracy of
the variance approximation for many parameter combinations. This was achieved
by varying the arrival rate, the service time distributions, the asymmetry in the
loads of the nodes, and the number of servers at the service nodes. We calculated
the relative error by ∆Var % = 100% · (Var S−Vars S

)
/Vars S, where Vars S is the

variance based on the simulations.

We have considered many test cases. We started with a queueing network with
exponential service times at the entry node and two service nodes at the backend.
In the cases where the service nodes were equally loaded and asymmetrically
loaded, we observed that the relative error was smaller than 3% and 6%, respec-
tively. We also validated our approximation for a network with five single-server
service nodes. The results demonstrate that the approximation is still accurate
even for very highly loaded systems. Based on these results, we expect that the
approximation will be accurate for an arbitrary number of service nodes. The rea-
son is that cross-correlations between different nodes in the network disappear as
the number of nodes increases. Since the cross-correlation terms have not been
included in the approximation (because of our initial assumptions), we expect the
approximation to have good performance in those cases as well.

Since the approximation for different configurations with single-server service
nodes turned out to be good, we turned our attention to multi-server service nodes.
We carried out the previous experiments with symmetric and asymmetric loads
on the multi-server service nodes while keeping the service times at the entry
nodes exponential. Both cases yielded relative errors smaller than 6%. Finally, we
changed the service distribution at the entry node. Table 7.1 shows the results for a
variety of parameters, where the coefficient of variation for the service times at the
entry nodes is varied between 0 (deterministic), 4 and 16 (Gamma distribution).
These results are extended in Table 7.2 with multi-server service nodes. If we look
at the results, we see that the approximation is accurate in all cases. To conclude,
the approximation covers a wide range of different configurations and is therefore
reliable enough to obtain the variance of the response time.

7.6. VALIDATION WITH EXPERIMENTS

In the previous section, we demonstrated the accuracy of our mean and vari-
ance expressions using simulations. In this section, we validate our model with
two well-known benchmarks: RUBBoS, a popular bulletin board Web application
benchmark, and TPC-App, the latest benchmark from the Transactions Processing
Council modeling service oriented multi-tiered systems. The choice of these two
applications was motivated by their differences in their behavior.

176
ANALYSIS OF END-TO-END RESPONSE TIMES

OF MULTI-TIER INTERNET SERVICES CHAP. 7

βps c2
ps βfcfs Vars S Var S ∆Var %

0.1 0 0.2 2.7 80.82 85.66 5.99
0.3 0 1.6 1.5 88.82 89.70 0.99
0.1 0 1.0 0.9 2.43 2.43 −0.02
0.3 0 1.8 0.3 149.31 152.38 2.05
0.1 4 0.2 2.7 88.50 85.94 −2.90
0.3 4 1.6 1.5 272.00 281.35 3.44
0.1 4 1.0 0.9 2.71 2.71 −0.23
0.3 4 1.8 0.3 330.14 344.03 4.21
0.1 16 0.2 2.7 89.60 86.77 −3.16
0.3 16 1.6 1.5 820.26 856.30 4.39
0.1 16 1.0 0.9 3.57 3.57 −0.79
0.3 16 1.8 0.3 920.45 918.98 −0.16

Table 7.2: Response time variances of a queueing network with general
service times at the entry node and two asymmetrically loaded multi-server
service nodes.

We validate our model by running these benchmarks on a Linux-based server
cluster for the following resource configurations: (i) when the application is de-
ployed with a single application server and a database server, (ii) when the ap-
plication is deployed with a front-end cache server, an application server and a
database server, and (iii) when the application is deployed with a single applica-
tion server, a database cache server and a database server. We first present our
experimental setup followed by the validation results.

7.6.1. Experimental setup

We hosted the business logic of these applications in the Apache Tomcat/Axis
platform and used MySQL 3.23 for database servers. We ran our experiments on
Pentium III machines with 900 Mhz CPU and 2 GB memory running a Linux 2.4
kernel. These servers belonged to the same cluster and network latency between
the clusters was less than a millisecond. In our experiments, we varied the arrival
rate and measured the mean end-to-end response and its variance and compared
the measured latency with the values predicted by the model.

In our model, an application (or a service) is characterized by the parameters
βi, βTi and vari, where i = 0 · · ·N. Therefore, to accurately estimate the mean
and the variance of the response times for a given application, we first need to
obtain these values. Most of these values are obtained by instrumenting the cache
managers, application servers and database servers appropriately. For example,
the execution time of caches can be obtained by instrumenting the cache manager
so that the average latency to fetch an object from the cache is logged. Note that
all measurements of execution times should be realized during low loads to avoid

SEC. 7.6 VALIDATION WITH EXPERIMENTS 177

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

Number of EBs

Estimate
Observed

(a) Mean Response Time

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 50 100 150 200 250 300 350 400 450 500

S
ta

nd
ar

d
D

ev
ia

tio
n

in
 R

es
p.

 T
im

e
(m

s)

Number of EBs

Estimate
Observed

(b) Standard Deviation

Figure 7.3: Comparison between the observed and the predicted values
for the mean and the standard deviation of the response times for RUBBoS
benchmark with a single application server and a single database server.

measuring the queueing latency in addition to the service times. This method has
been successfully employed in similar problems [Urgaonkar et al., 2005].

As in the previous chapters, the client workload for both benchmarks is gen-
erated by Emulated Browsers (EBs). The mean think time between subsequent
requests of a client session in an EB is set to 5 seconds.

7.6.2. RUBBoS: A bulletin board Web application

In our first set of experiments, we experimented with the RUBBoS benchmark
that we have described in detail in the previous chapters. We experimented with
a single application server (hosting the RUBBoS application code) and a single
database server (storing application data). This corresponds to a system with two
service tiers, which is a special instance of the model proposed in Section 7.3. The
mean response time reduces to

ES =
(ET1 +1)βs,0

1−ρs,0
+ET1

βs,1

1−ρs,1
,

and the variance is approximated by

Var S ≈ Var Ss,0(ET1 +1)+Var Ss,1(1)+Var W1.

The instrumentation collected during low load measured βs,0 = 0.482 ms, βs,1 =
1.69 ms, Var Ss,1 = 16.33, ET1 = 25.1 and Var T1 = 412.5. These values indicate

178
ANALYSIS OF END-TO-END RESPONSE TIMES

OF MULTI-TIER INTERNET SERVICES CHAP. 7

 80

 100

 120

 140

 160

 180

 200

 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

Number of EBs

Estimate
Observed

(a) Mean Response Time

 200

 250

 300

 350

 400

 450

 500

 550

 600

 5 10 15 20 25 30 35 40 45 50

S
ta

nd
ar

d
D

ev
ia

tio
n

in
 R

es
p.

 T
im

e
(m

s)

Number of EBs

Estimate
Observed

(b) Standard Deviation

Figure 7.4: Comparison between the observed and the predicted values for
the mean and the standard deviation of the response times for TPC-App
Benchmark with a single application server and a single database server.

that the mean database query latency is relatively low. Moreover, it also shows
that the RUBBoS’s application code makes a relatively large number of requests
to the underlying database for generating a single response.

In our experiments, we varied the client load by varying the number of EBs
and measured the mean response times and its variance. All experiments were run
for a period of 2 hours with a warm up time of 15 minutes. We compared these
values with the predicted values obtained from the model. The results are shown
in Figure 7.3. As seen in the figure, the model does a good job in predicting not
just the mean response time but also its standard deviation. These experiments
show that the margin of error is less than 12% in most of the cases. We believe
these results are commendable considering the model does a reasonably accurate
prediction even for high loads (such as when the application is handling 500 con-
current sessions).

7.6.3. TPC-App: A service-oriented benchmark

In our next set of experiment, we used the TPC-App benchmark. For more de-
tails on TPC-App, we refer to Chapter 6. The resource configuration used in this
experiment is similar to the configuration used in the previous section, resulting
in the same expressions for the mean and the variance. Similar to the previous
experiment, we measured the application’s performance during low load to obtain

SEC. 7.6 VALIDATION WITH EXPERIMENTS 179

the relevant parameters for the model. The values obtained from our instrumen-
tation were βs,0 = 0.8556 ms, βs,1 = 11.18 ms, Var Ss,1 = 10730, ET1 = 6.51 and
Var T1 = 27.2. From these values, we can infer that the characteristics of this appli-
cation is vastly different from RUBBoS. For instance, TPC-App’s mean database
query latency is significantly higher compared to that of RUBBoS. On the other
hand, TPC-App’s application code makes relatively less number of requests to the
underlying database for generating a single response.

As in the previous experiment, we varied the client load by varying the num-
ber of EBs and measured the mean and standard deviation in response times for
different loads. All experiments were run for a period of 1 hour with a warm up
time of 15 minutes. We compared these values with the predicted values obtained
from the model and the results are shown in Figure 7.4. As seen in the figure, the
response time predictions of our model is highly accurate even for variances. In
particular, the accuracy of variance predictions is less than 5% which we believe
is quite commendable.

As can be seen, the model’s prediction is significantly higher for TPC-App
(error margin less than 5%) compared to RUBBoS (error margins usually less than
10%). We believe the difference in the accuracy is mainly due to the difference
in the mean number of queries made by the application code to the underlying
database. As can be noticed, the model does not explicitly account for connection
management (e.g., establishing a new connection, recycling connections in a pool)
overheads, and network latency. We assume that the overhead due to these issues
to be negligible. Such an assumption is usually true when the number of calls
made between the tiers to serve a single request is usually low (which is the case
in TPC-App). However, if this is high (e.g., the maximum number of queries
made by the code to generate a single page is as high as 80), then these overheads
become sizeable and can reduce accuracy.

7.6.4. Validation with caches

As noted earlier, the model is explicitly designed to measure the end-to-end re-
sponse time even when the application is deployed with caches at more than one
tier. To evaluate the accuracy of the model when an application is deployed with
caching tiers, we measured the performance of RUBBoS benchmark when a cache
server is ran at the front-end tier or ahead of the database server. In these experi-
ments, we present the result of these experiments.

RUBBoS with front-end cache

For our next step of experiments, as in the previous setup, we deployed the RUB-
BoS application on a single application server with a single back-end database.

180
ANALYSIS OF END-TO-END RESPONSE TIMES

OF MULTI-TIER INTERNET SERVICES CHAP. 7

 15

 16

 17

 18

 19

 20

 0 50 100 150 200 250 300

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

Number of EBs

Estimate
Observed

(a) Mean Response Time

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250 300

S
ta

nd
ar

d
D

ev
ia

tio
n

in
 R

es
p.

 T
im

e
(m

s)

Number of EBs

Estimate
Observed

(b) Standard Deviation

Figure 7.5: Response Times of RUBBoS Application with HTML Cache
with a front-end cache server, an application server and a database server.

The configuration of this experiment corresponds to a system for which the mean
response time is given by

ES = p0βc,0 +(1− p0)
[
(ET1 +1)βs,0

1−ρs,0
+ET1

βs,1

1−ρs,1

]
,

and the variance is approximated by

Var S ≈ p2
0 Var Sc,0 +(1− p0)2 ×[
Var Ss,0(ET1 +1)+Var Ss,1(1)+Var W1

]
.

In this experiment, we ran a front-end cache server that caches the HTML
responses generated by the application code. Each client request is first received
by the front-end cache which returns the response immediately if the correspond-
ing response is available in the cache. Otherwise, the request is forwarded to the
application server and the generated response is cached locally before returning
it to the client. The consistency of the cached pages are maintained using a data
dependency graph (e.g., [Challenger et al., 2005]) to determine the staleness of a
cached page when the underlying database is updated.

In our experiments, we used the RUBBoS browse workload mix and varied the
client workload by varying the number of EBs. All experiments were performed
with a considerable warmup period at the start so that the hit ratio of the front-
end caches was stable during the measurement period. We compared the mean

SEC. 7.6 VALIDATION WITH EXPERIMENTS 181

 20

 30

 40

 50

 60

 70

 80

 90

 100

 50 100 150 200 250 300

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

Number of EBs

Estimate
Observed

(a) Mean Response Time

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 50 100 150 200 250 300

S
ta

nd
ar

d
D

ev
ia

tio
n

in
 R

es
p.

 T
im

e
(m

s)

Number of EBs

Estimate
Observed

(b) Standard Deviation

Figure 7.6: Response Times of RUBBoS Application with an application
server, a database cache server and a database server.

response times and its variance obtained from our experiments and the model. The
results are given in Figure 7.5. As seen, the mean response times (and the standard
deviation) of RUBBoS with HTML cache is significantly less compared to those
of the simple RUBBoS system described in the previous section. This can be
attributed due to the high cache hit rate (of 73.5%) at the front-end cache and the
low execution times at the cache (βc,0 = 2.76 ms). Moreover, similar to previous
experiments, we can observe that the model predicts the response times of the
application with a reasonably high accuracy with error margins usually less than
10%. We believe this is quite commendable considering that the characteristics
of a cache server is completely different from that of the application or database
server.

RUBBoS with database cache

In our final set of experiments, we evaluated the accuracy of the model for a system
that employs a database cache. In this experiment, we deployed the RUBBoS
application with a single application server, a database cache server (built using
GlobeCBC) and a database server. The mean response time can be derived from
our model as follows

ES =
(ET1 +1)βs,0

1−ρs,0
+ET1

[
p1βc,1 +(1− p1)

βs,1

1−ρs,1

]
,

182
ANALYSIS OF END-TO-END RESPONSE TIMES

OF MULTI-TIER INTERNET SERVICES CHAP. 7

and the variance is approximated by

Var S ≈ Var Ss,0(ET1 +1) +[
p2

1 Var Sc,1 +(1− p1)2
Var Ss,1(1)+Var W1

]
.

All experiments were performed with a considerable warmup period at the
start so that the hit ratio of the database cache was stable during the measurement
period. The hit ratio of the database cache observed in our experiments was 82%.
The mean execution time of the caching tier was 1.62 ms. The mean response
times and its variance values obtained from our experiments and the model are
shown in Figure 7.6. The model does a reasonable job once again. The error mar-
gins observed in our experiments were less than 12% for both mean and standard
deviations.

7.6.5. Discussion

The above experiments demonstrate that the model does a commendable job in
predicting the mean response times and its variances even for applications with
vastly different characteristics deployed with different resource configurations.
Our model is able to account for the effect of caching servers at different tiers
accurately. Moreover, our experiments also suggest that a significant portion of
the errors made by the model is due to ignoring the connection management over-
heads. As we showed in our experiments, connection management (such as wait-
ing for connections in a connection pool) introduce additional delays and these
tend to be significant when the number of interactions between the tiers is high
(as in the case of RUBBoS). We plan to revise our model in the near future to
accommodate these effects. To improve the accuracy of our predictions, we can
use advanced profiling tools (e.g., [Barham et al., 2004]) which will allow us to
measure the service time at each tier with higher degree of accuracy.

7.7. APPLICATIONS OF THE MODEL

In this section we discuss and demonstrate the benefits of the model to issues
relating to resource provisioning, admission control, and service level agreement
(SLA) negotiation.

7.7.1. Resource provisioning

As noted in previous chapter, for scalable hosting of multi-tiered Internet appli-
cations, the administrators need to determine the optimal number of resources to

SEC. 7.7 APPLICATIONS OF THE MODEL 183

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 0 50 100 150 200 250 300

 9
9

pe
rc

en
til

e
re

sp
os

e
tim

e
(m

s)

Number of EBs

Bottleneck

(a) Bottleneck Analysis

 90

 95

 100

 105

 110

 115

 120

 125

 130

 0 50 100 150 200 250 300

 9
9

pe
rc

en
til

e
re

sp
os

e
tim

e
(m

s)

Number of EBs

End-to-End

(b) End-to-End Analysis

Figure 7.7: 99 percentile response times of the RUBBoS Application ob-
tained by (a) the bottleneck analysis method and (b) the end-to-end analysis
method. Note that the scale of the y-axis in the figures differ by 3 orders of
magnitude.

provision at each tier. As noted earlier, various techniques have been proposed that
replicate the database, application or Web servers [Amiri et al., 2003a; Bornhövd
et al., 2004; Chen et al., 2006; Doyle et al., 2003; Menasce, 2003; Plattner and
Alonso, 2004; Rabinovich et al., 2003; Seltzsam et al., 2006]. However, to select
the right set of techniques to apply we need to understand the impact of these
systems and techniques on the end-to-end performance instead of the individual
tiers. We believe our model can enable the administrators to determine the optimal
resource configuration for a given application for different clients loads to meet a
certain response time SLA.

The traditional way of resource provisioning (known as the bottleneck anal-
ysis method) is to identify the bottleneck tier and to improve its performance by
caching or replicating it. Using our model, we propose to select the right resource
configuration based on the end-to-end performance instead of individually opti-
mizing each bottleneck tier. We call this the end-to-end analysis method.

Now, consider the scenario where a system administrator aims to provision
the RUBBoS application (described in Section 7.6) such that the response time of
99% of the requests is below 200 ms. A commonly used technique is to equate the
99 percentile by ES+3

√
Var S (popularly known as the 3-σ technique [Abraham,

2003]). For this scenario, using the bottleneck analysis method leads to the fol-
lowing conclusion. Based on the observation that 75% of the request-processing

184
ANALYSIS OF END-TO-END RESPONSE TIMES

OF MULTI-TIER INTERNET SERVICES CHAP. 7

time is spent in the back-end database server, the method concludes that the large
portion of computation is performed by the database tier. To address this we can
add a database cache or a database replica. However, from our previous experi-
ments we can observe that the difference in service time of the database cache and
the query execution time at the database server is only marginal. This is due to two
reasons: (i) the overhead due to connection management, and JDBC resultset se-
rialization and deserialization in the database cache node and (ii) the mean query
execution time of RUBBoS application, as such, is very low. These results indi-
cate that running a database cache for RUBBoS in not useful as database caching
technologies are useful only if the database query execution time is significantly
higher (as explained in [Sivasubramanian et al., 2006b; Olston et al., 2005]). Con-
sequently, the bottleneck analysis method recommends adding a database replica
(i.e., another server to the database tier) expecting it to reduce the load on the
database tier by 50%. On the other hand, the end-to-end analysis recommends
adding a front-end cache even though the application server is not the bottleneck.
The performance of the resource configurations recommended by these two meth-
ods are given in Figure 7.7. As can be seen, the end-to-end analysis provides a
superior performance compared to the bottleneck method yielding response times
three order of magnitude less than the latter even at the 99 percentile while using
the same number of resources. This can be explained by the ability of the model
to capture the interrelationships between the different tiers.

7.7.2. Admission control

The response times of an application may drop below its required target when
many requests arrive at the entry nodes within a short period of time. To guar-
antee that the application continues to meet its performance targets, it needs to
discriminate which requests are admitted into the network during these (transient)
overload situations. In this section, we demonstrate how our model can be used to
apply admission control to determine the point when and which requests to reject.
To this end, consider the model of Section 7.3. We are interested in the mean re-
sponse time when only K requests in total are admitted to the system, and requests
in excess hereof are rejected.

Let �l = (lc,0, . . . , lc,N , ls,0, . . . , ls,N) be the vector representing the number of
requests at each tier in the application. As described in Section 7.4, the stationary
probability of having configuration �l, when no admission control is applied, is
given by q(�l) = ∏N

i=0 P(Lc,i = lc,i)∏N
i=0 P(Ls,i = ls,i). Define qi by

qi = ∑{�l | lc,0+···+lc,N+ls,0+···+ls,N=i} q(�l).

Then, the probability of having configuration�l, when admission control is applied,

SEC. 7.7 APPLICATIONS OF THE MODEL 185

0 5 10 15 20 25 30
0

5

10

15

20

25

30

N

K

p = 0.01
p = 0.05
p = 0.2
p = 0.5

(a) Iso-loss curves

0 5 10 15 20 25 30
0

10

20

30

40

50

60

N

E[S]

p = 0.01
p = 0.05
p=0.2
p=0.5

(b) Delay curves

Figure 7.8: Iso-loss curves for several blocking probabilities p with asso-
ciated delay curves.

is represented by q(�l)/∑K
i=1 qi. In particular, the probability of having in total l

customers in the system can be written as

P(L = l) =
ql

∑K
i=1 qi

.

Using this expression and the arrival theorem by Lavenberg and Reiser [Lavenberg
and Reiser, 1980], one can obtain the mean response time ESac,0, when applying

186
ANALYSIS OF END-TO-END RESPONSE TIMES

OF MULTI-TIER INTERNET SERVICES CHAP. 7

admission control with no buffers1. This yields

ESac,0 =
∑K

l=1
l
λql

∑K−1
i=0 qi

.

A similar approximate analysis can be performed when a buffer of size N is added
in front of the application. When K customers are already in the system, the
requests in excess of K are buffered and wait their turn to enter the system in an
FCFS manner. However, when the buffer is full, requests are again rejected. The
mean response time ESac,N , when admission control is applied with a buffer size
of N, is then approximated by

ESac,N ≈ P(L(0) = 0)qK

N

∑
l=0

l
(qK

qK−1

)l+1
+

P(L(1) = 0)
[K

∑
l=1

l
λ

ql +
K
λ

qK

N

∑
j=1

(qK

qK−1

) j
]
,

where the expression P(L(a) = 0) is defined as

P(L(a) = 0) =
[K

∑
l=0

ql +qK

N−a

∑
j=1

(qK

qK−1

) j
]−1

.

We can study the influence of the buffer size using the results for admission
control systems with and without a buffer given in the previous paragraphs. Fig-
ure 7.8(a) shows the influence of the buffer size N as iso-loss curves, i.e., all
combinations of N and K for which the blocking probability P(L(0) = N +K) is a
constant p. The results are for a 3-tier system with one service tier at the front-end,
and two multi-server FCFS service tiers at the back-end. The parameters used for
this model are λ = 1, βs,0 = 0.3, βs,1 = 1.6, and βs,2 = 0.9.

The results show that only three customers are allowed in the system to obtain
a blocking probability of 0.5 when the buffer size is less than two. When the
buffer size is larger than two, only two customers are allowed. Consequently, to
guarantee that the blocking probability is less than 0.5, the threshold K must be
greater than three when the buffer size N is less than two, and otherwise, K must be
greater than two. Since differences in the buffer size and threshold limit influence
the mean response time, Figure 7.8(b) shows the delay curves corresponding to the
values of the iso-loss curves as a function of N. Thus, for instance, Figure 7.8(b)
shows that for a blocking probability of 0.5, the mean response time increases
linearly when the buffer size N increases.

1Here, buffers describe waiting queues that hold unprocessed requests yet to be admitted to the
system.

SEC. 7.7 APPLICATIONS OF THE MODEL 187

The graphs of Figure 7.8 show the importance of selecting an appropriate
buffer size with its corresponding blocking probability. When the blocking prob-
ability is high, the number of allowed customers in the application will be small,
so that queueing mainly occurs in the buffer in front of the application. When the
blocking probability is small, the buffer in front of the application is hardly used,
so the number of admitted requests is high with as result that queueing occurs
mainly within the application.

7.7.3. SLA negotiation

In this section, we demonstrate how to compute performance measures that can
be used in effective Service Level Agreement (SLA) negotiation. SLA negotiation
is a common problem that arises when an application is composed of not just its
own business logic and databases but also using services provided by external
companies. For example, many small Internet retailers use amazon.com’s Web
service storage service2, order fulfillment service3 to build their own application.

Now, let us see how our model can be used to perform these SLA negotia-
tions. Consider a 3-tier system with one service tier at the front-end, called the
application server (AS), and two external service tiers that are part of different
domains. Assume that the AS has an SLA with its end-users stating that the mean
duration for obtaining a response is less than 5 seconds with a maximum standard
deviation of 2 seconds. Moreover, suppose that requests of users arrive accord-
ing to a Poisson process at the AS with rate λ = 1. The AS has a mean service
time of βs,0 = 0.1 seconds, and the external service tiers are single server FCFS
nodes with exponentially distributed service times. The key question for effective
SLA negotiation is: “What combination of SLAs with the other domains leads to
the desired response times?”. More specifically, one could ask: What is the SLA
negotiation space of the AS?

Mean response times: The total response time can be split up in the sojourn time
Ss,0 at the AS, and the sojourn times Ss,1 and Ss,2 at the external service tiers. The
results of Section 7.4 yield that the mean sojourn time at the AS equals ESs,0 =
0.43 seconds. Since the mean response time is constrained by 5 seconds, a request
can spend on average up to a maximum of 4.57 seconds at the other services. The
other services handle just one request at a time, i.e., if there are more requests at
those service tiers, requests have to wait and will be served according to an FCFS
discipline. The results in Section 7.4 enable us to compute all combinations of the
mean service times βs,1 and βs,2 for which the total response time is at most 4.57
seconds.

2http://www.amazon.com/s3
3http://www.amazonservices.com/fulfillment/

188
ANALYSIS OF END-TO-END RESPONSE TIMES

OF MULTI-TIER INTERNET SERVICES CHAP. 7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β
s,2

β
s,1

E[S] = 5

(a) Negotiation space under the constraint E[S] < 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β
s,2

β
s,1

SD[S] = 2

(b) Negotiation space under the constraint SD[S] < 2

Figure 7.9: The SLA negotiation space for all βs,1 and βs,2.

On first glance, one would expect that the region of these service times is
bounded by a linear curve, since higher service times at one tier must result in
lower service times at the other. Figure 7.9(a) shows that this is not the case, and
that the boundary is non-linear. This negotiation space, together with the costs of
providing a specific service time, can be utilized by the AS to minimize the total
costs by negotiating an SLA with both service tiers using the optimal βs,1 and βs,2.

SEC. 7.7 APPLICATIONS OF THE MODEL 189

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

β
s,2

β
s,1

E[S] = 32
E[S] = 16
E[S] = 8
E[S] = 4
E[S] = 2
E[S] = 1

(a) Iso-curves for the mean E[S]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

β
s,2

β
s,1

SD[S] = 8
SD[S] = 4
SD[S] = 2
SD[S] = 1

(b) Iso-curves for the standard deviation SD[S]

Figure 7.10: The SLA negotiation space for all βs,1 and βs,2.

Standard deviation of the response times: By applying the same procedure as
in the previous paragraphs, we can determine the negotiation space of the AS with
the restriction that the standard deviation of the total sojourn time is at most 2
seconds. By using the results of Section 7.4, we obtain the variance Var Ss,0 of
the sojourn time at the AS. Subsequently, we can compute all combinations of
βs,1 and βs,2 such that their standard deviation, when added to Var Ss,0, is at most
2 seconds. Figure 7.9(b) shows the region of these service times. To adhere to

190
ANALYSIS OF END-TO-END RESPONSE TIMES

OF MULTI-TIER INTERNET SERVICES CHAP. 7

the two restrictions simultaneously, i.e., the expectation of the sojourn time is at
most 5 seconds and the standard deviation is at most 2 seconds, we intersect both
regions to keep the smallest region with combinations of βs,1 and βs,2.

In order to study the effects of the constraints on the parameter regions, we
have constructed iso-curves for the upper bounds on the mean ES and the stan-
dard deviation SD[S]. Figure 7.10(a) and (b) show these iso-curves that depict all
combinations of βs,1 and βs,2 such that ES and SD[S], respectively, have a specific
constant value. The figure shows that a more strict constraint on ES results in a
more linear iso-curve. In such a case, the service times are that low so that the
sojourn times almost equal the service times, and therefore almost no queueing
occurs. The case for a less strict constraint results in an iso-curve that almost has
a square shape. This is explained by the fact that the longer requests have to wait
in one queue of the network, the shorter they have to wait in the other queue as
long as the service time of the second queue is less than the service time of the
first queue.

7.8. CONCLUSION

In this chapter, we presented an analytical model for multi-tiered Internet ap-
plications. Based on this model, we can estimate the mean response time of an
application and also provide accurate approximations to its variance. We veri-
fied the effectiveness of our approximations using numerical simulations resulting
in a margin of error of less 6%. Subsequently, we performance extensive ex-
perimentations with multiple industry-standard Web application benchmarks for
a wide-range of resource configurations. Our experiments we observed that the
error margin of the model is usually less than 10%. This demonstrates the accu-
racy of our model to capture the real behaviour of for a wide range of Internet
applications.

To the best of our knowledge, this is the first work that aims to model the
variability in response times for multi-tiered Internet applications. Our proposed
model is highly flexible as it allows to easily accommodate for changes in the
resource configuration. Moreover, the model can also deal with applications de-
ployed multiple caching tiers with high accuracy. We also demonstrated how our
model can be applied to SLA-driven resource provisioning, effective admission
control, and SLA negotiation. We believe that our model is highly beneficial since
it deals with many realistic design problems that are faced by the designers and
administrators of modern Internet systems.

CHAPTER 8

Conclusion

Modern Web sites have evolved from simple monolithic systems to complex multi-
tiered systems. In contrast to traditional Web sites, these sites do not simply de-
liver pre-written content but dynamically generate content using (one or more)
multi-tiered Web applications. In this thesis, we addressed the question: How to
host multi-tiered Web applications in a scalable manner?

Scaling up a Web application requires scaling its individual tiers. To this end,
various research works have proposed techniques that employ replication or cach-
ing solutions at different tiers. However, most of these techniques aim to optimize
the performance of individual tiers and not the entire application. A key observa-
tion made in our research is that there exists no elixir technique that performs the
best for all Web applications. Effective hosting of a Web application requires care-
ful selection and deployment of several techniques at different tiers. In essence,
for scalable hosting of multi-tiered applications one must:

“Think global, act local.”

From the results presented in this thesis, we can infer that scalable hosting of Web
applications requires: (i) local actions: scalability techniques to be employed at
each tier (of an application) to improve its individual performance, and (ii) global
perspective: an end-to-end evaluation approach that allows us to select the right
set of local actions (i.e., scalability techniques) to employ for a given application
such that its end-to-end performance is maximized with minimum hosting costs.

Local actions

As noted above, local actions at each tier are essential to improve the performance
of the individual tiers. For instance, a simple Web application usually consists

192 CONCLUSION CHAP. 8

of three tiers: presentation, business logic, and database. Techniques to improve
the scalability of the presentation tier of these applications are well understood
and successfully employed by CDNs to host static Web content (as described in
Chapter 2). However, scaling up the business-logic tier involves replication of the
application code across multiple servers. This problem is also well understood
provided that the application code is stateless.

Scaling up the database tier is harder and has a significant impact on the per-
formance of database-driven Web applications. As we demonstrated in this thesis,
for data-intensive applications, mere replication of the application code at the edge
servers and a centralized database system often does not suffice, as generation of
each page still requires the application code to make many queries to the database.
To this end, we propose a database caching technique, GlobeCBC, that improves
the performance of Web applications provided the application’s query workload
exhibits high locality (see Chapter 3). While GlobeCBC is suited mostly for ap-
plications with high query locality, applications that do not have these character-
istics require replication of the application data to have low access latencies to the
database. To this end, we presented GlobeDB, a system that performs autonomic
replication of application data (See Chapter 4). In Chapter 5, we demonstrated
how the database throughput (in addition to its response time) can be improved by
a combination of partial replication, query caching and query routing.

Global perspective

While the aforementioned techniques and systems improve the performance of the
individual tiers (and eventually the application), an application’s administrator is
not only interested in the performance of its individual tiers but also in its end-
to-end performance. However, due to the complex interaction between the tiers,
tier-level optimization does not allow us to explain the overall performance of the
application. This calls for a model that allows us to understand the global end-to-
end performance of an application in relation to the performance of the individual
tiers and provision resources accordingly (to meet its performance-related SLAs).

To this end, we propose a resource provisioning approach (described in Chap-
ter 6) that allows us to choose the best resource configuration for hosting a Web
application such that its end-to-end response time can be optimized with minimum
usage of resources. The proposed approach is based on an analytical model for
multi-tier systems (described in Chapters 6 and 7), which allows us to derive ex-
pressions for estimating the mean end-to-end response time and its variance. The
proposed model is also capable of modeling the caching techniques that can be
incorporated at different tiers. We validate the accuracy of the model and the ef-
fectiveness of our resource provisioning approach through extensive experimenta-
tion with several industry-standard benchmarks. Our evaluations suggest that our

SEC. 8.0 CONCLUSION 193

proposed resource provisioning approach makes the correct choices for different
types of services and workloads. In many cases, our approach reaches the required
performance-related SLA with less servers than traditional resource provisioning
techniques.

Future directions

This thesis presented several techniques and approaches to improve the scalability
of multi-tiered Web applications. Undoubtedly, this is a large area that cannot be
fully covered in a single dissertation. There are a number of directions in which
our research can be extended or complemented.

There are a few open research issues that arise from the analytical model we
employed in Chapters 6 and 7. First, the results presented in this thesis were vali-
dated with only industry-standard benchmarks and not with real-world traces. We
believe performing validations with real-world traces can give us more insights
and will allow us to refine the model, if necessary. Second, the proposed model
allows us to study the system under steady state and cannot estimate the end-to-
end response time during overloads. Modeling end-to-end response times during
overloads (i.e., when the arrival rate of requests is greater than the departure rate)
requires different analytical models altogether. We believe such a model is essen-
tial for online businesses as they are interested in their application’s performance
not only during stable loads but also during overloads. Finally, deriving expres-
sions for estimating the percentiles (e.g., 99%, 99.9%) in end-to-end response
times would be desirable.

In the context of the SLA-driven resource provisioning method (described in
Chapter 6), it would be interesting to investigate adaptation mechanisms that must
be employed in the face of flash crowds (sudden and huge increase in request rate).
For handling such events, we envisage that the adaptations to be performed might
require mechanisms of different nature such as enhanced admission control, and
reduced consistency requirements.

Most of the results presented in this thesis assume a failure-free environ-
ment. Server failures in a tier can be tolerated easily as long as the tier is state-
less [Brewer, 2000]. However, handling failures in the database tier is harder. As
proved in [Gilbert and Lynch, 2002], it is impossible to provide both strong con-
sistency and perfect availability in a system that is prone to server failures and
network partitions.

If we restrict ourselves to server failures, we believe that traditional database
replication solutions (used in cluster environments) can be employed to improve
the availability of the database tier. However, when GlobeCBC-based database
query caching is employed, we must address two new availability related issues.
First, when an edge server fails and its clients are redirected to another edge

194 CONCLUSION CHAP. 8

server, we must make sure that the failover remains transparent to the clients.
This requires to provide read-your-write consistency guarantees. Second, when
the origin database server fails, another one must be ready to take over. While
maintaining the availability of the origin database can be reduced to a classical
replicated database problem, we must also make sure that no cache invalidation is
lost so that application consistency is preserved.

We have addressed these issues in [Rilling et al., 2007] where we show that
these two questions can be answered with a few changes to GlobeCBC and that the
resulting performance overhead is low. However, it would be interesting to extend
these mechanisms such that they can tolerate network partitions and examine its
impact on consistency.

Security related issues have not been addressed in this thesis. The replication
and caching techniques presented in this thesis are designed for a trusted environ-
ment where all servers belong to a single organization. However, if the servers
are formed out of resources from multiple organizations as done in collaborative
CDNs like Globule [Pierre and van Steen, 2006], security and privacy of the repli-
cated data become important issues and are very much open problems.

To host Web applications in an untrusted environment, we need to address
three important issues. First, we need to design security-aware data placement
algorithms that allow application providers to define and select “trustable” servers
to host their applications (e.g., [Crispo et al., 2005]). Second, we need mecha-
nisms to enable the application provider to verify the integrity of the responses
generated by the third party servers (e.g., [Popescu et al., 2005]). Third, we need
privacy-aware data replication mechanisms to ensure that third-party servers do
not access application data they are not authorized to access (e.g., [Manjhi et al.,
2007]).

Summary

The ever-growing popularity of the Web has forced many businesses to open their
processes to their Web clients. The software systems hosting these businesses are
exceedingly complex. For instance, a single client response is generated by (tens
or hundreds of) multi-tiered applications [Vogels, 2006]. The client-perceived per-
formance of these applications is crucial for the sustainability of these businesses.
In this thesis, we have presented several techniques and systems that not only can
improve the performance of individual tiers but also can aid the administrators of
these systems in selecting the best set of techniques to host their applications. We
believe these techniques can aid and help Web practitioners in taming the problem
of scalable hosting of multi-tiered Web applications.

SAMENVATTING

Schaalbare Exploitatie van Web
Applicaties

Moderne Web sites zijn geëvolueerd van simpele monolithische systemen naar
complexe meerlagen systemen. In tegenstelling tot traditionele Web sites lev-
eren deze sites niet simpelweg bestaande pagina’s maar genereren ze pagina’s
dynamisch met behulp van (één of meerdere) meerlagige Web applicaties. Deze
dissertatie gaat in op de volgende onderzoeksvraag: Hoe kan een meerlagige Web
applicatie op een schaalbare en efficiënte manier geëxploiteerd worden?

Het opschalen van een Web applicatie vereist het opschalen van zijn indi-
viduele lagen. Hiertoe hebben verscheidene onderzoeken technieken voorgesteld
die replicatie of caching oplossingen toepassen in de verschillende lagen. Een
sleutelobservatie uit ons onderzoek is dat er geen enkele techniek bestaat die het
beste werkt voor alle Web applicaties. Effectieve exploitatie van een Web appli-
catie vereist zorgvuldige selectie en toepassing van meerdere technieken in ver-
schillende lagen.

De onderliggende these van deze dissertatie is dat schaalbare exploitatie van
Web applicaties vereist: (1) lokale acties: schaalbaarheidstechnieken moeten toe-
gepast worden in iedere laag om zijn individuele prestaties te verbeteren, en (2) een
globaal perspectief: een evaluatie aanpak op het hoogste systeemniveau die ons
in staat stelt de juiste verzameling van lokale acties (d.w.z. schaalbaarheidstech-
nieken) te kiezen voor een gegeven applicatie zodat eindprestaties worden gemax-
imaliseerd met minimale exploitatie kosten.

Lokale Acties

Een simpele Web applicatie bestaat normaliter uit drie lagen: presentatie, business
logica en databank. Technieken om de schaalbaarheid van de presentatielaag te

196 SAMENVATTING

verbeteren zijn uitonderzocht en worden succesvol toegepast in zogeheten content-
delivery networks om statische Web pagina’s aan te bieden (zoals beschreven in
Hoofdstuk 2). Het opschalen van de business logica-laag daarentegen vereist het
repliceren van de applicatiecode over meerdere servers. Dit probleem is ook uiton-
derzocht in het geval dat de applicatiecode geheugenloos is.

Het opschalen van de databanklaag is moeilijker en heeft een significante
uitwerking op de prestaties van databankgedreven Web applicaties. Voor data-
intensieve applicaties is het slechts repliceren van de applicatiecode op de edge
servers en een centraal databanksysteem onvoldoende. Dit omdat voor het gener-
eren van elke pagina de applicatie code nog steeds meerdere zoekopdrachten moet
uitvoeren op de databank. Hiertoe introduceren we een caching techniek voor
databanken voor, genaamd GlobeCBC, die de prestaties van Web applicaties ver-
beterd onder de voorwaarde dat de zoekopdrachten van de applicatie een hoge
lokaliteit vertonen. Applicaties die niet aan deze voorwaarde voldoen vereisen
replicatie van de applicatiedata om lage toegangstijden tot de databank te realis-
eren. Voor deze applicaties presenteren we GlobeDB, een systeem voor autonome
replicatie van applicatiedata (zie Hoofdstuk 4). In Hoofdstuk 5 laten we zien hoe,
naast de reactietijd, ook de doorvoersnelheid van de databank verbeterd kan wor-
den door een combinatie van partiële replicatie, caching van zoekopdrachten en
het routeren van zoekopdrachten.

Globaal Perspectief

Hoewel de zojuist genoemde technieken en systemen de prestaties van de indi-
viduele lagen (en uiteindelijk dus die van de applicatie) verbeteren is een appli-
catiebeheerder niet slechts geı̈ntereseerd in de prestaties van de individuele lagen,
maar ook in de prestaties van de applicatie als geheel gemeten. De complexe in-
teractie tussen lagen stelt ons echter niet in staat de uiteindelijke prestaties van de
applicatie te verklaren met de optimalisaties per laag. Dit vraagt om een model
dat ons in staat stelt de globale prestaties van een applicatie te begrijpen in re-
latie tot de prestaties van de individuele lagen, en dienovereenkomstig middelen
te alloceren zodat deze aan zijn prestatie-gerelateerde Service-Level Agreements
(SLAs) kan voldoen.

We introduceren hiertoe een aanpak voor de allocatie van middelen voor (be-
schreven in Hoofdstuk 6) die ons de beste configuratie van middelen laat kiezen
voor de exploitatie van een Web applicatie, zodat zijn uiteindelijke reactietijd
geoptimaliseerd kan worden met een minimaal gebruik van middelen. De voor-
gestelde aanpak is gebaseerd op een analytisch model voor meerlagige systeem
(beschreven in Hoofdstuk 6 en 7), dat ons in staat stelt formules af te leiden voor
het schatten van de gemiddelde reactietijd en de variantie daarvan. Het voor-
gestelde model is ook in staat om de caching technieken die in de verschillende

SAMENVATTING 197

lagen toegepast kunnen worden te modelleren. We valideren de accuratesse van
het model en de effectiviteit van onze aanpak voor de allocatie van middelen door
uitgebreide experimenten met standaard maatstaven uit de industrie. Onze eval-
uaties suggereren dat onze voorgestelde aanpak de juiste keuzes maakt voor ver-
schillende diensten en systeembelastingen. In veel gevallen haalt onze aanpak de
vereiste prestatie-gerelateerde SLA met minder servers dan traditionele allocatie
technieken.

BIBLIOGRAPHY

Abdelzaher, T. F., Shin, K. G., and Bhatti, N. (2002). Performance guarantees for
web server end-systems: A control-theoretical approach. IEEE Trans. Parallel
Distrib. Syst., 13(1):80–96.

Aboba, B., Arkko, J., and Harrington, D. (2000). Introduction to Accounting
Management. RFC 2975.

Abraham, B. (2003). Quality improvement, six sigma, and statistical thinking.
Stat. Methods, 5(2):41–56.

Aggarwal, A. and Rabinovich, M. (1998). Performance of Replication Schemes
for an Internet Hosting Service. Technical Report HA6177000-981030- 01-TM,
AT&T Research Labs, Florham Park, NJ.

Amiri, K., Park, S., Tewari, R., and Padmanabhan, S. (2003a). DBProxy: A dy-
namic data cache for web applications. In Proceedings of Internation Conference
on Data Engineering, pages 821–831.

Amiri, K., Park, S., Tewari, R., and Padmanabhan, S. (2003b). Scalable template-
based query containment checking for web semantic caches. In Proceedings of
Internation Conference on Data Engineering, pages 493–504.

Amiri, K., Tewari, R., Park, S., and Padmanabhan, S. (2002). On space manage-
ment in a dynamic edge data cache. In WebDB, pages 37–42.

Amza, C., Cox, A., and Zwaenepoel, W. (2003). Conflict-aware scheduling for
dynamic content applications. Proceedings of the Fifth USENIX Symposium on
Internet Technologies and Systems.

Amza, C., Soundararajan, G., and Cecchet, E. (2005). Transparent caching with
strong consistency in dynamic content web sites. In ICS ’05: Proceedings of the
19th annual international conference on Supercomputing, pages 264–273, New
York, NY, USA. ACM Press.

200 BIBLIOGRAPHY

Andrews, M., Shepherd, B., Srinivasan, A., Winkler, P., and Zane, F. (2002).
Clustering and Server Selection Using Passive Monitoring. In 21st INFOCOM
Conference, Los Alamitos, CA. IEEE, IEEE Computer Society Press.

Ardaiz, O., Freitag, F., and Navarro, L. (2001). Improving the Service Time of
Web Clients using Server Redirection. In 2nd Workshop on Performance and
Architecture of Web Servers, New York, NY. ACM, ACM Press.

Arlitt, M., Krishnamurthy, D., and Rolia, J. (2001). Characterizing the scal-
ability of a large web-based shopping system. ACM Transactions on Internet
Technology, 1(1):44–69.

Ballintijn, G., van Steen, M., and Tanenbaum, A. (2000). Characterizing In-
ternet Performance to Support Wide-area Application Development. Operating
Systems Review, 34(4):41–47.

Barbir, A., Cain, B., Douglis, F., Green, M., Hoffman, M., Nair, R., Potter, D.,
and Spatscheck, O. (2002). Known CDN Request-Routing Mechanisms. Work
in progress.

Barford, P., Cai, J.-Y., and Gast, J. (2001). Cache Placement Methods Based on
Client Demand Clustering. Technical Report TR1437, University of Wisconsin
at Madison.

Barham, P., Donnelly, A., Isaacs, R., and Mortier, R. (2004). Using magpie for
request extraction and workload modelling. In Proceedings of USENIX Operat-
ing Systems Design and Implementation.

Barroso, L., Dean, J., and Hlzle, U. (2003). Web search for a planet: The Google
cluster architecture. IEEE Micro, 23(2):22–28.

Baskett, F., Chandy, K. M., Muntz, R. R., and Palacios, F. G. (1975). Open,
closed, and mixed networks of queues with different classes of customers. Jour-
nal of the ACM, 22(2):248–260.

Bennani, M. N. and Menasce, D. A. (2005). Resource allocation for autonomic
data centers using analytic performance models. In ICAC ’05: Proceedings of
the Second International Conference on Automatic Computing, pages 229–240,
Washington, DC, USA. IEEE Computer Society.

Berg, J. v. d. and Boxma, O. (1991). The M/G/1 queue with processor sharing
and its relation to a feedback queue. Queueing Syst. Theory Appl., 9(4):365–402.

BIBLIOGRAPHY 201

Bernstein, P. A. and Goodman, N. (1983). The failure and recovery problem for
replicated databases. In 2nd Symposium on Principles of Distributed Computing,
pages 114–122, New York, NY. ACM Press.

Bhide, M., Deolasee, P., Katkar, A., Panchbudhe, A., Ramamritham, K., and
Shenoy, P. (2002). Adaptive Push-Pull: Disseminating Dynamic Web Data. IEEE
Transactions on Computers, 51(6):652–668.

Bloom, B. H. (1970). Space/time tradeoffs in hash coding with allowable errors.
Communications of the ACM, 13(7):422–426.

Bornhövd, C., Altinel, M., Mohan, C., Pirahesh, H., and Reinwald, B. (2004).
Adaptive database caching with DBCache. Data Engineering, 27(2):11–18.

Boxma, O. and Daduna, H. (1990). Sojourn times in queueing networks.
Stochastic Analysis of Computer and Communication Systems, pages 401–450.

Boxma, O., Mei, R. v. d., Resing, J., and Wingerden, K. v. (2005). Sojourn time
approximations in a two-node queueing network. In Proceedings of the 19th
International Teletraffic Congress - ITC 19, pages 1121–1133.

Brewer, E. A. (2000). Towards robust distributed systems (abstract). In PODC
’00: Proceedings of the nineteenth annual ACM symposium on Principles of
distributed computing, page 7, New York, NY, USA. ACM Press.

Brynjolfsson, E., Smith, M., and Hu, Y. (2003). Consumer surplus in the digi-
tal economy: Estimating the value of increased product variety at online book-
sellers. MIT Sloan Working Paper No. 4305-03.

Cao, P. and Irani, S. (1997). Cost-aware WWW proxy caching algorithms. In
Proceedings of the 1997 Usenix Symposium on Internet Technologies and Sys-
tems (USITS-97), Monterey, CA.

Cao, P. and Liu, C. (1998). Maintaining Strong Cache Consistency in the World
Wide Web. IEEE Transactions on Computers, 47(4):445–457.

Cao, P., Zhang, J., and Beach, K. (1998). Active cache: Caching dynamic con-
tents on the Web. In Proceedings of the Middleware Conference, pages 373–388.

Cardellini, V., Colajanni, M., and Yu, P. (1999). Dynamic Load Balancing on
Web-Server Systems. IEEE Internet Computing, 3(3):28–39.

Carter, R. L. and Crovella, M. E. (1997). Dynamic Server Selection Using Band-
width Probing in Wide-Area Networks. In 16th INFOCOM Conference, pages
1014–1021, Los Alamitos, CA. IEEE, IEEE Computer Society Press.

202 BIBLIOGRAPHY

Castro, M., Costa, M., Key, P., and Rowstron, A. (2003). PIC: Practical Inter-
net Coordinates for Distance Estimation. Technical Report MSR-TR-2003-53,
Microsoft Research.

Cate, V. (1992). Alex – A Global File System. In File Systems Workshop, pages
1–11, Berkeley, CA. USENIX, USENIX.

Cecchet, E. (2004). C-JDBC: a middleware framework for database clustering.
Data Engineering, 27(2):19–26.

Challenger, J., Dantzig, P., Iyengar, A., and Witting, K. (2005). A fragment-
based approach for efficiently creating dynamic web content. ACM Transactions
on Internet Technology, 5(2):359–389.

Chandra, P., Chu, Y.-H., Fisher, A., Gao, J., Kosak, C., Ng, T. E., Steenkiste, P.,
Takahashi, E., and Zhang, H. (2001). Darwin: Customizable Resource Manage-
ment for Value-Added Network Services. IEEE Network, 1(15):22–35.

Chen, J., Soundararajan, G., and Amza, C. (2006). Autonomic provisioning
of backend databases in dynamic content web servers. In Proc. Intl Conf. on
Autonomic Computing.

Chen, Y., Katz, R., and Kubiatowicz, J. (2002a). Dynamic Replica Placement
for Scalable Content Delivery. In 1st International Workshop on Peer-to-Peer
Systems.

Chen, Y., Qiu, L., Chen, W., Nguyen, L., and Katz, R. H. (2002b). Clustering
web content for efficient replication. In Proceedings of 10th IEEE International
Conference on Network Protocols (ICNP’02), pages 165–174.

Clark, C., Fraser, K., Hand, S., Hansen, J. G., Jul, E., Limpach, C., Pratt, I.,
and Warfield, A. (2005). Live migration of virtual machines. In Proc. NSDI
Symposium.

Coffman, E., Muntz, R., and Trotter, H. (1970). Waiting time distributions for
processor-sharing systems. Journal of the ACM, 17(1):123–130.

Cohen, E. and Kaplan, H. (2001). Proactive Caching of DNS Records: Ad-
dressing a Performance Bottleneck. In 1st Symposium on Applications and the
Internet, Los Alamitos, CA. IEEE, IEEE Computer Society Press.

Conti, M., Gregori, E., and Lapenna, W. (2002). Replicated Web Services: A
Comparative Analysis of Client-Based Content Delivery Policies. In Networking
2002 Workshops, volume 2376 of Lecture Notes on Computer Science, pages 53–
68, Berlin. Springer-Verlag.

BIBLIOGRAPHY 203

Cooper, R. (1981). Introduction to Queueing Theory. North Holland.

Cox, R., Dabek, F., Kaashoek, F., Li, J., and Morris, R. (2003). Practical, Dis-
tributed Network Coordinates. In 2nd ACM Workshop on Hot Topics in Networks
(HotNets-II), Cambridge, MA, USA.

Crispo, B., Sivasubramanian, S., Mazzoleni, P., and Bertino, E. (2005). P-hera:
Scalable fine-grained access control for p2p infrastructures. In ICPADS ’05:
Proceedings of the 11th International Conference on Parallel and Distributed
Systems (ICPADS’05), pages 585–591, Washington, DC, USA. IEEE Computer
Society.

Crovella, M. and Carter, R. (1995). Dynamic Server Selection in the Internet. In
3rd Workshop on High Performance Subsystems, Los Alamitos, CA. IEEE, IEEE
Computer Society Press.

da Cunha, C. R. (1997). Trace Analysis and its Applications to Performance
Enhancements of Distributed Information Systems. Ph.D. Thesis, Boston Uni-
versity.

Dar, S., Franklin, M. J., Jonsson, B., Srivastava, D., and Tan, M. (1996). Se-
mantic data caching and replacement. In VLDB ’96: Proceedings of the 22th
International Conference on Very Large Data Bases, pages 330–341.

Datta, A., Dutta, K., Thomas, H., VanderMeer, D., Suresha, and Ramamritham,
K. (2002). Proxy-based acceleration of dynamically generated content on the
world wide web: an approach and implementation. In Proceedings of the 2002
ACM SIGMOD international conference on Management of data, pages 97–108.
ACM Press.

Davis, A., Parikh, J., and Weihl, W. E. (2004). Edgecomputing: extending enter-
prise applications to the edge of the internet. In WWW Alt. ’04: Proceedings of
the 13th international World Wide Web conference on Alternate track papers &
posters, pages 180–187, New York, NY, USA. ACM Press.

Delgadillo, K. (1999). Cisco DistributedDirector. Technical report, Cisco Sys-
tems, Inc.

Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman, R., and Weihl, B. (2002).
Globally Distributed Content Delivery. IEEE Internet Computing, 6(5):50–58.

Douglis, F., Haro, A., and Rabinovich, M. (1997). HPP: HTML macro-
preprocessing to support dynamic document caching. In USENIX Symposium
on Internet Technologies and Systems.

204 BIBLIOGRAPHY

Doyle, R., Chase, J., Asad, O., Jin, W., and Vahdat, A. (2003). Web server
software architectures. In Proc. USENIX Symposium on Internet Technologies
and Systems.

Duvvuri, V., Shenoy, P., and Tewari, R. (2000). Adaptive Leases: A Strong Con-
sistency Mechanism for the World Wide Web. In 19th INFOCOM Conference,
pages 834–843, Los Alamitos, CA. IEEE, IEEE Computer Society Press.

Dykes, S. G., Robbins, K. A., and Jeffrey, C. L. (2000). An Empirical Evaluation
of Client-side Server Selection. In 19th INFOCOM Conference, pages 1361–
1370, Los Alamitos, CA. IEEE, IEEE Computer Society Press.

Elnikety, S., Zwaenepoel, W., and Pedone, F. (2005). Database replication using
generalized snapshot isolation. In SRDS ’05: Proceedings of the 24th IEEE Sym-
posium on Reliable Distributed Systems (SRDS’05), pages 73–84, Washington,
DC, USA. IEEE Computer Society.

Fei, Z. (2001). A Novel Approach to Managing Consistency in Content Distri-
bution Networks. In 6th Web Caching Workshop, Amsterdam. North-Holland.

Fei, Z., Bhattacharjee, S., Zegura, E. W., and Ammar, M. H. (1998). A novel
server selection technique for improving the response time of a replicated ser-
vice. In Proceedings of INFOCOM, pages 783–791.

Fitzpatrick, B. (2004). Inside LiveJournal’s backend, or “holy hell that’s a lot of
hits!”. Presentation at the O’Reilly Open Source Convention. http://www.danga.
com/words/2004_oscon/oscon2004.pdf.

Francis, P., Jamin, S., Jin, C., Jin, Y., Raz, D., Shavitt, Y., and Zhang, L. (2001).
IDMaps: Global Internet Host Distance Estimation Service. IEEE/ACM Trans-
actions on Networking, 9(5):525–540.

Francis, P., Jamin, S., Paxson, V., Zhang, L., Gryniewicz, D., and Jin, Y. (1999).
An Architecture for a Global Internet Host Distance Estimation Service. In 18th
INFOCOM Conference, pages 210–217, Los Alamitos, CA. IEEE, IEEE Com-
puter Society Press.

Fu, Y., Cherkasova, L., Tang, W., and Vahdat, A. (2002). EtE: Passive End-
to-End Internet Service Performance Monitoring. In USENIX Annual Technical
Conference, pages 115–130, Berkeley, CA. USENIX, USENIX.

Gao, L., Dahlin, M., Nayate, A., Zheng, J., and Iyengar, A. (2003). Application
Specific Data Replication for Edge Services . In 12th International World Wide
Web Conference, New York, NY. ACM, ACM Press.

BIBLIOGRAPHY 205

Ghemawat, S., Gobioff, H., and Leung, S.-T. (2003). The google file system. In
Proc. SOSP, pages 29–43.

Gilbert, S. and Lynch, N. (2002). Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. SIGACT News, 33(2):51–
59.

Gray, C. and Cheriton, D. (1989). Leases: An Efficient Fault-Tolerant Mecha-
nism for Distributed File Cache Consistency. In 12th Symposium on Operating
System Principles, pages 202–210, New York, NY. ACM, ACM Press.

Gray, J. and Reuter, A. (1993). Transaction Processing: Concepts and Tech-
niques. Morgan Kaufman, San Mateo, CA.

Gummadi, K. P., Saroiu, S., and Gribble, S. D. (2002). King: Estimating Latency
between Arbitrary Internet End Hosts. In 2nd Internet Measurement Workshop,
pages 5–18, New York, NY. ACM, ACM Press.

Holliday, J., Agrawal, D., and Abbadi, A. (2002). Partial database replication
using epidemic communication. In 22nd International Confernce on Distributed
Computing Systems (ICDCS), pages 485–493, Vienna, Austria, July 2002.

Huffaker, B., Fomenkov, M., Plummer, D. J., Moore, D., and Claffy, K. (2002).
Distance Metrics in the Internet. In International Telecommunications Sympo-
sium, Los Alamitos, CA. IEEE, IEEE Computer Society Press.

Hull, S. (2002). Content Delivery Networks. McGraw-Hill, New York, NY.

Jackson, J. (1957). Networks of waiting lines. Operations Research, 5:518–521.

Janiga, M. J., Dibner, G., and Governali, F. J. (2001). Internet Infrastructure:
Content Delivery. Goldman Sachs Global Equity Research.

Johnson, K. L., Carr, J. F., Day, M. S., and Kaashoek, M. F. (2001). The Mea-
sured Performance of Content Distribution Networks. Computer Communica-
tions, 24(2):202–206.

Jung, J., Krishnamurthy, B., and Rabinovich, M. (2002a). Flash Crowds and
Denial of Service Attacks: Characterization and Implications for CDNs and Web
Sites. In 11th International World Wide Web Conference, pages 252–262.

Jung, J., Krishnamurthy, B., and Rabinovich, M. (2002b). Flash crowds and
denial of service attacks: characterization and implications for cdns and web
sites. In Proc. Intl. Conf. on World Wide Web, pages 293–304.

206 BIBLIOGRAPHY

Kamra, A., Misra, V., and Nahum, E. (2004). Yaksha: A controller for managing
the performance of 3-tiered websites. In Proceedings of the 12th IWQoS.

Kangasharju, J., Roberts, J., and Ross, K. (2001a). Object Replication Strategies
in Content Distribution Networks. In 6th Web Caching Workshop, Amsterdam.
North-Holland.

Kangasharju, J., Ross, K., and Roberts, J. (2001b). Performance Evaluation of
Redirection Schemes in Content Distribution Networks. Computer Communica-
tions, 24(2).

Karaul, M., Korilis, Y., and Orda, A. (1998). A Market-Based Architecture for
Management of Geographically Dispersed, Replicated Web Servers. In 1st In-
ternational Conference on Information and Computation Economics, pages 158–
165, New York, NY. ACM, ACM Press.

Karger, D., Sherman, A., Berkheimer, A., Bogstad, B., Dhanidina, R., Iwamoto,
K., Kim, B., Matkins, L., and Yerushalmi, Y. (1999). Web caching with consis-
tent hashing. In Proc. 8th Intl. Conf. on World Wide Web.

Karlsson, M., Karamanolis, C., and Mahalingam, M. (2002). A Framework for
Evaluating Replica Placement Algorithms. Technical report, HP Laboratories,
Palo Alto, CA.

Kemme, B. and Alonso, G. (1998). A suite of database replication protocols
based on group communication primitives. In Proc. ICDCS, Washington, DC,
USA.

Kemme, B. and Alonso, G. (2000). Don’t be lazy, be consistent: Postgres-r, a
new way to implement database replication. In VLDB ’00: Proceedings of the
26th International Conference on Very Large Data Bases, pages 134–143, San
Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Krishnakumar, N. and Bernstein, A. J. (1994). Bounded Ignorance: A Tech-
nique for Increasing Concurrency in a Replicated System. ACM Transactions on
Database Systems, 4(19):586–625.

Krishnamurthy, B. and Wang, J. (2000). On Network-Aware Clustering of Web
Clients. In SIGCOMM, pages 97–110, New York, NY. ACM, ACM Press.

Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D.,
Gummadi, R., Rhea, S., Weatherspoon, H., Wells, C., and Zhao, B. (2000).
Oceanstore: an architecture for global-scale persistent storage. In Proc. 9th Intl.
Conf. on Architectural Support for Programming Languages and Operating Sys-
tems, pages 190–201.

BIBLIOGRAPHY 207

Lai, K. and Baker, M. (1999). Measuring Bandwidth. In 18th INFOCOM Confer-
ence, pages 235–245, Los Alamitos, CA. IEEE, IEEE Computer Society Press.

Larson, P., Goldstein, J., Guo, H., and Zhou, J. (2004). MTCache: Mid-tier
database caching for SQL server. Data Engineering, 27(2):27–33.

Lavenberg, S. and Reiser, M. (1980). Stationary state probabilities at arrival
instants for closed queueing networks with multiple types of customers. Journal
Applied Probability, 17(4):1048–1061.

Leighton, F. and Lewin, D. (2000). Global Hosting System. United States Patent,
Number 6,108,703.

Li, B., Golin, M. J., Italiano, G. F., and Deng, X. (1999). On the Optimal Place-
ment of Web Proxies in the Internet. In 18th INFOCOM Conference, pages
1282–1290, Los Alamitos, CA. IEEE, IEEE Computer Society Press.

Li, W.-S., Po, O., Hsiung, W.-P., Candan, K. S., and Agrawal, D. (2003). En-
gineering and hosting adaptive freshness-sensitive web applications on data cen-
ters. In Proceedings of the Twelfth international conference on World Wide Web,
pages 587–598. ACM Press.

Lin, Y., Kemme, B., Patiño-Martı́nez, M., and Jiménez-Peris, R. (2005). Mid-
dleware based data replication providing snapshot isolation. In SIGMOD Con-
ference.

Luo, Q. and Naughton, J. F. (2001). Form-based proxy caching for database-
backed web sites. In VLDB ’01: Proceedings of the 27th International Con-
ference on Very Large Data Bases, pages 191–200, San Francisco, CA, USA.
Morgan Kaufmann Publishers Inc.

Manjhi, A., Gibbons, P. B., Ailamaki, A., Garrod, C., Maggs, B. M., Mowry,
T. C., Olston, C., Tomasic, A., and Yu, H. (2007). Invalidation clues for database
scalability services. In Proceedings of ICDE.

Mao, Z., Cranor, C., Douglis, F., Rabinovich, M., Spatscheck, O., and Wang, J.
(2002). A precise and efficient evaluation of the proximity between web clients
and their local dns servers.

McCune, T. and Andresen, D. (1998). Towards a Hierarchical Scheduling Sys-
tem for Distributed WWW Server Clusters. In 7th International Symposium on
High Performance Distributed Computing, pages 301–309, Los Alamitos, CA.
IEEE, IEEE Computer Society Press.

208 BIBLIOGRAPHY

McManus, P. R. (1999). A Passive System for Server Selection within Mirrored
Resource Environments Using AS Path Length Heuristics.

Mei, R. v. d., Gijsen, B., Engelberts, P., Berg, J. v. d., and Wingerden, K. v.
(2006). Response times in queueing networks with feedback. Performance Eval-
uation, 64.

Mei, R. v. d. and Meeuwissen, H. (2006). Modelling end-to-end quality-of-
service for transaction-based services in a multi-domain environment. In Pro-
ceedings IEEE International Conference on Web Services ICWS, Chicago, USA.

Menasce, D. A. (2002). Tpc-w: A benchmark for e-commerce. IEEE Internet
Computing, 06(3):83–87.

Menasce, D. A. (2003). Web server software architectures. IEEE Internet Com-
puting, 7(6):78–81.

Mockapetris, P. (1987a). Domain Names - Concepts and Facilities. RFC 1034.

Mockapetris, P. (1987b). Domain Names - Implementation and Specification.
RFC 1035.

Mogul, J. C., Douglis, F., Feldmann, A., and Krishnamurthy, B. (1997). Potential
Benefits of Delta Encoding and Data Compression for HTTP. In SIGCOMM,
pages 181–194, New York, NY. ACM, ACM Press.

Moore, K., Cox, J., and Green, S. (1996). Sonar - A network proximity service.
Internet-draft. [Online] http://www.netlib.org/utk/projects/sonar/.

Morrison, J. (1985). Response-time distribution for a processor-sharing system.
SIAM Journal on Applied Mathematics, 45(1):152–167.

Mosberger, D. (1993). Memory Consistency Models. Operating Systems Review,
27(1):18–26.

Naik, V. K., Sivasubramanian, S., and Krishnan, S. (2004). Adaptive resource
sharing in a web services environment. In Middleware ’04: Proceedings of
the 5th ACM/IFIP/USENIX international conference on Middleware, pages 311–
330, New York, NY, USA. Springer-Verlag New York, Inc.

Nelder, J. A. and Mead, R. (1965). A Simplex Method for Function Minimiza-
tion. The Computer Journal, 4(7).

Ng, E. and Zhang, H. (2002). Predicting Internet Network Distance with
Coordinates-Based Approaches. In 21st INFOCOM Conference, Los Alamitos,
CA. IEEE, IEEE Computer Society Press.

BIBLIOGRAPHY 209

Ninan, A., Kulkarni, P., Shenoy, P., Ramamritham, K., and Tewari, R. (2002).
Cooperative Leases: Scalable Consistency Maintenance in Content Distribution
Networks. In 11th International World Wide Web Conference, pages 1–12, New
York, NY. ACM Press.

Obraczka, K. and Silva, F. (2000). Network Latency Metrics for Server Proxim-
ity. In Globecom, San Francisco, CA. IEEE.

Odlyzko, A. (2001). Internet Pricing and the History of Communications. Com-
puter Networks, 36:493–517.

Olston, C., Manjhi, A., Garrod, C., Ailamaki, A., Maggs, B., and Mowry, T.
(2005). A scalability service for dynamic web applications. In Proc. CIDR
Conf., pages 56–69.

Ott, T. (1984). The sojourn time distribution in the M/G/1 queue with processor
sharing. Journal of Applied Probability, 21:360–378.

Pai, V., Aron, M., Banga, G., Svendsen, M., Druschel, P., Zwaenepoel, W., and
Nahum, E. (1998). Locality-Aware Request Distribution in Cluster-Based Net-
work Servers. In 8th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 205–216, New York, NY.
ACM, ACM Press.

Pansiot, J. and Grad, D. (1998). On Routes and Multicast Trees in the Internet.
ACM Computer Communications Review, 28(1):41–50.

Paxson, V. (1997a). End-to-end routing behavior in the internet. IEEE/ACM
Trans. Netw., 5(5):601–615.

Paxson, V. (1997b). Measurements and Analysis of End-to-End Internet Dynam-
ics. Technical Report UCB/CSD-97-945, University of California at Berkeley.

Pias, M., Crowcroft, J., Wilbur, S., Harris, T., and Bhatti, S. (2003). Lighthouses
for Scalable Distributed Location. In 2nd International Workshop on Peer-to-
Peer Systems, Berlin. Springer-Verlag.

Pierre, G. and van Steen, M. (2006). Globule: a collaborative content delivery
network. IEEE Communications Magazine, 44(8):127–133.

Pierre, G., van Steen, M., and Tanenbaum, A. (2002). Dynamically selecting
optimal distribution strategies for Web documents. IEEE Transactions on Com-
puters, 51(6):637–651.

210 BIBLIOGRAPHY

Plattner, C. and Alonso, G. (2004). Ganymed: scalable replication for
transactional web applications. In Middleware ’04: Proceedings of the 5th
ACM/IFIP/USENIX international conference on Middleware, pages 155–174,
New York, NY, USA. Springer-Verlag New York, Inc.

Plattner, C., Alonso, G., and zsu, M. T. (2006). Dbfarm: A scalable clus-
ter for multiple databases. In Middleware ’06: Proceedings of the 7th
ACM/IFIP/USENIX international conference on Middleware, New York, NY,
USA. Springer-Verlag New York, Inc.

Popescu, B. C., van Steen, M., Crispo, B., Tanenbaum, A. S., Sacha, J., and
Kuz, I. (2005). Securely replicated web documents. In IPDPS ’05: Proceedings
of the 19th IEEE International Parallel and Distributed Processing Symposium
(IPDPS’05) - Papers, page 104.2, Washington, DC, USA. IEEE Computer Soci-
ety.

Qiu, L., Padmanabhan, V., and Voelker, G. (2001). On the Placement of Web
Server Replicas. In 20th INFOCOM Conference, pages 1587–1596, Los Alami-
tos, CA. IEEE, IEEE Computer Society Press.

Rabinovich, M. and Aggarwal, A. (1999). Radar: A Scalable Architecture for a
Global Web Hosting Service. Computer Networks, 31(11–16):1545–1561.

Rabinovich, M. and Spastscheck, O. (2002). Web Caching and Replication.
Addison-Wesley, Reading, MA.

Rabinovich, M., Triukose, S., Wen, Z., , and Wang., L. (2006). Dipzoom: The in-
ternet measurements marketplace. the 9th ieee global internet symp., may 2006.

Rabinovich, M., Xiao, Z., and Agarwal, A. (2003). Computing on the edge: A
platform for replicating internet applications. In Proc. of the Eighth International
Workshop on Web Content Caching and Distribution, Hawthorne, NY, USA.

Rabinovich, M., Xiao, Z., Douglis, F., and Kalmanek, C. (1997). Moving edge-
side includes to the real edge- the clients. In USENIX Symposium on Internet
Technologies and Systems.

Radoslavov, P., Govindan, R., and Estrin, D. (2001). Topology-Informed Internet
Replica Placement. In 6th Web Caching Workshop, Amsterdam. North-Holland.

Radware (2002). Web Server Director. Technical report, Radware, Inc.

Raynal, M. and Singhal, M. (1996). Logical Time: Capturing Causality in Dis-
tributed Systems. Computer, 29(2):49–56.

BIBLIOGRAPHY 211

Rekhter, Y. and Li, T. (1995). A Border Gateway Protocol 4 (BGP-4). RFC
1771.

Rilling, L., Sivasubramanian, S., and Pierre, G. (2007). High availability and
scalability support for web applications. In Proceedings of the IEEE Interna-
tional Symposium on Applications and the Internet, Hiroshima, Japan.

Rodriguez, P., Kirpal, A., and Biersack, E. (2000). Parallel-Access for Mir-
ror Sites in the Internet. In 19th INFOCOM Conference, pages 864–873, Los
Alamitos, CA. IEEE, IEEE Computer Society Press.

Rodriguez, P. and Sibal, S. (2000). SPREAD: Scalable Platform for Reliable and
Efficient Automated Distribution. Computer Networks, 33(1–6):33–46.

Rodriguez, P., Spanner, C., and Biersack, E. (2001). Analysis of Web Caching
Architecture: Hierarchical and Distributed Caching. IEEE/ACM Transactions on
Networking, 21(4):404–418.

Rosen, E., Viswanathan, A., and Callon, R. (2001). Multiprotocol label switch-
ing architecture.

Sayal, M., Sheuermann, P., and Vingralek, R. (2003). Content Replication in
Web++. In 2nd International Symposium on Network Computing and Applica-
tions, Los Alamitos, CA. IEEE, IEEE Computer Society Press.

Seltzsam, S., Gmach, D., Krompass, S., and Kemper, A. (2006). Autoglobe: An
automatic administration concept for service-oriented database applications. In
Proc. 22nd Intl. Conf. on Data Engineering.

Shaikh, A., Tewari, R., and Agrawal, M. (2001). On the Effectiveness of DNS-
based Server Selection. In 20th INFOCOM Conference, pages 1801–1810, Los
Alamitos, CA. IEEE, IEEE Computer Society Press.

Shavitt, Y. and Tankel, T. (2003). Big-Bang Simulation for Embedding Network
Distances in Euclidean Space. In 22nd IEEE INFOCOM, San Francisco, CA,
USA.

Shmoys, D., Tardos, E., and Aardal, K. (1997). Approximation Algorithms for
Facility Location Problems. In 29th Symposium on Theory of Computing, pages
265–274, New York, NY. ACM, ACM Press.

Shneiderman, B. (1984). Response time and display rate in human performance
with computers. ACM Computing Surveys, 16(3):265–285.

212 BIBLIOGRAPHY

Sivasubramanian, S., Alonso, G., Pierre, G., and van Steen, M. (2005). Globedb:
autonomic data replication for web applications. In WWW ’05: Proceedings of
the 14th international conference on World Wide Web, pages 33–42, New York,
NY, USA. ACM Press.

Sivasubramanian, S., Pierre, G., and van Steen, M. (2003). A case for dynamic
selection of replication and caching strategies. In Proceedings of the Eighth
International Workshop Web Content Caching and Distribution, pages 275–282,
Hawthorne, NY, USA.

Sivasubramanian, S., Pierre, G., and van Steen, M. (2004a). Scalable strong
consistency for web applications. In EW11: Proceedings of the 11th workshop
on ACM SIGOPS European workshop: beyond the PC, page 33, New York, NY,
USA. ACM Press.

Sivasubramanian, S., Pierre, G., and van Steen, M. (2006a). Towards autonomic
hosting of multi-tier internet applications. In Proceedings of the HotAC-I Work-
shop.

Sivasubramanian, S., Pierre, G., van Steen, M., and Alonso, G. (2006b).
GlobeCBC: Content-blind result caching for dynamic web applications. Tech-
nical Report IR-CS-022, Vrije Universiteit, Amsterdam, The Netherlands. http:
//www.globule.org/publi/GCBRCDWA_ircs022.html.

Sivasubramanian, S., Szymaniak, M., Pierre, G., and van Steen, M. (2004b).
Replication for web hosting systems. ACM Computing Surveys, 36(3):291–334.

Soundararajan, G., Amza, C., and Goel, A. (2006). Database replication policies
for dynamic content applications. In Proceedings of 1st ACM EuroSys confer-
ence.

Stemm, M., Katz, R., and Seshan, S. (2000). A Network Measurement Architec-
ture for Adaptive Applications. In 19th INFOCOM Conference, pages 285–294,
Los Alamitos, CA. IEEE, IEEE Computer Society Press.

Su, A.-J., Choffnes, D. R., Kuzmanovic, A., and Bustamante, F. E. (2006). Draft-
ing behind akamai (travelocity-based detouring). SIGCOMM Comput. Commun.
Rev., 36(4):435–446.

Szymaniak, M., Pierre, G., and van Steen, M. (2003). NetAirt: A Flexible Redi-
rection System for Apache. In Proceedings of the IADIS International Confer-
ence on WWW/Internet, Algarve, Portugal.

BIBLIOGRAPHY 213

Szymaniak, M., Pierre, G., and van Steen, M. (2004). Scalable Cooperative
Latency Estimation. In Proceedings of the 10th International Conference on
Parallel and Distributed Systems (ICPADS), Newport Beach, CA, USA.

Szymaniak, M., Pierre, G., and van Steen, M. (2006). Latency-driven replica
placement. IPSJ Journal, 47(8). http://www.globule.org/publi/LDRP_ipsj2006.html.

Tang, X. and Xu, J. (2004). On replica placement for qos-aware content distri-
bution.

Terry, D., Demers, A., Petersen, K., Spreitzer, M., Theimer, M., and Welsh, B.
(1994). Session Guarantees for Weakly Consistent Replicated Data. In 3rd In-
ternational Conference on Parallel and Distributed Information Systems, pages
140–149, Los Alamitos, CA. IEEE, IEEE Computer Society Press.

Tewari, R., Niranjan, T., and Ramamurthy, S. (2002). WCDP: A Protocol for
Web Cache Consistency. In 7th Web Caching Workshop.

Tijms, H. (1994). Stochastic Models: An Algorithmic Approach. John Wiley &
Sons.

Torres-Rojas, F. J., Ahamad, M., and Raynal, M. (1999). Timed consistency
for shared distributed objects. In 18th Symposium on Principles of Distributed
Computing, pages 163–172, New York, NY. ACM, ACM Press.

Trivedi, K. S. (2002). Probability and statistics with reliability, queuing and
computer science applications. John Wiley and Sons Ltd., Chichester, UK, UK.

Ullman, J. D. (1990). Principles of Database and Knowledge-Base Systems:
Volume II: The New Technologies. W. H. Freeman & Co., New York, NY, USA.

Urgaonkar, B., Pacifici, G., Shenoy, P., Spreitzer, M., and Tantawi, A. (2005).
An analytical model for multi-tier internet services and its applications. In Proc.
SIGMETRICS Intl. Conf., pages 291–302.

Urgaonkar, B. and Shenoy, P. (2005). Cataclysm: policing extreme overloads
in internet applications. In WWW ’05: Proceedings of the 14th international
conference on World Wide Web, pages 740–749, New York, NY, USA. ACM
Press.

Verma, D. C. (2002). Content Distribution Networks: An Engineering Approach.
John Wiley, New York.

Villela, D., Pradhan, P., and Rubenstein, D. (2004). Provisioning servers in the
application tier for e-commerce systems. In Proc. 12th IEEE Intl. Workshop on
Quality of Service.

214 BIBLIOGRAPHY

Vogels, W. (2006). Learning from the amazon technology platform. ACM Queue,
4(4).

Waldvogel, M. and Rinaldi, R. (2003). Efficient topology-aware overlay net-
work. ACM Computer Communications Review, 33(1):101–106.

Wang, J. (1999). A Survey of Web Caching Schemes for the Internet. ACM
Computer Communications Review, 29(5):36–46.

Wang, L., Pai, V., and Peterson, L. (2002). The Effectiveness of Request Redi-
rection on CDN Robustness. In 5th Symposium on Operating System Design and
Implementation, Berkeley, CA. USENIX, USENIX.

Wolski, R., Spring, N., and Hayes, J. (1999). The Network Weather Service:
A Distributed Resource Performance Forecasting Service for Metacomputing.
Future Generation Computer Systems, 15(5-6):757–768.

Xiao, J. and Zhang, Y. (2001). Clustering of Web Users Using Session-Based
Similarity Measures. In International Conference on Computer Networks and
Mobile Computing, pages 223–228, Los Alamitos, CA. IEEE, IEEE Computer
Society Press.

Yang, J. (2005). Data clustering for autonomic application replication. Master’s
thesis, Vrije Universiteit, Amsterdam, The Netherlands.

Yin, J., Alvisi, L., Dahlin, M., and Iyengar, A. (2002). Engineering Web Cache
Consistency. ACM Transactions on Internet Technology, 2(3):224–259.

Yu, H. and Vahdat, A. (2000). Efficient Numerical Error Bounding for Replicated
Network Services. In Abbadi, A. E., Brodie, M. L., Chakravarthy, S., Dayal,
U., Kamel, N., Schlageter, G., and Whang, K.-Y., editors, 26th International
Conference on Very Large Data Bases, pages 123–133, San Mateo, CA. Morgan
Kaufman.

Yu, H. and Vahdat, A. (2002). Design and Evaluation of a Conit-Based Continu-
ous Consistency Model for Replicated Services. ACM Transactions on Computer
Systems, 20(3):239–282.

Zari, M., Saiedian, H., and Naeem, M. (2001). Understanding and Reducing
Web Delays. Computer, 34(12):30–37.

Zhao, B., Huang, L., Stribling, J., Rhea, S., Joseph, A., and Kubiatowicz, J.
(2004). Tapestry: A Resilient Global-Scale Overlay for Service Deployment.
IEEE Journal on Selected Areas in Communication, 22(1):41–53.

