63 research outputs found

    Untersuchung und Entwicklung verschiedener Spurführungsansätze für Offroad-Fahrzeuge mit Deichselverbindung

    Get PDF
    In dieser Arbeit wird zuerst die Dynamik eines über Deichsel mit einem Zugfahrzeug gekoppelten Nachläufers modelliert. Auf dieser Grundlage werden verschiedene Regelansätze zur Spurfühurng des Nachläufers entwickelt. Danach werden die Konzepte erweitert, damit ein über virtuelle Deichsel mit einem vorausfahrenden Fahrzeug gekoppeltes Fahrzeug automatisch geführt werden kann

    Assessment of Measurement and Prediction Uncertainties in Temporal Intervention Decision for Automatic Emergency Braking and Evasion Systems

    Get PDF
    Fahrerassistenzsysteme gewinnen zunehmend an Bedeutung, da sie das Autofahren komfortabler und sicherer machen. Notbrems- und Notausweichsysteme können dazu eingesetzt werden, Frontalkollisionen mit dem vorausfahrenden Fahrzeug zu vermeiden. Wenn der Fahrer nicht aufmerksam ist, greift das System im letzten Augenblick autonom in die Fahrzeugführung ein, indem es eine Vollbremsung oder ein Ausweichmanöver ausführt. Das Manöver muss korrekt geplant werden, damit es zum richtigen Zeitpunkt ausgeführt wird. Wird es zu früh eingeleitet, fühlt sich der Fahrer bevormundet und schaltet das System ab, wird es zu spät eingeleitet, kann der drohende Unfall nicht vermieden werden. Um ein derartiges System realisieren zu können, muss das Umfeld erfasst werden. Dies umfasst die Bestimmung der Umfeldparameter, wie z.B. den Reibwert zwischen Straße und Reifen oder die Straßensteigung, sowie die Messung und Prädiktion der Bewegung des kollisionsrelevanten Objektes und des eigenen Fahrzeugs. Die Unsicherheiten in der Bestimmung dieser Werte beeinflusst die Berechnung des Eingriffszeitpunktes für das Brems- und Ausweichmanöver. Es wird ein Verfahren vorgestellt, das mit im Straßenverkehr aufgezeichneten Messdaten die Systemabhängigkeiten sichtbar macht. Damit kann der Einfluss der Unsicherheiten verglichen und bewertet werden. Mit Hilfe einer Unfalldatenbank und der Messdaten werden in einer Simulationsumgebung realistische Unfallsituationen erzeugt. Diese ermöglichen die Erstellung eines allgemein- gültigen Fehlermodells für die zeitliche Eingriffsentscheidung. Auf Basis des Fehlermodells wird ein probabilistisches Gütemaß zur Bewertung des Zeitpunktes erstellt. Damit können die Eingriffsentscheidungen im Fahrbetrieb verbessert werden, indem die Güte bei der Manöverplanung berücksichtigt wird. Das bietet des Weiteren die Möglichkeit, den Zeitpunkt der Eingriffsentscheidung zu korrigieren. Das Korrekturverfahren wird für Berücksichtigung der Unsicherheiten in der Bewegungsprädiktion eingesetzt. Die Nutzenbewertung der Eingriffskorrektur wird auf Basis der erwarteten Unfallfolgen vorgenommen. Hierzu wird ein Modell erstellt, das mit Hilfe von rekonstruierten Unfalldaten den Zusammenhang zwischen der Verletzungsschwere bei einer Fahrzeug-Fahrzeug- Kollision und der Kollisionsgeschwindigkeit und anderen Faktoren beschreibt. Damit kann das Potenzial aufgezeigt werden, das die Berücksichtigung der Unsicherheiten in der Manöverplanung hat.Driver assistance systems are becoming increasingly important because they make driving safer and more comfortable. Emergency braking and evading systems can be used to avoid head-on collisions with the vehicle in front. If the driver is not attentive, the system autonomously takes over the vehicle guidance in the last moment by performing an emergency stop or an evasive maneuver. The maneuver has to be planned properly so that it can be executed at the right time. If it is started too early, the driver feels patronized and switches off the system, if it is started too late, the imminent accident can not be avoided. In order to realize such a system, the environment has to be recognized. This includes the determination of the surrounding field parameters, such as the coeffcient of friction between the road and the tire or the road gradient, and the measurement and prediction of the movement of a collision-relevant object and the own vehicle. Uncertainties in determination of these values affect the calculation of intervention time for braking and evasive maneuvers. In this work a method is presented that is modelling the system dependencies using real traffic data. Thus, the influence of different uncertainties can be compared and evaluated. With an accident database and measurement data realistic accident scenarios are created within a simulation environment. These scenarios are used to generate an universal error model for the temporal intervention decision. Based on this error model a probabilistic quality measure is calculated, that evaluates the intervention time point. Consequently the decisions can be improved during driving operation by considering the quality of maneuver planning. Furthermore an approach to correct the timepoint of intervention decision is provided. The correction method is used to improve motion prediction. The benefit analysis of the intervention correction is based on the expected consequences of an accident. For this purpose, a model is created with reconstructed accident data describing the relationship between the severity of injury in a vehicle-vehicle collision, the collision speed and other factors. Thus, the potential of considering the uncertainties in maneuver planning is demonstrated

    Probabilistic situational analysis for an adaptive, automated longitudinal vehicle control system

    Get PDF
    Fahrerassistenzsysteme tragen heute bereits dazu bei, den Fahrkomfort und die Verkehrssicherheit zu steigern. Dabei sind die von Assistenzsystemen adressierten Bereiche der Fahraufgabe klar voneinander getrennt. So existieren Funktionen, die den Fahrer entweder bei der Längsführung, der Querführung innerhalb des Fahrstreifens oder bei Fahrstreifenwechseln unterstützen. Durch die modulare Entwicklung und Vermarktung solcher Systeme ist der Umfang der jeweils zugrunde liegenden Sensorik zur Umgebungserfassung gering und der Datenaustausch der Umfeldinformationen zwischen den Systemen noch minimal. Die zunehmende Verbreitung von Assistenzsystemen wird jedoch zu Integration bzw. steigender Vernetzung führen, sodass ein tieferes maschinelles Verständnis der Fahrsituation ermöglicht wird. Einen Beitrag dazu liefert diese Arbeit, in der Daten des Fahrzeugumfelds und des Fahrzeugs sowie des Fahrers zur Interpretation der Verkehrssituation in Verbindung gebracht werden. Ziel dieser Situationsanalyse ist es, Fahrmanöver des Fahrers zu erkennen und damit das Verhalten von Assistenzsystemen anzupassen. Dazu wird ein allgemeines Modell zur Erkennung von Fahrmanövern erarbeitet und am Beispiel einer automatisierten Längsführung für Fahrstreifenwechsel konkretisiert. Zur Qualitätssicherung, die besonders bei der Verwendung probabilistischer Verfahren eine Herausforderung darstellt, werden automatische Softwaretests eingesetzt. Damit ist es möglich, die Auswirkungen von Änderungen effizient, automatisiert und wiederholbar zu überprüfen. Die hierfür notwendige Infrastruktur wird im Rahmen dieser Arbeit bereitgestellt. Die Erkennung von Fahrstreifenwechseln wird abschließend in realen Versuchsfahrten untersucht. Das veränderte Verhalten des Längsführungssystems wird für verschiedene Ausprägungen eines Fahrstreifenwechsels in Simulationen demonstriert.Driver assistance systems contribute towards increasing driving comfort and improving road safety. The different aspects of the driving task addressed by assistance systems are clearly separated from one another. This means that there are separate functions assisting the driver with regard to longitudinal vehicle control, lateral vehicle control or when changing lanes. Due to modular development and the way that such systems are marketed, the number of environmental sensors for the given systems is still small and there is only little ambient data exchanged between the individual assistance systems. The increasing use of driver assistance systems in vehicles, however, will entail the integration of systems and will also lead to increased interconnection. This, in turn, will allow the systems to gather more detailed information about the current driving situation. This work contributes to the abovementioned development by illustrating how data of the vehicle environment, the vehicle itself and the driver can be used in a combined manner to interpret the traffic situation. The objective of this situational analysis is to detect maneuvers performed by the driver and to use this information to adapt the behavior of assistance systems. In order to do so, this thesis establishes a general model for detecting driving maneuvers, which is then implemented in an automated longitudinal vehicle control system for changing lanes. Quality assurance poses a particular challenge when employing probabilistic methods. This challenge has been responded to by using automated software tests allowing the effects of changes to be tested in an efficient, automated and repeatable manner. The infrastructure required therefore is provided in this thesis. Finally, the detection of lane-change maneuvers is examined in real road tests. The adapted behavior of the longitudinal vehicle control system for different types of lane changes is furthermore illustrated by means of simulations

    Entwicklung von Tests für die Freigabe des Dynamikmoduls als Teil der Absicherung eines automatisierten Fahrzeugs

    Get PDF
    Automatisierte Fahrfunktionen entwickeln sich kontinuierlich weiter. Maßgeblich für deren Zulassung ist ein belastbarer Nachweis ihrer Sicherheit. Mit zunehmendem technischem Fortschritt der Fahrzeugautomatisierung, wird es schwieriger und komplexer diese Funktionen für einen Einsatz im Straßenverkehr abzusichern. So stoßen auch in der Entwicklung hochautomatisierter Fahrzeuge gängige Absicherungsansätze an Grenzen. Das Forschungsprojekt UNICARagil verfolgt daher unter anderem im Umgang mit funktionaler Fahrzeugsicherheit neue Herangehensweisen. Mit diesem Hintergrund liefert diese Arbeit eine Methodik für eine Testentwicklung aus modularer Perspektive. Der hierfür untersuchte Gegenstand ist das Dynamikmodul des Forschungsprojekts, welches in allen Varianten der entwickelten Konzeptfahrzeuge für die Bereitstellung der Fahrfunktionen sorgen wird. Dabei wird das übergeordnete Ziel verfolgt, Aufwand und Komplexität der Absicherung durch modulares Testen zu reduzieren. Zunächst wird dafür die Modulumgebung, das Konzeptfahrzeug, beschrieben. Anschließend erfolgt eine Beschreibung des Dynamikmoduls mit seinem Aufbau und seinen Funktionen. Schnittstellen, funktionale Zusammenhänge aber auch vorgesehene Einsatzbedingungen werden dabei erklärt. Im nächsten Schritt werden für eine Testentwicklung relevante Grundbegriffe und deren Bedeutung erläutert. Um eine breite Informationsgrundlage aus testbaren Anforderungen zu entwickeln, wird daraufhin eine kombinierte Arbeitsweise für eine Risikoanalyse abgeleitet. Den Rahmen hierfür liefern Ansätze und analytische Methoden der ISO 26262, welche durch die Perspektive der Systems Theoretic Process Analysis (STPA) ergänzt werden. Mit kombinierten Analysen werden innere Zusammenhänge und mögliche Gefährdungen des Dynamikmoduls unabhängig von äußeren Einsatzbedingungen und Betriebssituationen erfasst. Funktionsbereiche und Beziehungen innerhalb des Dynamikmoduls werden dafür durch jeweilige Methoden unterschiedlich untersucht. Zunächst liefert die Failure Mode and Effects Analysis (FMEA) mögliche Gefährdungen aus einzelnen Ausfällen innerhalb des Moduls. Wechselwirkungen und Zusammenhänge einzelner Ausfälle werden durch Fehlerbaumanalysen ergründet. Zuletzt lassen sich anhand eines Kontrollflussdiagramms der STPA Gefährdungen durch unsichere Wechselwirkungen ermitteln. Gemeinsam mit bekannten Anforderungen aus existierenden Unterlagen werden die Ergebnisse der Analysen in einer Anforderungsliste gesammelt. Mit Angaben über ihre Bedeutung in der funktionalen Modularchitektur, lassen sich diese anschließend sortieren und einzelnen Testumgebungen priorisiert zuordnen. Unter Berücksichtigung bekannter Möglichkeiten wurde dafür ein einfaches Testkonzept erstellt, mit dem einzelne Testfälle entsprechend ihrer Eigenschaften und Priorität den verfügbaren Testumgebungen zugeordnet wurden. Mit der beschriebenen Vorgehensweise und gewonnenen Ergebnissen lassen sich auch in der Zukunft des Forschungsprojekts Testfälle entwickeln. Grafische und tabellarische Ergebnisse durchgeführter Analysen liefern dafür Informationsgrundlagen über die Struktur des Dynamikmoduls. Auch lassen sich die gesammelten Anforderungen strukturiert neuen Testumgebungen zuweisen. Darüber hinaus bietet die Arbeit mit ihrem Aufbau Orientierung für andere Testentwicklungen und liefert zuletzt mögliche Anknüpfungspunkte für weitere Arbeiten über modulares Testen

    Skill and ability graphs as basis for a safe operation of automated vehicles in public traffic in urban environments

    Get PDF
    In der vorliegenden Arbeit wird ein Beitrag zur Sicherheit automatisierter Fahrzeuge für den öffentlichen Straßenverkehr geleistet. Im ersten Teil werden die Rahmenbedingungen für automatisierte Fahrzeuge betrachtet und wesentliche Begriffe definiert. Im Fokus steht dabei eine Betrachtung der Automatisierungsgrade für automatisierte Fahrzeuge. Der Stand der Forschung zur Automatisierung von Fahrzeugen schließt diesen Teil. Im zweiten Teil wird der Entwicklungsprozess nach Norm ISO 26262 betrachtet und auf automatisierte Fahrzeuge angewendet. Hierfür werden die Prozessschritte zur Erstellung einer Item-Definition für das vollständig automatisierte Fahrzeug auf Abruf als Anwendungsfall des automatisierten Fahrens in der Stadt exemplarisch durchgeführt. Da eine vollständige Item-Definition mit einer Betrachtung von allen Szenarien im Rahmen einer Dissertation nicht erstellt werden kann, werden ausgewählte pathologische Szenarien genutzt, um die Anforderungen abzuleiten. Zusätzlich werden Fertigkeitengraphen zur Modellierung von Fahrzeugführungssystemen in die Konzepthase integriert. Diese ermöglichen eine Modellierung des Systems angelehnt an die Aktivitäten, die ein Mensch bei der Fahrzeugführung ausführt. Im dritten Teil wird ein funktionales Sicherheitskonzept entwickelt, das den Betrieb von automatisierten Fahrzeugen im städtischen Straßenverkehr ermöglichen soll. Als erster Schritt wird eine Gefährdungsanalyse und Risikobewertung für die pathologischen Szenarien des vollständig automatisierten Fahrzeugs auf Abruf durchgeführt. Als Ergebnis stehen die Sicherheitsziele zur Verfügung. Das funktionale Sicherheitskonzept setzt diese Sicherheitsziele durch eine Selbstwahrnehmung und Selbstrepräsentation des automatisierten Fahrzeugs um. Die Selbstrepräsentation wird durch eine Überführung des Fertigkeitengraphen in einen Fähigkeitengraph erreicht. In diesem werden aggregierte Gütemaße berechnet, die ein Abbild der aktuellen Leistungsfähigkeit des automatisierten Fahrzeugs unter Berücksichtigung der aktuellen Situation ermöglichen. Die Selbstrepräsentation kann anschließend als Eingangsgröße für Fahrentscheidungen genutzt werden. Die Erhaltung eines sicheren Zustands wird durch die funktionale Degradation erreicht und durch Selbstheilung kann sich die Leistungsfähigkeit im Betrieb verbessern.This work contributes to the safety of automated road vehicles for public traffic. The first part covers surrounding conditions for automated vehicles and important terms are defined. Especially automation levels for automated vehicles are focused. The state of research for vehicle automation closes this part. The second part considers the development process according to the ISO 26262 standard and its applicability to automated vehicles. The development steps to create an Item Definition for a fully automated vehicle on demand as an example of automated driving are applied. A complete Item Definition covering all scenarios is not feasible in a single dissertation. Thus, part two uses selected pathological scenarios to deviate requirements. Additionally, skill graphs to model vehicle guidance systems are integrated into the concept phase. Theses graphs allow a modeling of systems adapted from the activities performed by humans while driving. In the third part a functional safety concept is developed. This should enable the operation of automated vehicles in public traffic. As a first step, a hazard identification and risk assessment for the pathological scenarios of the fully automated vehicle on demand is performed. This results in safety goals, which need to be fulfilled by the resulting system. The functional safety concept implements the safety goals by introducing a self-perception and a self-representation for automated vehicles. The self-representation is achieved with a transfer of the skill graph to an ability graph. In the ability gaph, aggregated performance metrics are calculated, which create a representation of the current performance capabilities of the automated vehicle in respect to the current driving situation. The resulting self-representation can then be used as an input to the driving decisions. The preservation of a safe operating state is reached by functional degradation. With self-healing, the performance capabilities can be improved

    Workload optimized routing in road traffic

    Get PDF
    Fahrerassistenzsysteme sollen die steigende Belastung bei der Fahrzeugführung kompensieren. Vornehmlich geschieht dies auf der Bahnführungs- und Stabilisierungsebene nach Bernotat (1970). Die belastungsoptimierte Routenplanung erschließt das ungenutzte Potential der Planungsebene. Eingehend werden Nutzergruppen über eine modifizierte, motivbasierte Fahrertypisierung mittels Fragebogen ermittelt und das Potential einer individuellen, belastungsoptimierten Routenplanung aufgezeigt. Im Weiteren erfolgt die Ermittlung individueller Belastungsprofile auf Basis realer Fahrdaten. Dabei wird die Reaktion des Fahrers in neun relevanten Infrastrukturkombinationen ermittelt, welche sich aus Straßenkategorien und potentiellen Interaktionspunkten mit anderen Verkehrsteilnehmern zusammen setzen. Das resultierende Profil verändert später die Gewichtungsfunktion in der Routenberechnung. Es ergeben sich zwei Nutzungen individueller Belastungsprofile: eine entlastende Streckenführung „Entspannte Route“ und eine Streckenführung mit Trainingscharakter „Aktive Route“. Infrastrukturbereiche mit einem erhöhten, individuellen Gefährdungspotential können dabei gemieden, oder trainiert werden. Eine Umsetzung erfolgt mit der Option Entspannte Route unter Verwendung der Herzrate als physiologisches Beanspruchungsmaß. Das Konzept wird abschließend in einem Routenplaner umgesetzt und validiert. Methodisch kommen GIS-Anwendungen, Fahrdatenauswertungen, Filter- und Aufbereitungsalgorithmen zur Anwendung. Der Nachweis wird erbracht, dass die Entspannte Route zu einer signifikant geringeren Beanspruchung beim Fahrer führt, als die Schnellste Route. Eine belastungsoptimierte Routenplanung kann die persönliche und die allgemeine Verkehrssicherheit erhöhen. Die entwickelte Methode zur Generierung der Fahrerprofile ließe sich auch zur Identifikation von allgemein belastenden Infrastrukturbereichen nutzen und um Trassierungsrichtlinien zu erweitern.Driver Assistance Systems were developed to compensate increasing driver workload. That happens so far primarily focussed on the guidance level and the stabilization level of the vehicle guidance model of Bernotat (1970). The individualized route planning addresses the unused potential of the navigation level. Firstly potential user groups are identified by using a modified motif based questionnaire. Also the potential of the individualized, workload-optimized routing is highlighted. Furthermore individual driver profiles based on workload were generated using real driving data. The reaction of the driver in nine predefined combinations of infrastructure is used to generate the driver’s profile. For this differentiation a combination of road categories and potential points of interaction with other road users is used. The adjustment of the weighting factors used within the route planning process is based upon the driver’s profile. As a result the individual drivers profile will enable to build up two new routing applications: a routing with low stress to the driver, the Relaxed Route, and a routing with the potential of training the driver, the Active Route. Traffic infrastructure combinations with a slightly higher, individual hazard potential can be avoided, or if needed be trained. Only the new routing option Relaxed Route is developed using the heart rate as the basic physiological indicator. The described concept of an individualized route planning was implemented in a route planer and tested. GIS applications, visual evaluation of driving data, as well as various data processing and filtering algorithms were part of the basic methods. It was demonstrated that the Relaxed Route leads significantly to less drivers strain compared to the Fastest Route. A workload-optimized route planning can increase the personal and the general road safety. The developed method generating drivers’ profiles could be used to identify infrastructure with a general potential of higher workload to the driver to extend the alignment guidelines

    Hochgenaue Positionsbestimmung von Fahrzeugen als Grundlage autonomer Fahrregime im Hochgeschwindigkeitsbereich

    Get PDF
    Bei der Entwicklung neuartiger und innovativer Fahrerassistenzsysteme kommt der Positions- und Ausrichtungsbestimmung von Fahrzeugen eine Schlüsselrolle zu. Dabei entscheidet die Güte der Positionsbestimmung über die Qualität, die Robustheit und den Einsatzbereich des Gesamtsystems. Verbesserungen in der Positionsbestimmung führen zu einer besseren Performanz bzw. sind die Grundvoraussetzung für die Realisierung dieser Fahrerassistenzsysteme. Ein Beispiel für solch ein neuartiges Fahrerassistenzsystem, welches auf eine hochgenaue Positionsbestimmung baut, ist der BMW TrackTrainer. Dieses Assistenzsystem soll den "normalgeübten" Autofahrer beim schnellen Erlernen der Ideallinie auf Rennstrecken unterstützen, indem das Fahrzeug die Rennstrecke völlig autonom auf einer vorher aufgezeichneten Ideallinie umrundet, während der Teilnehmer sich die Strecke aus Fahrerperspektive einprägt. Für die Realisierung eines derartigen Assistenzsystems ist eine hochgenaue Positionsbestimmung im cm-Bereich notwendig. Bisher wurde dafür eine GPS-gestützte Inertialplattform eingesetzt, welche unter guten GPS-Empfangsbedingungen die Anforderungen an die Positionierung erfüllt. Bei schlechten GPS-Empfangsbedingungen, wie sie beispielsweise auf der international bekannten Rennstrecke Nürburgring Nordschleife aufgrund von Verdeckung und Abschattung der Satellitensignale durch stark bebautes oder bewaldetes Gebiet auftreten, liefert das Positionierungssystem keine ausreichend genauen Werte, wodurch das autonome Fahren verhindert wird. Zwar gibt es neben GPS auch weitere Positionsbestimmungssysteme, die aber für den Einsatz auf Rennstrecken entweder zu ungenau sind, oder einen zu hohen Rüstaufwand erfordern würden. Um diese Lücke zu schließen, wurde im Rahmen dieser Arbeit ein hochgenaues Positionsbestimmungssystem entwickelt und evaluiert, welches auch unter schlechten GPS-Empfangsbedingungen den Anforderungen des autonomen Fahren auf Rennstrecken genügt und auf einer Fusion verschiedener Signalquellen in einem Positionsfilter beruht. Folgende Signalquellen wurden hinsichtlich Genauigkeit sowie Praxistauglichkeit für den Einsatz auf Rennstrecken experimentell untersucht: - GPS-gestützte Inertialplattform (GPS/INS) - Fahrzeugsensoren mit erweitertem Fahrzeugmodell - Digitaler Kompass - Laser-Reflexlichtschranken - Servo-Tachymeter - LIDAR-basierte Randbebauungserkennung - Videobasierte Spurerkennung - Digitale Karte. Obwohl eine GPS-gestützte Inertialplattform (GPS/INS) unter schlechten GPS-Empfangsbedingungen keine ausreichend genauen Positionswerte im cm-Bereich liefert, besitzt dieses System dennoch eine hohe Robustheit und Langzeitstabilität und stellt damit eine sehr gute Grundlage für die Positionsbestimmung auf Rennstrecken dar. Fahrzeugsensoren, bestehend aus Raddrehzahl- und Gierratensensor, schreiben die Fahrzeugposition mit Hilfe der Koppelnavigationsgleichung relativ für ca. 10s ohne eine Messung absoluter Positionswerte fort. Um die bestehenden Genauigkeitsanforderungen zu erfüllen, muss jedoch ab einer Geschwindigkeit von 30km/h das Fahrzeugmodell um eine Schwimmwinkelschätzung erweitert werden. Ein digitaler Kompass eignet sich nachweislich nicht für die Positionsbestimmung auf Rennstrecken. Hier treten aufgrund von magnetischen Interferenzen zu große Messfehler der Fahrzeugausrichtung auf, die eine Positionsstützung ungeeignet machen. Bei Referenzmessungen mit einem Servo-Tachymeter konnte die geforderte Genauigkeit dieser Messeinrichtung bei Fahrzeuggeschwindigkeiten kleiner 30km/h nachgewiesen werden. Bei höheren Geschwindigkeiten liefert das System jedoch keine Ergebnisse, was den Einsatz auf Rennstrecken ausschließt. Auf den Boden gerichtete Laser-Reflexlichtschranken können sehr präzise die Überfahrt über eine Bodenmarkierung detektieren. Da diese Überfahrten beim autonomen Fahren auf Rennstrecken nur sehr selten auftreten, ist diese Positionierungsmethode nicht geeignet. Mit Hilfe einer LIDAR-basierten Randbebauungserkennung kann die Fahrzeugposition in Kombination mit einer hochgenauen digitalen Karte der Randbebauung auf ca. 20-30cm genau geschätzt werden. Schwierigkeiten bereiten hier jedoch Unregelmäßigkeiten in der Geometrie der Randbebauung. Während parallel verlaufende Leitplanken neben der Strecke sehr gut erfasst werden können, liefern Sträucher, Erdwälle, etc. ungenaue Messergebnisse. Somit ist die LIDAR-basierte Randbebauungserkennung ein bedingt geeignetes System zur Positionsstützung auf Rennstrecken. Als vielversprechendster Ansatz zur Verbesserung der Positions- und Ausrichtungsbestimmung auf Rennstrecken konnte der Einsatz einer visuellen Spurerkennung in Verbindung mit einer hochgenauen digitalen Karte der Spurmarkierungen identifiziert werden. Hierfür wurde eine sich in Vorserie befindliche Bildverarbeitungseinheit der Firma MobileEye mit einer eigens entwi-ckelten Spurerkennung verglichen. Letztere bietet den Vorteil, Systemwissen über den Verlauf der Fahrspurmarkierung sowie negative Effekte der Fahrzeugeigendynamik mit in den Signalver-arbeitungsprozess einfließen zu lassen. Bei Vergleichsfahrten auf dem BMW eigenem Testgelände in Aschheim konnte der Vorteil der Spurdatenrückführung nachgewiesen werden. Die erwei-terte Spurerkennung hatte nachweislich gegenüber der Vorserienbildverarbeitung eine höhere Verfügbarkeit von gültigen Messwerten. Bei Messfahrten auf der Nordschleife stellte sich jedoch das Vorseriensystem von MobileEye als das deutlich robustere Spurerkennungssystem heraus. Hier führten verschmutzte Fahrbahnmarkierungen, schnell wechselnde Lichtverhältnisse sowie sonstige Straßenbeschriftungen dazu, dass die erweiterte Spurerkennung weitaus weniger gültige Messwerte lieferte als das Vorseriensystem. Aus diesem Grund fiel für Fahrten mit schlechten visuellen Bedingungen die Wahl auf das Vorserienbildverarbeitungssystem. Für den Entwurf des Positionsfilters wurden letztlich folgende Signalquellen verwendet: - GPS-gestützte Inertialplattform (GPS/INS) - Fahrzeugsensoren mit erweitertem Fahrzeugmodell - Videobasierte Spurerkennung in Kombination mit einer selbst aufgezeichneten hochge-nauen Karte der Spurmarkierungen der Teststrecke. Als Fusionsalgorithmus wurde ein erweiterter Kalman-Filter eingesetzt, da sich dieser besonders für die Zusammenführung unterschiedlicher Sensormessdaten eignet. Um eine optimale Zustandsschätzung der Fahrzeugposition und Ausrichtung zu erhalten, mussten die verwendeten Signalquellen zunächst zeitlich synchronisiert sowie auf Plausibilität geprüft werden. Als Synchronisationspunkt wurde der Messzeitpunkt der Signalquelle mit der größten Latenz verwendet. Dieser wurde mit 163ms durch für die videobasierte Spurerkennung bestimmt. Da jedoch eine verzögerte Positionsschätzung für eine stabile Reglung des Fahrzeugs für das autonome Fahren ungenügend ist, wurde die geschätzte Fahrzeugposition am Ausgang des Kalman-Filters mit Hilfe der Koppelnavigationsgleichung sowie der Fahrzeugsensoren auf den aktuellen Zeitpunkt (Latenz = 0s) prädiziert. Für die Detektion systematischer Fehler wie Radschlupf, falsch erkannte Spurmarkierung und GPS-Mehrwegeausbreitung kamen robuste Signalplausibilisierungsalgorithmen zum Einsatz. So erfolgte die Plausibilisierung der Spurerkennung unter anderem über die selbst aufgezeichnete hochgenaue Karte der Spurmarkierungen, da eine Spurerkennung nur da sinnvoll ist, wo Spurmarkierungsstützpunkte in hinterlegt sind. Für die Gültigkeitsüberprüfung der GPS-Messwerte wurde ein GPS-Offset-Beobachter entwickelt und angewendet. Die Evaluierung des entwickelten Positionsfilters wurde im Rahmen der Arbeit am Beispiel des BMW TrackTrainers auf drei ausgewählten Teststrecken mit steigendem Schwierigkeitsniveau (Verschlechterung der GPS-Empfangsbedingungen) durchgeführt. Hierfür wurde die in Echtzeit geschätzte Fahrzeugposition mit einer durch Post-Processing korrigierten Positionslösung referenziert. Die Auswertung der Ergebnisse bewies, dass der entwickelte Positionsfilter durch die Fusion einer GPS-gestützten Inertialplattform, den Fahrzeugsensoren zur Messung von Gierrate und Raddrehzahlen sowie einer visuellen Spurerkennung in Kombination mit einer hochgenauen Karte der Fahrspurmarkierungen die Anforderungen des autonomen Fahrens auch unter schlechten GPS-Empfangsbedingungen erfüllt. Mit diesem, im Rahmen der Arbeit entwickelten, hoch-genauen Positionsbestimmungssystem konnte erstmalig am 21.10.2009 das autonome Fahren auf der Nürburgring Nordschleife nachgewiesen werden.:1. Einleitung 1 1.1. Bedeutung der Positionsbestimmung für moderne Fahrerassistenzsysteme 1 1.2. Kernaufgaben des autonomen Fahrens 3 1.3. Hochgenaue Positionsbestimmung für das autonome Fahren auf Rennstrecken 5 1.4. Zielsetzung der Arbeit und gewählter Lösungsweg 8 2. Grundlagen zur Positionsbestimmung 9 2.1. Allgemeines 9 2.1.1. Definitionen 9 2.1.2. Klassifikationen 9 2.1.3. Koordinatensysteme 11 2.1.4. Transformationen 13 2.2. Ortungsprinzipien 15 2.2.1. Koppelnavigation 16 2.2.2. Inertialnavigation 19 2.2.3. Trilateration/Pseudorange 23 2.2.4. Hyperbelnavigation 24 2.2.5. Triangulation 25 2.2.6. Zellortung 26 2.2.7. Map-Matching 26 2.2.8. Sensordatenfusion mit Erweitertem Kalman-Filter 27 2.3. Existierende Positionsbestimmungssysteme 29 2.3.1. GPS/Glonass/Galileo 29 2.3.2. GPS-gestützte Inertialplattform 33 2.3.3. Mobilfunkortung 34 2.3.4. WLAN-Ortung 34 2.3.5. Tachymeter 35 2.3.6. CAIROS 36 2.4. Sensorik im Fahrzeug 37 2.4.1. RADAR 38 2.4.2. LIDAR 38 2.4.3. Videokamera 39 2.4.4. Raddrehzahlsensor 39 2.4.5. Sensorcluster aus Beschleunigungs- und Gierratensensoren 39 2.4.6. Gierratensensor 40 2.4.7. Beschleunigungssensor 40 2.4.8. Kompass 41 2.5. Positionsbestimmung autonom fahrender Systeme 41 2.5.1. Transportwesen 42 2.5.2. Landwirtschaft 42 2.5.3. Öffentlicher Personennahverkehr 42 2.5.4. Militär 43 2.5.5. Automobilindustrie 43 2.6. Schlussfolgerung und Konkretisierung der Aufgabestellung 45 3. Ausgangssituation 46 3.1. Bewertung einer GPS-gestützten Inertialplattform auf ausgewählten Teststrecken 46 3.2. Rahmenbedingungen der Rennstrecke 49 3.3. Präzisierung der Genauigkeitsanforderungen 50 3.4. Vorauswahl potenzieller Signalquellen 51 3.5. Schlussfolgerung 54 4. Experimentelle Untersuchung und Bewertung potenzieller Signalquellen 56 4.1. GPS/INS 56 4.2. Fahrzeugsensoren und erweitertes Fahrzeugmodell 63 4.3. Digitale Karte 68 4.4. Digitaler Kompass 69 4.5. Videokamera mit Spurerkennung 72 4.6. Laser-Reflexlichtschranke 75 4.7. Servotachymeter 77 4.8. LIDAR-basierte Randbebauungserkennung 81 4.9. Schlussfolgerung und Auswahl geeigneter Signalquellen für die Fusion 84 5. Optimierung eines Ortungsverfahrens mittels visueller Spurerkennung 86 5.1. Hochgenaue digitale Karte für Spurmarkierungen 86 5.1.1. Straßenmodellierung 86 5.1.2. Vermessung der Spurmarkierungen 87 5.1.3. Aufbereitung der Spurmarkierungen 89 5.1.4. Map-Matching 98 5.2. Erweiterte Spurerkennung 99 5.2.1. Prädiktion des Spurverlaufs im Videobild 99 5.2.2. Kantendetektion im Videobild 101 5.2.3. Berechnung der Parameter des Spurmodells 105 5.2.4. Rollwinkelschätzung und Korrektur der erweiterten Bildverarbeitung 107 5.2.5. Vergleich zweier Spurerkennungssysteme 108 5.3. Schlussfolgerung 111 6. Fusion der Signalquellen 112 6.1. Messdatensynchronisierung 112 6.2. Signalplausibilisierung 114 6.3. Sensordatenfusion 117 6.4. Schnittstelle für das Autonome Fahren 120 6.5. Zusammenfassung 124 7. Validierung des Gesamtsystems 125 7.1. Referenzsystem 125 7.2. Experimentelle Ergebnisse auf ausgewählten Teststrecken 126 7.3. Schlussfolgerung 133 8. Zusammenfassung und Ausblick 134 Literaturverzeichnis 136 Abkürzungsverzeichnis 142 Liste der Formelzeichen 14

    Integrated Longitudinal and Lateral Vehicle Guidance via Sliding-Mode-Control

    Get PDF
    Gegenstand der Arbeit ist der Entwurf eines Fahrerassistenzsystems (FAS) zur automatisierten Längs- und Querführung eines Straßenfahrzeugs. Das FAS soll den Fahrer auf Autobahnen sowie gut ausgebauten Landstraßen unterstützen und entlasten. Dem System können dabei unterschiedliche Architekturen zugrunde liegen. So können zwei parallel betriebene Regelungen die Fahrzeugführung in Längs- und Querrichtung unabhängig voneinander vornehmen. Bei einer kombinierten Längs- und Querführung werden Wechselwirkungen zwischen den vorher separaten Regelungssystemen explizit eingeführt. Für eine integrierte Längs- und Querführung besteht eine implizite Kopplung zwischen den Bewegungsrichtungen. Der Schwerpunkt der Arbeit liegt auf dem Entwurf von Regelungssystemen. Dabei werden zunächst zwei parallel betriebene Regelungen untersucht, die jeweils eine Soll-Beschleunigung in Längs- bzw. Querrichtung erzeugen. Anschließend wird eine integrierte Regelung entworfen, die Soll-Beschleunigungen für beide Bewegungsrichtungen generiert. Als Regelungsprinzip kommen sogenannte Sliding-Mode-Regler zum Einsatz. Dabei handelt es sich um strukturvariable Regler, deren Entwurf im Phasenraum des zu regelnden Systems erfolgt. Für die parallel betriebenen Regler ergeben sich zwei 2D Phasenräume, für den integrierten Ansatz ein 4D Phasenraum. Durch Modifikationen werden die Sliding-Mode-Regler an die Aufgaben der Abstandsregelung, der Fahrstreifenmittenführung sowie der Durchführung eines Überholmanövers bei gleichzeitiger Längsbeschleunigung angepasst. Die Funktionsweise der Regelungen wird anhand zuvor hergeleiteter Modelle der Fahrzeugbewegung untersucht. Die Modellparameter wurden experimentell ermittelt und in Versuchen validiert. Abschließend werden Ergebnisse realer Versuche präsentiert. Hierzu wird ein FAS implementiert, das neben der Regelung geeignete Sensorik zur Erfassung des Fahrzeugumfelds, Aktorik zur Beeinflussung der Fahrzeugbewegung sowie ein Bedienkonzept zur Interaktion des Fahrers mit dem FAS umfasst. Die untersuchten Szenarien beinhalten alltägliche und kritische Situationen. Es wird gezeigt, dass das FAS für die Fahrzeugführung in den beschriebenen Verkehrssituationen geeignet ist und sich eine Parametrierung der Regler anschaulich gestaltet.The subject of this work is the development of a driver assistance system for the automatic longitudinal and lateral guidance of an automobile. The assistance system should support the driver in vehicle guidance on motorways as well as improved highways. The system could be based on different architectures. Thus, two control systems operating in parallel could intervene in the vehicle's longitudinal and lateral guidance independent of each other. In the case of combined longitudinal and lateral control, the interaction between the previously separate control systems is explicitly introduced. An implicit coupling between the two directions of motion exists for the integrated longitudinal and lateral control. This work focuses on the design of control systems. First, two control systems operating in parallel are examined, each of which generates a desired longitudinal and lateral vehicle acceleration respectively. Then an integrated controller for longitudinal and lateral guidance is designed, which generates desired accelerations in both directions of movement. Sliding mode control is applied as the control principle in both approaches. It is a variable structure control system, the design of which takes place in a phase space of the system to be controlled. The two 2D phase spaces for the controls operated in parallel result in a 4D phase space for integrated use. The sliding mode control is modified for tasks of distance control, lane guidance and passing manoeuvres with simultaneous longitudinal acceleration. The manner in which the controls function is examined using previously derived models of vehicle motion. The model parameters were determined experimentally and validated in driving tests. Finally, the results of actual driving tests are presented. For this purpose, a driver assistance system is implemented which includes, in addition to the previously designed controllers, sensors for detecting the vehicle's environment, actuators for influencing vehicle motion as well as an interface between the driver and the assistance system. The examined scenarios include daily and critical driving situations. It is shown that the developed driver assistance system for vehicle guidance is appropriate for the described traffic situations and the parameterization of the control proves to be comprehensible

    Ein neues Konzept für die Trajektoriengenerierung und -stabilisierung in zeitkritischen Verkehrsszenarien

    Get PDF
    Durch den Einsatz autonomer Fahrzeuge kann der Straßenverkehr effizienter, komfortabler und vor allem sicherer gestaltet werden. Neben der hierfür erforderlichen Umfeldwahrnehmung stellen besonders die Bewegungsplanung und -ausführung zeitkritischer Fahrmanöver zur Beherrschung von dynamischen Verkehrsszenarien eine große Herausforderung dar. Herkömmliche Verfahren, die trotz trickreicher Modifikationen dieser nicht gewachsen sind, werden konsequent durch trajektorienbasierte Konzepte ersetzt

    Ein neues Konzept für die Trajektoriengenerierung und -stabilisierung in zeitkritischen Verkehrsszenarien

    Get PDF
    Durch den Einsatz autonomer Fahrzeuge kann der Straßenverkehr effizienter, komfortabler und vor allem sicherer gestaltet werden. Neben der hierfür erforderlichen Umfeldwahrnehmung stellen besonders die Bewegungsplanung und -ausführung zeitkritischer Fahrmanöver zur Beherrschung von dynamischen Verkehrsszenarien eine große Herausforderung dar. Herkömmliche Verfahren, die trotz trickreicher Modifikationen dieser nicht gewachsen sind, werden konsequent durch trajektorienbasierte Konzepte ersetzt
    corecore