18 research outputs found

    Frobenius flocks and algebraicity of matroids

    Get PDF

    Frobenius flocks and algebraicity of matroids

    Get PDF

    Spontaneously interacting qubits from Gauss-Bonnet

    Full text link
    Building on previous constructions examining how a collection of small, locally interacting quantum systems might emerge via spontaneous symmetry breaking from a single-particle system of high dimension, we consider a larger family of geometric loss functionals and explicitly construct several classes of critical metrics which "know about qubits" (KAQ). The loss functional consists of the Ricci scalar with the addition of the Gauss-Bonnet term, which introduces an order parameter that allows for spontaneous symmetry breaking. The appeal of this method is two-fold: (i) the Ricci scalar has already been shown to have KAQ critical metrics and (ii) exact equations of motions are known for loss functionals with generic curvature terms up to two derivatives. We show that KAQ critical metrics, which are solutions to the equations of motion in the space of left-invariant metrics with fixed determinant, exist for loss functionals that include the Gauss-Bonnet term. We find that exploiting the subalgebra structure leads us to natural classes of KAQ metrics which contain the familiar distributions (GUE, GOE, GSE) for random Hamiltonians. We introduce tools for this analysis that will allow for straightfoward, although numerically intensive, extension to other loss functionals and higher-dimension systems.Comment: 29 pages, 7 figure

    An extensive English language bibliography on graph theory and its applications, supplement 1

    Get PDF
    Graph theory and its applications - bibliography, supplement

    Density and Combinatorial Structure of Error-Correcting Codes

    Get PDF

    Templates for Representable Matroids

    Get PDF
    The matroid structure theory of Geelen, Gerards, and Whittle has led to a hypothesis that a highly connected member of a minor-closed class of matroids representable over a finite field is a mild modification (known as a perturbation) of a frame matroid, the dual of a frame matroid, or a matroid representable over a proper subfield. They introduced the notion of a template to describe these perturbations in more detail. In this dissertation, we determine these templates for various classes and use them to prove results about representability, extremal functions, and excluded minors. Chapter 1 gives a brief introduction to matroids and matroid structure theory. Chapters 2 and 3 analyze this hypothesis of Geelen, Gerards, and Whittle and propose some refined hypotheses. In Chapter 3, we define frame templates and discuss various notions of template equivalence. Chapter 4 gives some details on how templates relate to each other. We define a preorder on the set of frame templates over a finite field, and we determine the minimal nontrivial templates with respect to this preorder. We also study in significant depth a specific type of template that is pertinent to many applications. Chapters 5 and 6 apply the results of Chapters 3 and 4 to several subclasses of the binary matroids and the quaternary matroids---those matroids representable over the fields of two and four elements, respectively. Two of the classes we study in Chapter 5 are the even-cycle matroids and the even-cut matroids. Each of these classes has hundreds of excluded minors. We show that, for highly connected matroids, two or three excluded minors suffice. We also show that Seymour\u27s 1-Flowing Conjecture holds for sufficiently highly connected matroids. In Chapter 6, we completely characterize the highly connected members of the class of golden-mean matroids and several other closely related classes of quaternary matroids. This leads to a determination of the extremal functions for these classes, verifying a conjecture of Archer for matroids of sufficiently large rank

    Subject Index Volumes 1–200

    Get PDF

    Time-Optimal Control of Quantum Systems: Numerical Techniques and Singular Trajectories

    Get PDF
    As technological advances allow us to peer into and beyond microscopic phenomena, new theoretical developments are necessary to facilitate this exploration. In particular, the potential afforded by utilizing quantum resources promises to dramatically affect scientific research, communications, computation, and material science. Control theory is the field dedicated to the manipulation of systems, and quantum control theory pertains to the manoeuvring of quantum systems. Due to the inherent sensitivity of quantum ensembles to their environment, time-optimal solutions should be found in order to minimize exposure to external sources. Furthermore, the complexity of the Schr\"odinger equation in describing the evolution of a unitary operator makes the analytical discovery of time-optimal solutions rare, motivating the development of numerical algorithms. The seminal result of classical control is the Pontryagin Maximum Principle, which implies that a restriction to bounded control amplitudes admits two classifications of trajectories: bang-bang and singular. Extensions of this result to generalized control problems yield the same classification and hence arise in the study of quantum dynamics. While singular trajectories are often avoided in both classical and quantum literature, a full optimal synthesis requires that we analyze the possibility of their existence. With this in mind, this treatise will examine the issue of time-optimal quantum control. In particular, we examine the results of existing numerical algorithms, including Gradient Ascent Pulse Engineering and the Kaya-Huneault method. We elaborate on the ideas of the Kaya-Huneault algorithm and present an alternative algorithm that we title the Real-Embedding algorithm. These methods are then compared when used to simulate unitary evolution. This is followed by a brief examination on the conditions for the existence of singular controls, as well possible ideas and developments in creating geometry based numerical algorithms
    corecore