2,684 research outputs found

    Enforcing QoS in scientific workflow systems enacted over Cloud infrastructures

    Get PDF
    AbstractThe ability to support Quality of Service (QoS) constraints is an important requirement in some scientific applications. With the increasing use of Cloud computing infrastructures, where access to resources is shared, dynamic and provisioned on-demand, identifying how QoS constraints can be supported becomes an important challenge. However, access to dedicated resources is often not possible in existing Cloud deployments and limited QoS guarantees are provided by many commercial providers (often restricted to error rate and availability, rather than particular QoS metrics such as latency or access time). We propose a workflow system architecture which enforces QoS for the simultaneous execution of multiple scientific workflows over a shared infrastructure (such as a Cloud environment). Our approach involves multiple pipeline workflow instances, with each instance having its own QoS requirements. These workflows are composed of a number of stages, with each stage being mapped to one or more physical resources. A stage involves a combination of data access, computation and data transfer capability. A token bucket-based data throttling framework is embedded into the workflow system architecture. Each workflow instance stage regulates the amount of data that is injected into the shared resources, allowing for bursts of data to be injected while at the same time providing isolation of workflow streams. We demonstrate our approach by using the Montage workflow, and develop a Reference net model of the workflow

    Cross-layer signalling and middleware: a survey for inelastic soft real-time applications in MANETs

    Get PDF
    This paper provides a review of the different cross-layer design and protocol tuning approaches that may be used to meet a growing need to support inelastic soft real-time streams in MANETs. These streams are characterised by critical timing and throughput requirements and low packet loss tolerance levels. Many cross-layer approaches exist either for provision of QoS to soft real-time streams in static wireless networks or to improve the performance of real and non-real-time transmissions in MANETs. The common ground and lessons learned from these approaches, with a view to the potential provision of much needed support to real-time applications in MANETs, is therefore discussed

    Software-Defined Cloud Computing: Architectural Elements and Open Challenges

    Full text link
    The variety of existing cloud services creates a challenge for service providers to enforce reasonable Software Level Agreements (SLA) stating the Quality of Service (QoS) and penalties in case QoS is not achieved. To avoid such penalties at the same time that the infrastructure operates with minimum energy and resource wastage, constant monitoring and adaptation of the infrastructure is needed. We refer to Software-Defined Cloud Computing, or simply Software-Defined Clouds (SDC), as an approach for automating the process of optimal cloud configuration by extending virtualization concept to all resources in a data center. An SDC enables easy reconfiguration and adaptation of physical resources in a cloud infrastructure, to better accommodate the demand on QoS through a software that can describe and manage various aspects comprising the cloud environment. In this paper, we present an architecture for SDCs on data centers with emphasis on mobile cloud applications. We present an evaluation, showcasing the potential of SDC in two use cases-QoS-aware bandwidth allocation and bandwidth-aware, energy-efficient VM placement-and discuss the research challenges and opportunities in this emerging area.Comment: Keynote Paper, 3rd International Conference on Advances in Computing, Communications and Informatics (ICACCI 2014), September 24-27, 2014, Delhi, Indi

    Design abstraction for autonomous adaptive hardware systems on FPGAs

    Get PDF
    Adaptive hardware is gaining importance with the emergence of more autonomous systems that must process large volumes of sensor data and react within tight deadlines. To support such computation within the constraints of embedded deployments, a blend of high throughput hardware processing and adaptive control is required. FPGAs offer an ideal platform for implementing such systems by virtue of their hardware flexibility and sensor interfacing capabilities. FPGA SoCs are specifically well suited offering capable embedded processors that are tightly coupled with a flexible high performance FPGA fabric. This paper explores existing work on adaptive hardware systems before proposing a general model and implementation approach tailored towards these modern FPGA architectures, concluding with pointers for research in this emerging field
    • 

    corecore