63 research outputs found

    Creation of a vehicular delay-tolerant network prototype

    Get PDF
    Vehicular Delay-Tolerant Network (VDTN) is a new disruptive network architecture where vehicles act as the communication infrastructure. VDTN follows a layered architecture based on control and data planes separation, and positioning the bundle layer under the network layer. VDTN furnishes low-cost asynchronous communications coping with intermittent and sparse connectivity, variable delays and even no end-to-end connection. This paper presents a VDTN prototype (testbed) proposal, which implements and validates the VDTN layered architecture considering the proposed out-of-band signaling. The main goals of the prototype are emulation, demonstration, performance evaluation, and diagnose of protocol stacks and services, proving the applicability of VDTNs over a wide range of environments.Part of this work has been supported by the Instituto de Telecomunicações, Next Generation Networks and Applications Group (NetGNA), Covilhã Delegation, Portugal in the framework of the VDTN@Lab Project, and by the Euro-NF Network of Excellence from the Seventh Framework Programme of EU

    Improving vehicular delay-tolerant network performance with relay nodes

    Get PDF
    “Copyright © [2009] IEEE. Reprinted from Next Generation Internet Network. NGI '09). ISBN:978-1-4244-4244-7. This material is posted here with permission of the IEEE. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.”Vehicular Delay-Tolerant Networking (VDTN) is an extension of the Delay-Tolerant Network (DTN) architecture concept to transit networks. VDTN architecture handles non-real time applications, exploiting vehicles to enable connectivity under unreliable scenarios with unstable links and where an end-to-end path may not exist. Intuitively, the use of stationary store-and-forward devices (relay nodes) located at crossroads where vehicles meet them and should improve the message delivery probability. In this paper, we analyze the influence of the number of relay nodes, in urban scenarios with different numbers of vehicles. It was shown that relay nodes significantly improve the message delivery probability on studied DTN routing protocols.Part of this work has been supported by the Instituto de Telecomunicações, Next Generation Networks and Applications Group, Portugal, in the framework of the Project VDTN@Lab, and by the Euro-NF Network of Excellence of Seven Framework Programme of EU

    Evaluating the impact of storage capacity constraints on vehicular delay-tolerant networks

    Get PDF
    “Copyright © [2009] IEEE. Reprinted from Second International Conference on Communication Theory Reliability, and Quality of Service, 2009. CTRQ'09. ISBN:978-1-4244-4423-6. This material is posted here with permission of the IEEE. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.”Vehicular Delay-Tolerant Network (VDTN) was proposed as a particular application of a mobile Delay-Tolerant Network (DTN), where vehicles act as the communication infrastructure for the network, relaying messages between the network nodes. In this paper, we consider the use of a VDTN to provide low-cost asynchronous communication between sparse populations spread over a remote vast region. We analyze the influence of the VDTN network node’s storage capacity (buffer size), on the efficiency of four DTN routing protocols, in terms of message delivery probability. Our scenarios show that the routing protocols message replication strategies react differently to the increase of buffer size in specific network nodes. Epidemic and MaxProp protocols benefit from the increase of the storage capacity on all network nodes. Spray and Wait protocol only takes advantage on the increase of the vehicle’s buffer capacity. We expect that this paper will provide a deep understanding of the implications of storage constraints over the performance of a VDTN, leading to insights for future routing algorithm and buffer management theoretic studies and protocol design.Part of this work has been supported by the Instituto de Telecomunicações, Next Generation Networks and Applications Group, Portugal, in the framework of the Project VDTN@Lab, and by the Euro-NF Network of Excellence of Seven Framework Programme of EU

    Optimal RoadSide Units Distribution Approach in Vehicular Ad hoc Network

    Get PDF
    A vehicular ad hoc network is a particular type of ad hoc mobile network. It is characterized by high mobility and frequent disconnection between vehicles. For this, the roadside units (RSUs) deployment permits to enhance the network connectivity. The objective of this work is to provide an optimized RSUs placement for enhancing the network connectivity and maximizing the accident coverage with reducing the deployment cost. In this paper, we propose our approach called Optimized RoadSide units Deployment (ORSD). The proposed approach comprises a two-step, in the first step, ORSD finds the RSUs candidate locations based on network density and connectivity. We calculated the connectivity of each segment based on speed and arrival information’s.  The second step permit to find the optimal solution of our proposed objective function. The objective function permits to enhance the network connectivity and maximizing the accident coverage.  To find the optimal solution of our objective function is an NP-complete problem of order o(n²) .  Therefore, we propose to solve this problem in two phases, so that it becomes a simple linear problem to solve. The ORSD is proposed for urban and high way scenarios. The extensive simulation study is conducted in order to assess the effectiveness of the proposed approach. We use the Simulator of Urban MObility (SUMO) for generating different traffic scenarios. We develop scripts to extract different information as density, speed and travel time in each segment. Then, we develop an algorithm to calculate connectivity probability for each segment. Then, we implement our objective function to finds optimal RSUs positions in terms of connectivity, accident cover and cost

    A Self-Organization Framework for Wireless Ad Hoc Networks as Small Worlds

    Full text link
    Motivated by the benefits of small world networks, we propose a self-organization framework for wireless ad hoc networks. We investigate the use of directional beamforming for creating long-range short cuts between nodes. Using simulation results for randomized beamforming as a guideline, we identify crucial design issues for algorithm design. Our results show that, while significant path length reduction is achievable, this is accompanied by the problem of asymmetric paths between nodes. Subsequently, we propose a distributed algorithm for small world creation that achieves path length reduction while maintaining connectivity. We define a new centrality measure that estimates the structural importance of nodes based on traffic flow in the network, which is used to identify the optimum nodes for beamforming. We show, using simulations, that this leads to significant reduction in path length while maintaining connectivity.Comment: Submitted to IEEE Transactions on Vehicular Technolog

    Wireless vehicular communications for automatic incident detection and recovery

    Get PDF
    Incident detection is the process by which an incident is brought to the attention of traffic operators in order to design and activate a response plan. To minimize the detection time is crucial to mitigate the incident severity for victims as well to reduce the risk of secondary crashes. Automated incident information dissemination and traffic conditions is useful to alert in-route drivers to decide alternative routes on unexpected traffic congestion and may be also used for the incident recovery process, namely to optimize the response plan including the “nearest” rescue teams, thereby shortening their response times. Wireless vehicular communications, notably the emergent IEEE 802.11p protocol, is the enabling technology providing timely, dependable and secure properties that are essential for the devised target application. However, there are still some open issues with vehicular communications that require further research efforts. This paper presents an overview of the state of the art in wireless vehicular communications and describes the field operational tests proposed within the scope of the upcoming FP7 project ICSI - Intelligent Cooperative Sensing for Improved traffic efficiency

    Traffic differentiation support in vehicular delay-tolerant networks

    Get PDF
    Vehicular Delay-Tolerant Networking (VDTN) is a Delay-Tolerant Network (DTN) based architecture concept for transit networks, where vehicles movement and their bundle relaying service is opportunistically exploited to enable non-real time applications, under environments prone to connectivity disruptions, network partitions and potentially long delays. In VDTNs, network resources may be limited, for instance due to physical constraints of the network nodes. In order to be able to prioritize applications traffic according to its requirements in such constrained scenarios, traffic differentiation mechanisms must be introduced at the VDTN architecture. This work considers a priority classes of service (CoS) model and investigates how different buffer management strategies can be combined with drop and scheduling policies, to provide strict priority based services, or to provide custom allocation of network resources. The efficiency and tradeoffs of these proposals is evaluated through extensive simulation.Part of this work has been supported by Instituto de Telecomunicações, Next Generation Networks and Applications Group (NetGNA), Portugal, in the framework of the Project VDTN@Lab, and by the Euro-NF Network of Excellence of the Seventh Framework Programme of EU
    corecore