

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/106305

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/161124746?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/106305
mailto:wrap@warwick.ac.uk

Design Abstraction for Autonomous
Adaptive Hardware Systems on FPGAs

Suhaib A. Fahmy
School of Engineering
University of Warwick

Coventry, United Kingdom
s.fahmy@warwick.ac.uk

Abstract—Adaptive hardware is gaining importance with the
emergence of more autonomous systems that must process large
volumes of sensor data and react within tight deadlines. To
support such computation within the constraints of embedded
deployments, a blend of high throughput hardware processing
and adaptive control is required. FPGAs offer an ideal platform
for implementing such systems by virtue of their hardware
flexibility and sensor interfacing capabilities. FPGA SoCs are
specifically well suited offering capable embedded processors that
are tightly coupled with a flexible high performance FPGA fabric.
This paper explores existing work on adaptive hardware systems
before proposing a general model and implementation approach
tailored towards these modern FPGA architectures, concluding
with pointers for research in this emerging field.

I. INTRODUCTION

Autonomous adaptive systems modify their behaviour based
on the operating environment, applying different algorithms
in evolving contexts. Example applications include advanced
driver assistance [1], cognitive radio [2], and space [3] ap-
plications. For complete flexibility, software offers an easy
way to combine and interleave the computational and decision
making aspects of an application to build an adaptive system.
Programming languages support ad hoc approaches to building
such systems using control constructs, while also offering
features such as polymorphism and object orientation that
enable a more systematic approach. More formal software
frameworks for describing and implementing adaptive systems
also exist [4]. However, in the case of cyber physical systems
(CPSs), where applications demand complex sensor data to be
processed and acted on within strict deadlines, and potentially
power and size constraints, software running on a processor
is often insufficient. This has driven interest in the design
and implementation of adaptive systems, where a significant
portion of the processing is implemented in hardware.

Hardware systems use a compute datapath tailored to the
algorithm, exploiting dataflow parallelism to achieve high
performance and efficiency. To support flexibility, additional
hardware for each of the required operating modes must be
included and a decision made at runtime on where to route data
for the current conditions. This can be problematic when there
are a large number of different operating modes, since only a
subset of hardware is active at any point in time, resulting in
an area and power overhead.

mode 3

mode 2
Obs

Dec

Act
External
Status

Sensor
Inputs

System/
Processed
Status

Hardware
Adaptation

Actuator
Outputs

mode 1

Fig. 1. Abstract representation of an adaptive hardware system showing the
Observe-Decide-Act loop that is able to use external status information as
well as processed information from the hardware to reconfigure the hardware
among a set of different modes, in the case of an FPGA by loading the relevant
bitstream.

FPGAs offer the unique capability to modify hardware
at runtime through dynamic reconfiguration, where a new
bitstream is loaded to replace hardware instantiated on chip.
Partial reconfiguration allows just the necessary portions of
the hardware design to be modified when needed. Hence, FP-
GAs represent an ideal platform for deploying self-contained
autonomous adaptive hardware systems.

Fig. 1 shows an abstract representation of such a system.
The hardware processes sensor inputs and drives actuator
outputs in a cyber-physical system arrangement. The typical
Observe-Decide-Act loop runs separately to the hardware.
Observations come either from external sources, or as status
information generated by the hardware system based on sensor
inputs. Based on these inputs, the loop determines whether to
modify the hardware to perform different functions, and does
so by loading one of the other hardware modes that have been
determined at design time. The hardware adaptation loop is
managed independently of the hardware processing to prevent
it from impacting the high sensor-actuator processing rates
required to meet application requirements.

Much of the work reported in the literature is designed in an
ad hoc manner that tightly integrates the application with the
target architecture and low-level hardware features. As such
the adoption of FPGAs by adaptive systems designers remains
limited due to present design complexity and the requirement
for detailed FPGA knowledge.

In this paper, we investigate recent work on adaptive hard-
ware systems on FPGAs, before proposing an approach for
abstracting the design of such systems that would make sys-
tematic design possible. We detail how partial reconfiguration
can be automated within such a design framework to offer a
truly abstract view of adaptive systems on FPGAs at both
design time and runtime. Finally, open research questions
relating to such abstractions are presented.

II. BACKGROUND AND RELATED WORK

Adaptive hardware has been discussed widely in the litera-
ture, and so it is important to understand the varied definitions
of this term. In this work, we are concerned with systems
that adapt the type of computation in reaction to changing
environmental conditions.

A. Types of Adaptive System

A wide body of work concerns itself with adaptation in
terms of the methods of computation, but not the applica-
tion itself; we can refer to these as adaptive computational
frameworks. Examples include performing specific parts of a
computation in software or hardware, using fewer or more
accelerator blocks, swapping a high energy implementation
for a more efficient block, or similar. The key consideration
in such work is that there exist trade-offs in alternative
ways of achieving the overall desired computation, and these
are selected depending on the real time characteristics of
the system [5]. These could be power constraints, execu-
tion deadlines, or other metrics driven by the computational
environment. In such systems, the application itself is not
adapting, but rather the way the computations are performed is
adapting to maintain the correctness of the application in light
of changing computational constraints [6], [7]. A subset of
such work deals with adaptation to resist harsh environmental
conditions such as in space, where single-even upsets (SEUs)
can cause catastrophic failure. In such cases, adaptation is used
to ensure the hardware continues to function correctly after
encountering errors [8], [9].

An extension of the above work is adaptation of a plat-
form to multiple competing workloads. Here, the focus is
on a set of applications that each have their own execution
constraints, and a hardware resource that must be shared
effectively between them. Again, the applications themselves
are not fundamentally changing, but their presence, absence,
deadlines, or interactions may be changing, and the aim is
to ensure that the hardware is able to service these needs to
meet system requirements. Such work often extends existing
work on multi-tasking to include awareness and management
of hardware resources. Constraints such as priorities, mixed
hard and soft deadlines, and overall performance and power
metrics also come into play in such systems [10]–[13].

We are concerned in this paper with a separate but related
class of adaptive hardware systems, wherein the application is
adaptive, modifying its computations based on environmental
conditions. The systems under consideration are more appli-
cation specific than general purpose, and typically incorporate

sensors and actuators, hence the need for hardware processing
to satisfy processing requirements. Examples include a radio
selecting a different baseband modulation/demodulation chain
depending on spectrum occupancy [14] or an adaptive image
processing [15] or smart camera vision system loading differ-
ent algorithms based on an initial analysis of a scene [16]. A
class of such systems are those that evolve in response to a
changing environment by modifying computation to states not
determined a priori. While such work has been discussed in
the past [17], present hardware design flows do not support
such online evolution save in the case of simple hardware, and
so we will not discuss evolvable hardware in this paper.

B. Adaptive Systems on FPGAs

The hardware adaptation in an FPGA is typically imple-
mented using partial reconfiguration [18]. This requires spatial
portions of the FPGA to be allocated at design time to host
different hardware modules at runtime. These partially recon-
figurable regions (PRRs) should be sized to accommodate the
largest hardware module they might need to contain at runtime.
Partial bitstreams are prepared at design time, consisting of
a configuration for a PRR for a specific hardware module.
The remainder of the FPGA is the static region, containing
all other parts of the system that do not change at runtime,
and must include the reconfiguration controller that manages
the loading of partial bitstreams into PRRs alongside other
basic infrastructure like a processor, memory controller, and
similar. In modern FPGA SoCs, the processor subsystem (PS)
can serve the full role of the static region, and the entire
programmable logic (PL) can be allocated to one or more
PRRs. At runtime, the partial bitstreams for each region must
be made available to the reconfiguration controller, which
when triggered to initiate a reconfiguration, loads the requisite
bitstream over one of the FPGAs configuration interfaces,
thereby instantiating the module in the PRR [19].

The design process for partially reconfigurable systems
remains cumbersome, requiring a significant amount of FPGA
expertise, and is illustrated in Fig. 2. Both Xilinx and Altera
support PR through their standard design tools. The designer
must first decide on the number of PRRs and their location
on the FPGA. Traditionally, designers have chosen to use a
single PRR for simplicity, or as many PRRs as there are
modules in any one configuration, to allow each module to
be configured independently. It is important to note that this
choice significantly impacts area overhead and reconfiguration
time. The time taken to reconfigure a PRR is proportional to its
size. A single PRR means that each valid configuration can be
optimised into the smallest possible area by the synthesis tools,
resulting in lower area usage. But a single PRR must then be
reconfigured each time there is a change, even if small. Mul-
tiple PRRs offer the benefit of reconfiguring only the required
modules, but result in more area consumption as they much
each be sized to accommodate the largest individual modules,
and synthesis cannot optimise across modules. Previous work
has shown that this selection can be automated to optimise
area and reconfiguration time [20]. Modules that intrinsically

Partitioning

Floorplanning

Synthesis/P&R

Bitstream Gen.

Module
HDL

Wrapped
PRR
Configs

Static PR1aPR1aPR1a PR1aPR1aPR2a PR1aPR3aPR2a

Resource
Usage

Fig. 2. An outline of the partial reconfiguration design flow, showing modules
being partitioned into PRRs, wrapping of modules, followed by floorplanning
based on resource requirements, then bitstream generation.

support parametric changes, such as the length of an FFT, or
the the coefficient set for a filter, add further complexity as
these do not require reconfiguration of a region but must have
their configuration inputs exposed.

Once the number of PRRs is finalised and the allocation
of modules is confirmed, wrapper modules must be generated
for the valid configurations for each PRR. While this is not
a complex process, it can be time-consuming and is not
currently automated by the tools. After partitioning, the overall
resource requirements for each PRR are known by taking
the most resource intensive configuration for each PRRs.
The PRRs must now be floorplanned on the FPGA. This is
another step that requires significant FPGA design expertise as
bounding boxes must be determined based on various physical
architecture constraints while also offering sufficient slack for
the tools to succeed at generating bitstreams. Some automation
has been proposed in the literature [21], [22], but remains a
distinct operation not integrated into vendor design tools.

The wrapped PRR configurations can now by synthesised to
generate the partial bitstreams using the constraints generated
in the floorplanning step. As part of this process, the bitstreams
for the static region are also generated. The result of this whole
process is a set of bitstreams: a static bitstream for the fixed
part of the design, and multiple partial bitstreams, one for each
configuration for each PRR.

Managing such a system at runtime is usually done in an
ad hoc manner. The static region is configured onto the FPGA
and the individual partial bitstreams are loaded into memory.
The reconfiguration controller instantiated in the static region
is responsible for exposing the configuration interface from
within the FPGA. Software is written to explicitly load bit-
stream data from its memory location into the controller, and
this is interleaved with the complex adaptation software. As

such, the adaptation control loop cannot be written without
knowledge of the detailed hardware implementation and bit-
stream information, resulting in poor productivity, abstraction,
and portability. As a result of this design process, it is
difficult for those with application knowledge but without
FPGA expertise to implement autonomous adaptive systems
on FPGAs. A more abstract design framework is necessary if
this reconfiguration capability of FPGAs is to be more widely
adopted.

III. ADAPTIVE HARDWARE MODEL

A rich body of work has explored modelling of the adap-
tation process for adaptive systems primarily in the context
of what has been referred to as autonomic computing. In
contrast to traditional systems where the designer determines
how best to implement computation based on predictions
about the future state of the system, adaptive/autonomic/self-
aware systems monitor the runtime conditions, make decisions
about how best to achieve goals, and apply the determined
adaptation. Numerous models offer a distributed approach to
composing multiple adaptive systems.

The fundamental decomposition of this closed-loop process
is the Observe-Decide-Act (ODA) loop [23]. This is loosely
based on Boyd’s Observe-Orient-Decide-Act loop proposed
for military planning [24]. The MAPE-K loop was proposed
by IBM, further decomposing the loop into four phases: Mon-
itor, Analyze, Plan, and Execute, all interacting with shared
Knowledge [25]. Multiple MAPE-K autonomic managers can
interact with each other to adapt interacting systems. The
autonomic manager interacts with the system through sensor
and effector interfaces. This loose definition led to more work
on formalising such models for software systems. FOCALE
elaborates these processes further into inner and outer control
loops, combining a subset of Observe-Normalise-Compare-
Learn/Reason-Decide-Act stages. A deliberative process in-
corporates all these stages as we have seen for the above
models, but additional reactive and reflective processes use
a subset of these stages to build a longer term model of
adaptation [26]. This allows multiple loops to interact to arrive
at the autonomous functionality, while preserving the differing
requirements of long-term learning and short term reactions.
While a detailed analysis of such control models is out of
the context of this paper, it is clear that an effective adaptive
hardware systems framework must offer an interface to such
controllers through an abstracted view of system state and a
clear method for reconfiguration.

Hence, the key to such a framework is a clean separation
between the control and data planes. This enables maximum
throughput for the processing-intensive data plane, while al-
lowing the control plane to adopt one of the above models
using abstractions that are easier for an adaptive systems
designer to work with. We see a similar separation in software-
defined networking (SDN) systems, where packet processing
operations must be performed at the high rates required to sus-
tain network performance, while the software control aspects

PRR1 PRR2 PRR3

Model HW

Observe Act

Decide

Sensor
Inputs

External
Status/
Coord’n

Coord’n
Messages

Actuator
Outputs

PR
Cont

Fig. 3. The proposed model for adaptive hardware systems, showing the
hardware portion containing PRRs, the PR controller, and signals for status
and control, alongside the control plane in software executing the Observe-
Decide-Act loop.

interact through an abstracted interface to enable flexibility in
the data plane [27], [28].

We adopt a similar abstraction for adaptive hardware sys-
tems: the data plane is responsible for the high throughput
computation demanded by the application, while the control
loop runs primarily in software on an embedded processor. In
most cases, the data plane will be concerned with processing
sensor data or similar intensive computations (such as wireless
baseband modulation). Hence, as is the case for the above
mentioned models, it is assumed that all sensing and actuation
is managed by the data plane. The data plane exposes control
inputs to the control plane, while also offering the required
diagnostic outputs to the control plane. It is worth noting
that a complete ODA loop can be implemented in hardware,
typically offering a much tighter loop and faster response
times [29], however, this would limit the flexibility of the
control loop. It is possible to consider a hierarchy of loops that
include a fast reacting hardware loop and a more intelligent
loop in software, which would be supported by some of
the above models. In the case of an adaptive system on an
FPGA, the control inputs must also enable reconfiguration of
hardware, while the control plane must also be able to query
the currently active configuration.

With more intensive control loops, incorporating long-term
adaptation and learning, such as discussed in FOCALE, there
may also be a need to accelerate some parts of the control loop.
This requires an additional interface into hardware, separate
from the data plane, to allow these functions to be accelerated
without affecting the operation of the data plane.

A. Hardware Model

Fig. 3 shows the proposed model for adaptive hardware
systems on FPGAs. The control plane (in grey) operates
in software, while the data plane (in yellow) operates in
hardware. A single or multiple PRRs are instantiated in the
data plane, and can be reconfigured via the PR controller.

The current status of each PRR is provided as an input to
the control plane. Sensor inputs are processed in hardware to
produce the required results which are passed to the control
plane alongside the parameter values currently set. These are
read by the observe stage in the control plane, and integrated
with external status inputs that may be available in the case of
a larger coordinated set of autonomous systems. The observe
stage can be decomposed into sub-stages as in the case of
FOCALE, where it incorporates normalisation and comparison
against a target state.

The decide stage implements the cognitive function, and as
in the case of the aforementioned models, can be complex.
Hence, support is provided for the decide stage to interact
with a hardware accelerator that is distinct from the data
plane of the adaptive system. This could be a neural network
or other more complex control algorithm requiring hardware
implementation to achieve acceptable performance. By sep-
arating its interface from the control-data plane interface, it
can be designed independently and does not impact data plane
performance.

The act stage applies the determined adaptations through
reconfiguration of PRRs using the PR controller, setting of
parameters within existing PRRs, and/or sending messages to
other interacting systems. In the case of PRR configuration,
a single desired state change may require multiple PRR
configurations and parameter settings, so this is abstracted
in the act stage. The resulting hardware changes are enacted
alongside any processing required to apply actuator outputs.

B. Model Implementation

The above hardware model can be implemented on an
FPGA by designing the static region housing a soft processor
to run the software for the control loop alongside the required
interfaces to the PRRs and external sensors, actuators, or
peripherals. Modern FPGA SoCs such as the Xilinx Zynq [30]
and Intel Arria 10 SoC offer a tightly coupled ARM Cortex-
A9 embedded processor and flexible FPGA fabric that can be
reconfigured from the processor. Newer devices such as the
Xilinx Zynq UltraScale+ and Intel Stratix 10 SoC offer even
more capable ARM Cortex-A53 cores alongside additional
hardware cores for functions such as real-time processing,
security features, and high bandwidth memory (HBM). These
architectures hence offer an ideal platform for a wide range
of adaptive systems, offering sufficient computational capacity
in software, alongside the high performance processing ca-
pabilities of the FPGA fabric. We consider these ideal for
the implementation of autonomous adaptive systems as they
allow the tight coupling necessary to implement the above
model, with flexible hardware capabilities through partial
reconfiguration.

A full detailed hardware architecture is beyond the scope of
this paper, however, we briefly discuss the model’s realisation
in an FPGA SoC. Table I shows how each aspect of the model
is implemented in the context of a Xilinx Zynq SoC. The archi-
tectural features of the Zynq, specifically the ample interfacing
between the processor subsystem (PS) and programmable

TABLE I
MODEL IMPLEMENTATION DETAILS ON A XILINX ZYNQ SOC.

Model Feature Hardware Implementation

Control loop execution Software running on embedded ARM, atop
an OS or bare metal

External status/coord Network interface for message exchange

PR controller PCAP or custom controller such as ZyCAP

PR bitstream storage Separate DMA interface via a single HP
port interfaced with PR controller

Hardware observe interface ACP port

Parameter interface AXI-Lite over GP port

Sensor/actuator interface Direct connection or AXI-Stream

Inter-PRR interconnect AXI-Stream or AXI Interconnect configured
as required by the application

Optional decision accelera-
tor

DMA over HP port

logic (PL) offers sufficient distinct interfaces to support the
above model. High Performance (HP) ports offer multiple high
throughput PL master interfaces to the PS. General Purpose
(GP) ports offer a mixture of master and slave interfaces
between the PS and PL. The Accelerator Coherency Port
(ACP) offers a cache-coherent high throughput interface for
PS-PL data movement. These interfaces all support Advanced
Extensible Interface (AXI) signalling. While the Zynq supports
native configuration using the Processor Configuration Access
Port (PCAP) and standard software driver, this is a blocking
operation which is not ideal for the closed loop nature of this
above model. Hence an alternative configuration approach as
in ZyCAP [31] is preferred as it is non-blocking and also
faster.

The above description is based on the assumption that the
system being controlled is primarily hardware based, with
the processor managing the adaptation control loop. In the
case where part of the processing is software based, it is
possible to use an additional processor core for these functions,
or instantiate a soft processor in the programmable logic.
On newer FPGA SoCs with different core types, additional
cores may be suited to application computation and could be
integrated over the required interconnect.

IV. ADAPTIVE HARDWARE DESIGN FLOW

While the above framework offers a more abstract method
for implementing autonomous systems, integration with an
automated design flow remains necessary for wider adoption.
The following processes would need to be considered.

The definition of valid system configurations is an impor-
tant part of the process as it would drive generation of the
required bitstreams. Due to limitations in the present FPGA
PR design flow, the designer must determine and prepare the
configurations in advance. While this suggests an inability of
the system to evolve beyond a predefined set of states, the
parametric configurations of individual PRR modules does

provide some additional flexibility. These parameters can be
exposed to allow the correct control interface to be built as
required by the framework. Modules that offer information
used in the control loop also have these outputs exposed for
creation of the monitoring interface. With advances in the PR
flows, it may be possible that the requirement for configura-
tion definition in advance be relaxed to enable evolutionary
adaptation. Transformations can also be made at this point to
eliminate unneeded states or find equivalences to reduce the
state space [32].

The tool flow must then decide how to partition and
allocate modules to PRRs. A detailed discussion of the
considerations is presented in [20]: A single region offers
simpler reconfiguration management, but wastes resources and
time. A large number of regions offers better configuration
granularity but complicates the hardware design process and
introduces significant constraints on PRR sizes. Meanwhile,
a combination of PR for modules that require significant
hardware changes, and parametric reconfiguration for modules
with minor changes (such as the coefficients of a filter),
offers a balance that minimises reconfiguration time [33].
This decision can be automated, resulting in the generation
of all the required bitstreams as in [19]. The tool elaborates
all supported configurations into a set of symbols that have
parameter values exposed as properties, offering an abstract
view of configurations rather than PRRs and bitstreams.

The runtime system supports the operation of the adaptive
control loop. It offers an API that is used to write the
adaptation software, referencing the symbols produced in the
previous phase. A set of standard methods for each of the
observe-decide-act processes are provided and can be extended
to support more complex models. If hardware acceleration is
required, an accelerator can be interfaced separated to the data
plane as shown in Fig. 3. At runtime, the various processes
operate independently with message passing enabling commu-
nication between them to close the loop and enable adaptation.

V. TOPICS FOR INVESTIGATION

The following research topics would enable this proposed
hardware model to be realised on modern architectures:

• A PR generation tool flow that generates bitstreams
and abstract symbols from a configuration specification,
respecting the limitations of vendor design flows to be
supported on emerging devices.

• Research relating to PRRs and bitstream relocation could
greatly simplify the bitstream generation process while
also making the addition of new modes to a deployed
system possible.

• A open software runtime and architectural template that
builds on the adaptive system model to automate inter-
face generation to configuration management and module
parameters, with abstracted runtime management.

• A module interface specification that supports composi-
tion in such systems with clear demarcation between data
plane and control plane I/O.

• Libraries of domain specific hardware modules conform-
ing to the above specification, allowing designers to focus
on the adaptive design rather than low level hardware.

VI. SUMMARY

We have discussed autonomous adaptive systems in the con-
text of FPGAs, proposing a hardware model based on existing
abstract Observe-Decide-Act models. We have discussed its
implementation on modern FPGA SoCs, showing how the
architectural features of such platforms can support the needs
of such a framework. While a significant body of work has
dealt with individual aspects of the proposed approach, we
feel that there remains a need for these to be brought together
into a usable framework, combining hardware and software,
to enhance the usability of FPGAs in this important area. With
the increased focus on autonomy in systems and the growing
reliance on data-intensive sensors, such a framework would
enable a more systematic approach to design and deployment
than has been demonstrated to date.

REFERENCES

[1] N. Harb, S. Niar, M. A. Saghir, Y. El Hillali, and R. B. Atitallah, “Dy-
namically reconfigurable architecture for a driver assistant system,” in
Proceedings of the IEEE Symposium on Application Specific Processors
(SASP), 2011, pp. 62–65.

[2] S. Shreejith, B. Banarjee, K. Vipin, and S. A. Fahmy, “Dynamic
cognitive radios on the Xilinx Zynq hybrid FPGA,” in Proceedings
of the International Conference on Cognitive Radio Oriented Wireless
Networks (CROWNCOM), 2015, pp. 427–437.

[3] N. Montealegre, D. Merodio, A. Fernández, and P. Armbruster, “In-
flight reconfigurable FPGA-based space systems,” in Proceedings of the
NASA/ESA Conference on Adaptive Hardware and Systems (AHS), 2015.

[4] R. De Lemos, H. Giese, H. A. Müller, M. Shaw, J. Andersson, M. Litoiu,
B. Schmerl, G. Tamura, N. M. Villegas, T. Vogel et al., “Software
engineering for self-adaptive systems: A second research roadmap,” in
Software Engineering for Self-Adaptive Systems II. Springer, 2013.

[5] X. An, E. Rutten, J.-P. Diguet, N. Le Griguer, and A. Gamatié,
“Autonomic management of dynamically partially reconfigurable FPGA
architectures using discrete control,” in Proceedings of the International
Conference on Autonomic Computing (ICAC), 2013, pp. 59–63.

[6] F. Sironi, M. Triverio, H. Hoffmann, M. Maggio, and M. D. Santam-
brogio, “Self-aware adaptation in FPGA-based systems,” in Proceedings
of International Conference on Field Programmable Logic and Appli-
cations (FPL), 2010, pp. 187–192.

[7] M. Happe, E. Lübbers, and M. Platzner, “A self-adaptive heterogeneous
multi-core architecture for embedded real-time video object tracking,”
Journal of Real-Time Image Processing, vol. 8, no. 1, pp. 95–110, 2013.

[8] A. Jacobs, G. Cieslewski, A. D. George, A. Gordon-Ross, and H. Lam,
“Reconfigurable fault tolerance: A comprehensive framework for reliable
and adaptive FPGA-based space computing,” ACM Transactions on
Reconfigurable Technology and Systems (TRETS), vol. 5, no. 4, pp. 21:1–
21:30, 2012.

[9] R. Glein, B. Schmidt, F. Rittner, J. Teich, and D. Ziener, “A self-adaptive
SEU mitigation system for FPGAs with an internal block RAM radiation
particle sensor,” in Proceedings of the IEEE International Symposium
on Field-Programmable Custom Computing Machines (FCCM), 2014,
pp. 251–258.

[10] M. Ullmann, M. Hübner, B. Grimm, and J. Becker, “On-demand FPGA
run-time system for dynamical reconfiguration with adaptive priorities,”
in Proceedings of the International Conference on Field Programmable
Logic and Applications (FPL), 2004, pp. 454–463.

[11] J. Becker, M. Hubner, G. Hettich, R. Constapel, J. Eisenmann, and
J. Luka, “Dynamic and partial FPGA exploitation,” Proceedings of the
IEEE, vol. 95, no. 2, pp. 438–452, 2007.

[12] D. Gohringer, M. Hübner, V. Schatz, and J. Becker, “Runtime adaptive
multi-processor system-on-chip: RAMPSoC,” in Proceedings of the
IEEE International Symposium on Parallel and Distributed Processing
(IPDPS), 2008.

[13] R. Bitirgen, E. Ipek, and J. F. Martinez, “Coordinated management
of multiple interacting resources in chip multiprocessors: A machine
learning approach,” in Proceedings of the IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2008, pp. 318–329.

[14] J. Lotze, S. A. Fahmy, J. Noguera, B. Ozgul, L. Doyle, and R. Esser,
“Development framework for implementing FPGA-based cognitive net-
work nodes,” in Proceedings of the Global Telecommunications Confer-
ence (GLOBECOM), 2009.

[15] R. Salvador, A. Otero, J. Mora, E. de la Torre, T. Riesgo, and L. Sekan-
ina, “Self-reconfigurable evolvable hardware system for adaptive image
processing,” IEEE Transactions on Computers, vol. 62, no. 8, pp. 1481–
1493, 2013.

[16] J.-P. Diguet, Y. Eustache, and G. Gogniat, “Closed-loop–based self-
adaptive hardware/software-embedded systems: Design methodology
and smart cam case study,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 10, no. 3, pp. 38:1–38:28, 2011.

[17] G. W. Greenwood and A. M. Tyrrell, Introduction to evolvable hard-
ware: a practical guide for designing self-adaptive systems. John Wiley
& Sons, 2006, vol. 5.

[18] K. Vipin and S. A. Fahmy, “FPGA dynamic and partial reconfiguration:
A survey of architectures, methods, and applications,” ACM Computing
Surveys, vol. 51, no. 4, pp. 72:1–72:39, 2018.

[19] K. Vipin and S. A. Fahmy, “Mapping adaptive hardware systems with
partial reconfiguration using CoPR for Zynq,” in Proceedings of the
NASA/ESA Conference on Adaptive Hardware and Systems (AHS), 2015.

[20] K. Vipin and S. A. Fahmy, “Automated partitioning for partial reconfig-
uration design of adaptive systems,” in Proceedings of the International
Parallel and Distributed Processing Symposium Workshops & PhD
Forum (IPDPSW), 2013, pp. 172–181.

[21] K. Vipin and S. A. Fahmy, “Architecture-aware reconfiguration-centric
floorplanning for partial reconfiguration,” in Proceedings of the Interna-
tional Symposium on Applied Reconfigurable Computing (ARC), 2012,
pp. 13–25.

[22] M. Rabozzi, G. C. Durelli, A. Miele, J. Lillis, and M. D. Santambrogio,
“Floorplanning automation for partial-reconfigurable FPGAs via feasible
placements generation,” IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, vol. 25, no. 1, pp. 151–164, 2017.

[23] H. Hoffmann, “SEEC: A framework for self-aware management of goals
and constraints in computing systems,” Ph.D. dissertation, Massachusetts
Institute of Technology, 2013.

[24] J. R. Boyd, “The essence of winning and losing,” Unpublished lecture
notes, vol. 12, no. 23, pp. 123–125, 1996.

[25] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[26] J. Strassner, N. Agoulmine, and E. Lehtihet, “FOCALE: A novel auto-
nomic networking architecture,” in Proceedings of the Latin American
Autonomic Computing Symposium (LAACS), 2006.

[27] S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser, D. Lake,
J. Finnegan, N. Viljoen, M. Miller, and N. Rao, “Are we ready for
SDN? Implementation challenges for software-defined networks,” IEEE
Communications Magazine, vol. 51, no. 7, pp. 36–43, 2013.

[28] S. Kim, J.-M. Kang, S.-s. Seo, and J. W.-K. Hong, “A cognitive
model-based approach for autonomic fault management in OpenFlow
networks,” International Journal of Network Management, vol. 23, no. 6,
pp. 383–401, 2013.

[29] K. Vipin, S. Shreejith, S. A. Fahmy, and A. Easwaran, “Mapping time-
critical safety-critical systems to hybrid FPGAs,” in Proceedings of the
IEEE International Conference on Cyber-Physical Systems, Networks,
and Applications (CPSNA), 2014, pp. 31–36.

[30] L. H. Crockett, R. A. Elliot, M. A. Enderwitz, and R. W. Stewart, The
Zynq Book: Embedded Processing with the ARM Cortex-A9 on the Xilinx
Zynq-7000 All Programmable SoC. Strathclyde Academic Media, 2014.

[31] K. Vipin and S. A. Fahmy, “ZyCAP: Efficient partial reconfiguration
management on the Xilinx Zynq,” IEEE Embedded System Letters (ESL),
vol. 6, no. 3, pp. 41–44, 2014.

[32] J. Lotze, S. A. Fahmy, J. Noguera, and L. E. Doyle, “A model-based
approach to cognitive radio design,” IEEE Journal on Selected Areas in
Communications, vol. 29, no. 2, pp. 455–468, 2011.

[33] T. H. Pham, S. A. Fahmy, and I. V. McLoughlin, “An end-to-end multi-
standard OFDM transceiver architecture using FPGA partial reconfigu-
ration,” IEEE Access, vol. 5, pp. 21 002–21 015, 2017.

