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ABSTRACT
We present an autonomic controller for quality collaborative
video viewing, which allows groups of geographically dis-
persed users with different network and computer resources
to view a video in synchrony while optimizing the video qual-
ity experienced. The autonomic controller is used within a
tool for enhancing distance learning with synchronous group
review of online multimedia material. The autonomic con-
troller monitors video state at the clients’ end, and adapts
the quality of the video according to the resources of each
client in (soft) real time. Experimental results show that
the autonomic controller successfully synchronizes video for
small groups of distributed clients and, at the same time, en-
hances the video quality experienced by users, in conditions
of fluctuating bandwidth and variable frame rate.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Client/server, Distributed
applications; C.4 [Performance of Systems]: Performance
attributes; H.5.1 [Information Interfaces and Presenta-
tion]: Multimedia Information Systems; H.5.3 [Group and
Organization Interfaces]: Computer-supported coopera-
tive work, Synchronous interaction; K.6.4 [System Man-
agement]: Quality Assurance

General Terms
MEASUREMENT, PERFORMANCE, EXPERIMENTATION

Keywords
Synchronized Collaborative Video, Autonomic Controller,
Quality Adaptation

1. INTRODUCTION
In today’s distance education programs such as the Columbia

Video Network, lectures are frequently recorded, then post-
processed and packaged for students to watch (and re-watch)
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at their convenience over the Internet as streaming videos.
It seems that Internet-based video streaming should enable
synchronous collaboration “situated” by collaborative lec-
ture viewing, and introduce the possibility of forming “study
groups” among off-campus students who view and discuss
lecture videos together, thus approximating the pedagogi-
cally valuable discussions of on-campus students.

Unfortunately, collaborative video viewing has no built-
in support in today’s conventional Internet video technol-
ogy. It is particularly challenging to enforce WISIWYS
(What I See Is What You See) among geographically dis-
persed users, whose bandwidth and computer resources may
be very diverse, and may also vary during the course of
the video. Technically, collaborative video viewing poses a
twofold problem: on the one hand, it is mandatory to keep
all users synchronized with respect to the content they are
supposed to see at any moment; on the other hand, it is im-
portant to provide each individual user with a level of quality
that is optimized with respect to available resources.

In order to balance the group synchronization require-
ment with the optimization of the individual viewing ex-
periences, we use an autonomic controller on top of a col-
laborative video viewing architecture we have developed for
a project named AI2TV, for Adaptive Internet Interactive
Team Video. AI2TV contributes to the area of autonomic
computing as an interesting application domain, where the
time scales make human “systems management” infeasible.

Our approach applies techniques and insights derived from
our previous work on autonomic computing [23, 12, 13] to
the novel domain of multi-user video synchronization, with
its challenging soft real-time requirements. Our autonomic
controller remains conceptually separate from the controlled
video system, and employs a decentralized workflow engine
geared towards the dynamic adaptation of distibuted soft-
ware systems, named Workflakes [22], to enforce its adap-
tation scheme onto the video clients. A single controller is
used for all clients in the same user group, so it can detect
“skew” across multiple clients and coordinate its resolution.

This approach results from the evolution of an earlier
version of AI2TV, described in [10], in which group video
viewing capabilities were embedded within a Collaborative
Virtual Environment [7]. In that early system, each single
client adjusted video playback on its own, on the basis of
video synchronization packets exchanged in a peer-to-peer
fashion and piggybacked on top of the UDP communication
used primarily for updates of the CVE shared state. No ex-
plict control facility was hence included in that design, which
did not perform satisfactorily with respect to synchroniza-
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Figure 1: AI2TV Architecture

tion, possibly because of the lack of coordination across the
clients and the overhead related to processing many-to-many
communication.

Experimental results of trials with the new system show
quantitatively that the autonomic controller can ensure group
synchronization and has a significant positive impact on the
video quality experienced by each client.

2. ARCHITECTURE AND ADAPTATION
MODEL

2.1 System Architecture
The AI2TV system, shown in figure 1, involves several

components (a video encoding system (not shown), a video
distribution server, video clients, and a common communi-
cations infrastructure), upon which the autonomic controller
operates.

The encoding system encodes videos prior to their dis-
tribution, according to a semantic compression technology
developed by Liu and Kender [16] - also at Columbia - which
is similar to cumulative layering [17], also known as scalable
coding [14]. Cumulative layering produces a hierarchy of
several encodings for the same video, with different quality
levels. The semantic compression algorithm used in AI2TV
reduces a standard MPEG video to a sequence of JPEG still
images, which represent semantically significant key frames
within a sliding time window. By increasing the size of the
window, a key frame will represent a larger time slice, hence
producing less key frames as compared to a smaller win-
dow size. That way, it is possible to generate different sets
of JPEG images for a range of different compression levels.
The algorithm produces an effectively random distribution
of key frames, hence the resulting video plays back at a
variable frame rate. That adds substantial complexity to
the bandwidth demands of the clients.

Through the semantic compression algorithm, we can pro-
vide semantically equivalent content to a group of clients
with diverse bandwidth, by adjusting the compression level
assigned to each client while watching the video. Thus, in
AI2TV, synchronization of video boils down to showing se-
mantically equivalent frames at the same time to all clients

(further details on the semantic compression tool used in
AI2TV are outside the scope of this short paper).

The video server provides the layered video to clients in
a group. Each lecture video is stored according to the com-
pression hierarchy produced via the semantic compression
tool, together with indices of the key frames produced, which
are annotated with playing time information. Once the lay-
ered video is codified, the task of the video server simply is
to provide access to the index files and the frames.

The task of each video client is to acquire video frames,
display them at the correct time, and provide a set of basic
video functions, such as play, pause, goto and stop. Taking
a functional design perspective, the client is composed of
the following modules: a time controller, a video display,
a video buffer that feeds the display, and a manager for
fetching frames into the buffer.

The time controller relies on NTP [18] to ensure a common
time base, through which each client can reference from the
video indices the correct content to display at any moment,
provided that a corresponding key frame at some quality
level can be download in time.

The video display renders the JPEG frames at the correct
time into a window and provides the user interface. The
video display knows which frame to display by using the
current video time and display quality level to select the
representative frame into the frame index. The video dis-
play also includes a control hook that enables the autonomic
controller to adapt the current display quality level.

The video manager constitutes a downloading daemon
that continuously downloads frames at a certain level into
the video buffer. It keeps a hash of the current reserve
frames in the buffer for each quality level. The buffer man-
ager also includes a control hook that enables the controller
to adapt the current downloading quality level.

Video clients communicate with each other over a dis-
tributed publish-subscribe event bus. The bus propagates
video actions taken by any user to all users in the group.
Video actions are time-stamped, thus all clients respond to
them in reference to the common time base.

The purpose of the autonomic controller is to enforce the
synchronization constraint, and at the same time ensure that
each client plays at its highest attainable quality level. The
controller is itself a distributed system, whose design de-
rives from a conceptual reference architecture for autonomic
computing platforms proposed by Kaiser et al. [11], which
is shown in figure 2.1. The architecture provides an end-
to-end closed control loop, in which sensors attached to a
generic (possibly legacy) target system continuously collect
and send streams of data to gauges. The gauges analyze the
incoming data streams and recognize conditions that require
some adaptation, relaying that information to one or more
”core” controllers. Those are coordination engines in charge
of orchestrating the distributed actions needed to carry out
the adaptation. At the end of the loop, actuators attached
to the target system effect the needed adjustments under
the supervision of the controller.

In the AI2TV case, sensors at each client monitor the fol-
lowing information: the currently displayed frame, its qual-
ity level, the quality level currently being fetched by the
buffer manager, the time range covered by buffered frames,
and the current bandwidth. Gauges are embedded together
with the coordination engine for expediency of design and
to minimize communication latency in this real-time envi-



Figure 2: Controller Reference Architecture

ronment. They receive the sensor reports from individual
clients, and collect them in buckets, similar to the approach
in [8]. A set of helper functions tailored specifically for this
application operate on the bucket data structure to com-
pute the synchronization state of the client group and pro-
duce triggers for the coordination engine. When a trigger is
raised, the coordination engine enacts an adaptation scheme,
i.e., a workflow that takes effect upon the client modules
through the control hooks they provide.

The adaptation scheme leverages the hierarchy of com-
pression levels produced by the semantic compression tool,
to adjust the client behavior regarding the next image to be
displayed, and the next image to be fetched from the appro-
priate semantic compression level. That way, it can react to
changes in the environment and the frame rate.

All communications internal to the autonomic controller,
i.e, sensors reports and adaptation directives, also occur via
the above mentioned publish-subscribe event bus.

2.2 Adaptation Model
The adaptation scheme consists of two levels: a higher

level control flow, and a lower level adjustment heuristic.
The higher level logic structures the adaptation according to
a formal decision process; the diagram in Figure 3 shows the
task decomposition hierarchy according to which that adap-
tation workflow unfolds, in the Little-JIL graphic formalism
[5] employed. At the lower level, the adaptation scheme
provides criteria as to when and how to adapt clients, in
response to either low or high bandwidth situations.

Whenever a client has relatively low bandwidth, the client
may not be able download the next frame at the current
quality level in time. Then both the client and buffer qual-
ity levels are adjusted downwards one level. If the client is
already at the lowest level in the hierarchy, the controller
will estimate the next frame at that level that can be suc-
cessfully retrieved before its own start time, while remaining
synchronized with the rest of the group. The client will then
be directed to jump ahead to that frame.

To take advantage of any available bandwidth surplus,
the buffer manager will start to accumulate a reserve buffer.
Once a threshold value of reserve frames is buffered, the
controller will direct the manager to start fetching frames at
a higher quality level. Once sufficient reserve is accumulated
also at that higher level, the client is then ordered to start
displaying frames at the higher level. If the bandwidth drops
before the buffer manager can accumulate enough frames in
the higher-level reserve, the buffer manager is dropped back

Figure 3: AI2TV Workflow diagram

down one quality level.
A variation of this same adaptation scheme could also

enforce a given upper limit to the amount of bandwidth em-
ployed by a client for video, in order to ensure that enough
bandwidth remains available for other forms of communica-
tion, such as audio discussions among users.

2.3 Implementation
The system is fully implemented in Java. The video client

uses javax.swing to render frames. The coordination core
of the controller, Workflakes, is built on top of the open-
source Cougaar multi-agent system [1], which it extends to
allow the orchestration of distributed software for autonomic
purposes (explained further in [23]). We used the Little-
JIL graphic workflow specification language [5] to define the
adaptation plan. We chose the freely available Siena [4]
publish-subscribe event system as our communication bus.

3. EVALUATION
Our assessment considers two factors: group synchroniza-

tion and optimal video quality delivery. Our results were
computed from client configurations consisting of 1, 2, 3,
and 5 clients together running a semantically summarized
video for 5 minutes, with sensors probing clients state every
5 seconds. The compression hierarchy consists of 5 levels.

We define a baseline client against which the performance
of our approach can be compared. The baseline client’s qual-
ity level is set at the beginning of the video and not changed
thereafter, which represents a client in AI2TV without the
adaptive elements. The baseline quality level is computing
using a value we identify as the average bandwidth for the
set level, i.e., the bandwidth needed, on average, for the
buffer manager to fetch the next frame on time. We pro-
vide the baseline client with the corresponding bandwidth
to the video server by using a throttling tool ([20]). Note
that using the average bandwidth does not account for the
inherent variability in video frame rate and the likely band-
width fluctuations in real-world conditions, where adaptive
control can make a difference.

For each trial, we record any differences resulting from



the controller’s adaptation of the clients’ behavior versus
the behavior of the baseline clients.

3.1 Evaluating Synchronization
To measure the level of group synchronization, we probe

the video clients at periodic time intervals and log the frame
currently being displayed. This procedure effectively takes
a series of system snapshots, which we check to see whether
the frame being displayed at a certain time corresponds to
one of the valid frames for that time, on any quality level.
We allow any level here because the semantic compression
algorithm ensures that all frames designated for a given time
will contain semantically equivalent content. We obtain a
score by summing the number of clients not showing an ac-
ceptable frame and normalizing over the total number of
clients. A score of 0 indicates a fully synchronized system.

In a first set of trials, clients were assigned an initial
compression level matching on average their available band-
width: all of those trials showed a total score of 0, notwith-
standing variations in the frame rate and/or occasional fluc-
tuations in the actual bandwidth; also, full synchronization
was achievd without missing any frames. This result demon-
strates that the chosen baseline combinations of compression
levels and throttled bandwidths did not push the clients be-
yond their bandwidth resource capacity.

Then we ran another set of experiments, in which the
clients were assigned more casually selected starting band-
width. Said casual selection is representative of real-world
media streaming applications, in which users select stream
quality based on their nominal connectivity, but may actu-
ally be receiving a significantly lower actual data rate. Our
clients were assigned bandwidths one level lower than the
preset quality level. We ran this set of experiments first
without the aid of the autonomic controller and then with
it. In the former, non-adaptive case, clients with insufficient
bandwidth were stuck at the compression level originally se-
lected, and - in order to remain synchronized - were forced
to miss an average of 63% of the frames. In the latter case,
the same clients only missed 35% of the needed frames. Al-
though both situations show a significant amount of missed
frames, these results provide evidence of the benefits of the
adaptive scheme of the autonomic controller.

3.2 Evaluating Quality of Service
For this evaluation, we had to formulate a scoring sys-

tem relative to the baseline client’s quality level, since other
proposals, e.g., [2, 25] are not constrained by the group syn-
chronization requirement. We give a weighted score for each
attained quality level above or below the baseline level: the
weighted score is calculated as the ratio of the frame rate
of the two levels. For example, if a client is able to play at
one level higher then the baseline, and the baseline plays at
an average n frames per second (fps) while the higher level
plays at 2*n fps, the earned score is 2. That way, scores are
sensitive to the relative differences between quality levels.

Our experiments show that baseline clients scored a group
score of 1 (as expected) while the controller-assisted clients
scored a group score of 1.25. The one-tailed t-score of this
difference is 3.01, which is significant for an α value of .005
(N=17). This result demonstrates that the autonomic con-
troller enabled our system to achieve a significant positive
difference in received frame rate, which translates to better
video quality. Since the t-score does not measure the degree

of benefit achieved, we also measure the proportion of addi-
tional frames that each client is able to display. We found
that, overall, adapted clients received 20.4% (± 9.7, N=17)
more frames than clients operating at a baseline rate.

Running the client close to or at a level higher than the
baseline puts the client at risk of missing more frames, be-
cause the autonomic controller is trying to push the client to
a better-quality, but more resource-demanding, level. There-
fore, we also count the number of missed frames during
a video session. In our experiments, there was only one
instance in which a controller-assisted client missed some
frames - in particular, two consecutive frames. Upon closer
inspection of the log of that trial, we found that the seman-
tically compressed video demanded a higher frame rate at
the same time that the network bandwidth available to that
client became relatively low. The client was able to consis-
tently maintain a high video quality level after that epoch.

4. RELATED WORK
Intra-stream synchronization, which is concerned with en-

suring the temporal ordering of data packets transmitted
across a network from a single streaming source to one or
more delivery sinks, is a widely studied topic in multimedia
research. Intra-stream synchronization schemes typically
implement some form of trade-off related to some param-
eter impacting the quality of service offered to client; those
schemes can be rigid or adaptive [6].

Many adaptive schemes trade off synchronization for play-
out delay. Examples include the Adaptive Synchronization
Protocol [19], the Lancaster Orchestration Service [3], the
work of Gonzalez and Adbel-Wahab [9], or that of Liu and
El Zarki [15]. They are based on data buffering at the
sink(s) and the introduction of some delay before the play-
out of buffered data units (i.e., frames), to accommodate
slower clients. The delay is recomputed continuously while
streaming is under way, to try to minimize it and still en-
sure synchronization. Those schemes must accept tempo-
rary synchronization inconsistencies and/or some data loss,
in case the guessed delay is at times insufficient (due, e.g.,
to varying network conditions) and needs to re-estimated.
Other adaptive schemes, like Concord [21], allow to adapt
also other quality parameters, e.g, packet loss rate.

Our work differs from the majority of adaptive schemes
since it is not based on play-out delay. Instead, we take
advantage of layered semantic compression, coupled with
buffering, to “buy more time” for clients that coul not oth-
erwise remain in sync, by putting them on a less demanding
level of the compression hierarchy. When resources are low,
we sacrifice frame rate at the client end to enforce the syn-
chronization requirement.

With respect to the software architecture, AI2TV is a
simplification of our KX infrastructure [12, 13], which in
turn is a reification of the conceptual model in Figure 2.1.
With respect to KX, AI2TV trades off general applicability
for faster, ad hoc sensor data processing, and distribution
for lower communication latency through the feedback loop:
those trade-offs are both a premium in a real-time scenario.

Among video synchronization architectures developed in
the multimedia community, the most similar is perhaps the
Lancaster Orchestration Service [3], which is also based on
a high-level controller that coordinates, via appropriate di-
rectives, remote control units placed within the clients. The
Lancaster approach employs an adaptive delay-based scheme,



hence it tends to adapt to the lowest bandwidth client and
to degrade the playback experience of the other participants.
Our approach seems preferable, since each client should re-
ceive video quality commensurate with its resources.

Walpole et al. also incorporate a software feedback loop
within a distributed real-time MPEG player, to optimize
frame rate [24]. Adaptation, however, remains local to each
client, while the coordination aspect in our work enables also
video synchronization across a small group of clients.

5. CONCLUSIONS
We have applied an autonomic approach to the problem of

enabling geographically dispersed user groups to collabora-
tively view videos in synchrony, while dynamically adapting
the video quality according to clients’ resources. Our system
distributes appropriate quality levels of the video to clients,
in conditions of fluctuating bandwidth and variable video
frame rate. Experimental results demonstrate the advan-
tages of this autonomic approach in terms of video synchro-
nization and optimized video quality.

This work offers proof that techniques developed within
application domains typically associated to autonomic com-
puting, such as self-management of data centers and infor-
mation systems, can be valid also in (soft) real time situa-
tions in general, and for multimedia systems specifically.
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