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CHAPTER 1

Introduction

1. Matroids

Matroids are combinatorial objects that appear in many branches of math-
ematics. They consist of a set of elements, of which certain subsets are
‘dependent’, and others are ‘independent’. The notion of (in)dependence in
a matroid is abstracted from (in)dependence of a number of other structures.
To name just two examples: linear independence of vectors in a vector space
and algebraic dependence of rational expressions are both special cases of
matroidal independence. Figure 1 depicts several different occurrences of the
same matroid.

These are just some ways to obtain a matroid. The unifying property
of all matroids is a property relating the bases of a matroid, the maximal
independent sets of elements. The set of bases B of a matroid satisfies the
following properties.

(B1) B is nonempty;
(B2) For all B,B′ ∈ B, and for all e ∈ B \B′, there exists f ∈ B′ \B such

that both

B ∪ {f} \ {e}
and

B′ ∪ {e} \ {f}
are elements of B.

Definition 1.1. Let E be a finite set, and let B be a set of subsets of E. If B
satisfies (B1) and (B2), then the pair (E,B) is a matroid.

Whitney [52] was the first to define the notion of matroid, inspired by
linear independence of vectors and by graphs. A linear matroid is a pair (E,B),
where E is a finite set of vectors, and B consists of the subsets of E that form
a basis of the vector space 〈E〉. The vector space 〈E〉 is then called a linear
representation of the matroid (E,B). A graphic matroid is a pair (E,B), where

1
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
1 2 3 4 5 6

1 0 1 0 1 1
0 1 1 0 0 1
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1+xy , z, x+z

1+xz ,
x+y+z+xyz
1+xz+xy+yz

)

(a) geometric (b) graphic

(c) algebraic (d) linear

Figure 1. A matroid described in several different ways: (a)
the collinear triples of points are dependent in the matroid;
(b) the triples of edges that form a cycle are dependent in the
matroid; (c) the algebraically dependent triples of rational
expressions are dependent in the matroid; (d) the linearly
dependent triples of vectors are dependent in the matroid.

E is the set of edges of a graph G, and B is the set of spanning forests of G. It
should be noted that all graphic matroids are linear.

Already in this paper, he noticed that there are more matroids than those
coming from the columns of a matrix in characteristic 0. The Fano matroid
(Figure 2), which is a projective geometry, is the example mentioned in his
paper.

2. Algebraic matroids

Algebraic matroids arise from the notion of algebraic dependence.

Definition 1.2. Consider a field K which is contained in a field L. If
a1, . . . , an ∈ L, then a1, . . . , an are said to be algebraically dependent over K
if there exists a nonzero polynomial f(X1, . . . , Xn) with coefficients in K such
that

f(a1, . . . , an) = 0.

If we take any finite set of elements in L, then the maximal independent
subsets are the bases of a matroid [43]. This type of matroid is called an alge-
braic matroid, and the set of elements in L is called an algebraic representation
of this matroid.
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Figure 2. The Fano matroid.

While this is the most common definition of algebraic matroids, there are
several equivalent ways to define them, which each have their own benefit. A
second definition that proves to be rather useful in this thesis is the following,
in the language of algebraic geometry. For basic terminology in algebraic
geometry, see [11].

Definition 1.3. Let K be an algebraically closed field, let E be a finite set and
let X ⊆ KE be an irreducible algebraic variety. We declare a subset I ⊆ E
independent if the projection of X on KI is dominant, that is, if the closure
of {(xi)i∈I : x ∈ X} in the Zariski topology equals KI .

These two definitions define equivalent notions of algebraic (in)dependence,
as will be discussed in Chapter 5. A finite set of elements in L in the first
definition corresponds to the set of coordinates of the variety in the second
definition. For more details about the correspondence between both definitions,
see [26].

Algebraic dependence was studied by Van der Waerden [51], and by
MacLane [36], who related the concept to Whitney’s matroids. Only in the
1970’s did the theory of algebraic matroids begin to gain traction. Ingleton
discovered that all algebraic matroids over a field of characteristic 0 are linear
[24]. Ingleton and Main [25] first found a matroid that is not algebraic over
any field: the Vámos matroid. Their main argument was later generalised by
Dress and Lovász [13]. The common point is that algebraic matroids satisfy a
certain extension property within the class of algebraic matroids that is not
satisfied by matroids in general. Thus if a matroid does not have this extension
property within the class of matroids, it cannot be algebraic.
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A huge contribution to the theory of algebraic matroids comes from Bernt
Lindström, who wrote numerous papers on the subject in the 1980’s and early
1990’s, many of which will be referred to in this thesis. He characterised
algebraic representations via p-polynomials [34], and found several algebraic
matroids [33, 29] that are not linear over any field, but instead over a skew field,
such as the Non-Pappus matroid [30]. Evans and Hrushovski later generalised
Lindström’s result on p-polynomials to algebraic representations coming from
a connected one-dimensional algebraic group [16]. Lindström showed that
algebraic matroids are closed under adding harmonic conjugates [32]. He
showed that an infinite class of matroids, the Lazarson matroids, are only
algebraic in a single characteristic [31]. Gordon published a similar result
for Reid geometries [18]. The list goes on: for a comprehensive summary of
Lindström’s work, I refer to [3].

One of the pressing open questions is whether the class of algebraic matroids
is closed under duality. Alfter and Hochstättler [1] found a matroid of rank
5 on 9 elements, the Tic-Tac-Toe matroid, that is closed under the extension
properties from Dress and Lovász [13], but whose dual is non-algebraic. It is
still unknown whether or not the Tic-Tac-Toe matroid is algebraic over any
field.

Kromberg, and later Királyi, Rosen and Theran, made algebraic matroids
accessible by methods in commutative algebra and algebraic geometry [27, 26,
45].

3. Valuated matroids

Dress and Wenzel introduced the concept of matroid valuations of a matroid
M [15].

Definition 1.4. Let M be a matroid with basis set B. A map ν : B → R is
a valuation of M if for each pair B,B′ ∈ B and for each e ∈ B \ B′, there
exists f ∈ B′ \B such that B ∪ {f} \ {e}, B′ ∪ {e} \ {f} ∈ B and the following
submodularity condition holds:

ν(B) + ν(B′) ≥ ν(B ∪ {f} \ {e}) + ν(B′ ∪ {e} \ {f}).
Example 1.5. Let M be the uniform matroid of rank 2 on 4 elements, shown
in Figure 3. The valuation ν = 0 is clearly a valuation of M . A more interesting

1 2 3 4

Figure 3. The uniform matroid of rank 2 on 4 elements U2,4.
Each pair of elements is a basis.
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valuation is the following:

ν({1, 2}) = 0; ν({2, 3}) = 0;

ν({1, 3}) = 0; ν({2, 4}) = 0;

ν({1, 4}) = 0; ν({3, 4}) = 1.

We check the submodularity condition for B = {1, 3} and B′ = {2, 4}. For
e = 1 we can choose f = 2 (but not f = 4), and for e = 3 we can choose f = 4
(but not f = 2), so that the inequality holds. p

Valuations of matroids give rise to numerous rich structures. The matroid
polytope of M is a polytope in RE , where E is the ground set of M , given as
the convex hull of the points (

∑
i∈B ei)B∈B, where ei is the i’th standard basis

vector. Matroid valuations correspond to tropical Plücker vectors in RB, and
give rise to a regular subdivision of the matroid polytope of M into smaller
matroid polytopes [49]. Moreover, a matroid valuation of M gives rise to a
matroid for each α ∈ RE by taking as basis set the maximizers among B of
the linear function

∑
i∈B αi − ν(B). For each α, the corresponding matroid is

the matroid of one of the smaller matroid polytopes in the regular subdivision
given by ν. The set of valuations of a matroid is also called the Dressian, and
carries a natural fan structure as a subfan of the secondary fan of the matroid
polytope [20].

4. This thesis

In this thesis, I bring together the theory of valuated matroids and the
theory of algebraic matroids. The goal is to add a new tool to the toolbox
for determining algebraic representability of matroids. This tool, along with
known methods, is then used to determine algebraicity of as many matroids
up to 9 elements as possible.

4.1. Algebraic representations and flocks. If X is an algebraic rep-
resentation of a matroid M in characteristic 0, then Ingleton showed that there
also exists a linear representation of M [24]. If X is regarded as an algebraic
variety, the linear representation is obtained by taking a sufficiently general
smooth point x ∈ X, and taking the tangent space of X at the point x. This
tangent space is then a linear representation of M . In characteristic p > 0, this
method of obtaining a linear representation fails in general, and the reason for
that is that the derivative of xp is 0. Hence algebraic matroids in characteristic
p need no longer be linear; a simple example is the Non-Fano matroid (Figure
2 without the circle), which is algebraic in characteristic 2, but not linear.
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One can still obtain information on algebraicity of a matroid in character-
istic p using Ingleton’s ‘trick’ of taking the tangent space. Lindström noticed
that replacing a variable xe in X by xpe leaves the algebraic matroid unchanged,
but not Ingleton’s tangent space. This allowed him to prove that algebraicity
of certain matroids in characteristic p implies linearity, by choosing the right
powers of the variables [31]. This argument works for instance for the Lazarson
matroids, which will be discussed in Chapter 6, of which the Fano matroid is
an example.

We apply Lindström’s idea on an industrial scale. We assume the field K
such that X ⊆ KE is algebraically closed. Then for each α ∈ ZE , we consider
the algebraic representation obtained from X by replacing the variable xe with
xp

αe

e for each e ∈ E. This leaves us with infinitely many similar algebraic
representations of the same matroid, one for each α ∈ ZE . For each of these
algebraic representations αX, regarded as algebraic varieties, we may take the
tangent space at a general point. This gives a collection of linear spaces, one
for each α ∈ ZE , which each represent a matroid Mα.

We find that there are simple relations between Mα and Mα′ for any α
and α′ that differ by a unit vector or by the all-one vector in ZE . We then
define any collection of matroids (M′α)α∈ZE with the local structure imposed
by these relations to be a matroid flock. Hence every algebraic representation
X gives rise to a matroid flock M(X). On the other hand, using Murota’s
discrete duality theory [39], we find that any matroid flock corresponds to a
matroid valuation ν such that

arg max
B∈B
{
∑

i∈B
αi − ν(B)}

is the set of bases of Mα for each α ∈ ZE . If the matroid flock is M(X), this
valuation is called the Lindström valuation of X. The structure of matroid
flocks and their connection with matroid valuations is the subject of Chapter
3.

We return to the algebraic representations αX for α ∈ ZE . Using the
structure of matroid flocks, it turns out that there exists a general point x of X
that, when twisted with the powers of p dictated by α, is a general point of each
αX. With such a ‘very general’ x fixed, we again consider the tangent spaces of
αX. These tangent spaces then display a local structure very similar to the local
structure of matroid flocks. We define any collection of vector spaces (Vα)α∈ZE
with this local structure to be a Frobenius flock. Chapter 4 deals with the
structure of Frobenius flocks, or more generally, linear flocks. An important
result from that chapter is that the entire Frobenius flock is determined by a
finite number of vector spaces Vα, dictated by the underlying matroid flock. In
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Chapter 5 the relation between algebraic matroid representations, matroid
flocks and Frobenius flocks is explained in detail.

The fact that an algebraic representation of a matroid gives rise to a
Frobenius flock can be used as a necessary condition for algebraicity of matroids.
If no Frobenius flock exists for a matroid, then it can certainly not be algebraic.
This is the new tool that the work in this thesis brings to the table.

4.2. Computations and algebraicity of small matroids. In the re-
mainder of the thesis, we take the old tools from the matroid algebraicity
toolbox and combine them with the new Frobenius-flock tool. We then use
these tools to give an as accurate as possible account of the status quo regarding
algebraicity of matroids on at most 9 elements in characteristic 2. The methods
at our disposal to show that a matroid is algebraic over an algebraically closed
field K of characteristic p > 0 are the following:

(1) linearity over K implies algebraicity over K;
(2) linearity over the endomorphism ring of a connected one-dimensional

algebraic group defined over K implies algebraicity over K;
(3) finding an algebraic representation over K.

Conversely, the methods available to us to show that a matroid is non-algebraic
over K are the following:

(1) algebraic matroids should satisfy the extension property from Dress
and Lovász and from Ingleton and Main;

(2) harmonic points in algebraic matroids should have a unique harmonic
conjugate;

(3) algebraic matroids over K should be Frobenius-flock representable
over K.

Not all of these criteria are necessarily decidable. An example of an endomor-
phism ring of a connected one-dimensional algebraic group is an order in Q,
and it is not known to be decidable whether a matroid is linearly representable
over Q [50]. Similarly, it is not known whether checking Frobenius-flock rep-
resentability is decidable. However, for many matroids we can find a definite
answer to these generally undecidable questions.

In Chapter 6, we investigate some classes of matroids, such as linear
matroids and matroids from one-dimensional algebraic groups. We also apply
our Frobenius-flock methods to the Lazarson matroids and Reid geometries,
revisiting the results of Lindström and Gordon. Finally, we consider the
interesting class of rank 3 Dowling matroids.

The algorithms that I use to test Frobenius-flock representability take
up most of Chapter 7. The final part of the chapter contains algorithms
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that compute the Lindström valuation and the Frobenius flock of an algebraic
representation, supporting the results from Chapter 5.

In Chapter 8, the computational results on all matroids on at most 9
elements are expounded.



CHAPTER 2

Preliminaries

This chapter introduces some mathematical notions that appear frequently
throughout the thesis. We describe the definition and basic properties of ma-
troids, matroid representations, matroid valuations and polyhedral complexes.

1. Matroids

A matroid is a pair (E,B), where E is a finite set of elements and B is a
set of subsets of E called the bases. The set of bases B of a matroid satisfies
the following properties.

(B1) B is nonempty;
(B2) Suppose B,B′ ∈ B, and suppose e ∈ B \ B′. Then there exists

f ∈ B′ \B such that both B+ f − e and B′+ e− f are elements of B.

Here and later we use the notation B+ e for B ∪{e} and B− e for B \ {e}.
This is one of the many definitions of a matroid. We choose this definition
because it bears the most similarity to matroid valuations. For a complete
introduction of matroid theory, including proofs of the statements in this
section, we refer to Oxley [43]. Here, we highlight some concepts related to
matroids that will be important in this thesis.

All bases of a matroid necessarily have the same cardinality. The common
cardinality of the bases is called the rank of the matroid. This induces the
rank function r of a matroid M , which is defined by

r(I) = max
B∈B
|I ∩B|

for I ⊆ E.
A loop of a matroid M is an element of the ground set that is not in any

basis of M . A coloop of a matroid M is an element of the ground set that is in
every basis of M . Since each matroid has at least one basis, an element cannot
be both a loop and a coloop.

For a non-coloop i ∈ E, the deletion M \i is the matroid (E − i, {B ∈ B :
i 6∈ B}). For a non-loop i, the contraction M/i is the matroid (E − i, {B − i ∈

9



10 2. PRELIMINARIES

B : B ∈ B, i ∈ B}). If i is a coloop, then M \i := M/i. Similarly, if i is a loop,
then M/i := M \i. For subsets I ⊆ E with |I| > 1, we define deletion and
contraction recursively: M \I := (M \I − i)\i for some i in I, and similarly
M/I := (M/I − i)/i for some i in I, where it should be noted that the choice
of i is irrelevant in both cases, since deletion and contraction of e commute
with both deletion and contraction of f if e and f are distinct elements of E.
When M ′ can be obtained from M by a series of deletions and contractions,
then we call M ′ a minor of M .

In the context of the ground set E, we write I := E \ I when I ⊆ E.
The dual of a matroid M is the matroid M∗ := (E, {B : B ∈ B}). From

this definition, it is straightforward to see that (M∗)∗ = M . Moreover, deletion
and contraction are dual operations in the sense that (M \i)∗ = M∗/i.

The connectivity function λ of M is given by λ(I) = r(I) + r(I)− r(E). A
matroid is connected if for all ∅ 6= I ( E, we have λ(I) > 0.

Disconnected matroids occur frequently in this thesis. If M := (E,B) and
M ′ := (E′,B′) are matroids such that E and E′ are disjoint, then the direct
sum M ⊕M ′ is the matroid (E ∪E′, {B∪B′ : B ∈ B, B′ ∈ B′}). For a matroid
M on E with connectivity function λ, and for I ⊆ E we have λ(I) = 0 if and
only if M = M \I ⊕M \I.

Lemma 2.1. Let M be a matroid on E with connectivity function λ, and let
I ⊆ E. Then λ(I) = 0 if and only if for all J ⊆ I: M/J \(I \ J) = M \I.

Lemma 2.2. Let M be a matroid on E with connectivity function λ, and
let I ⊆ E. Then λ(I) = 0 if and only if for all bases B,B′ of M , we have
|B ∩ I| = |B′ ∩ I|.

For a set E and an integer r we denote by
(
E
r

)
the set of cardinality r

subsets of E.

Definition 2.3. A matroid (E,B) of rank r is uniform if B =
(
E
r

)
.

We use the notation Ur,n for a uniform matroid of rank r on n elements.

Definition 2.4. Two matroids M = (E,B) and M ′ = (E′,B′) are isomorphic,
notation M ∼= M ′, if there is a bijection ϕ : E → E′ such that ϕ(B) = B′.

Whenever matroids are counted, we always do so up to isomorphism.

2. Linear representations

Let K be a field, d a nonnegative integer and let E be a finite set. Let A
be a d×E matrix over K of rank d. For B ⊆ E, denote by AB the restriction
of A to the columns in B. Then

BA := {B ⊆ E : AB is an invertible d× d matrix}
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is the set of bases of a matroid (E,BA). If Q is an invertible d× d matrix, then
BQA = BA. So BA only depends on the row space of A.

Definition 2.5. Let K be a field, d a nonnegative integer, E a finite set
and V ∈ Grd(K

E). Let A be a matrix such that V is the row space of A.
Then M(V ) := (E,BA) is the matroid of V . Moreover, we call V a linear
representation of (E,BA).

Here Grd(K
E) denotes the set of d-dimensional subspaces of KE , the

Grassmannian. When we call a matrix A a linear representation of M , we
mean that its row space is a linear representation of M .

If D is an invertible E × E diagonal matrix, then BAD = BA. The row
space of AD may be different from the row space of A, and in that case these
row spaces are different (but equivalent) linear representations of the same
matroid.

Definition 2.6. We call two vector spaces V,W linearly equivalent if W = V D
for some invertible diagonal matrix D.

We state a lemma similar to Lemma 2.1 for linear representations of a
matroid. We first introduce notation and define deletion and contraction for
vector spaces. When K is a field, E is a finite set, I ⊆ E, and v ∈ KE , then
we write

vI := (vi)i∈I .

Now we define deletion and contraction. If V ∈ Grd(K
E) and I ⊆ E, then we

define

V \I := {vI : v ∈ V };
V/I := {vI : v ∈ V, vI = 0}.

Lemma 2.7. Let V ∈ Grd(K
E) and let I ⊆ E. Let M = M(V ) and let λ be

the connectivity function of M . Then λ(I) = 0 if and only if for all J ⊆ I:
V/J \(I \ J) = V \I.

Informally, if a vector space V is a direct sum of its I and I parts, then the
I part is unaffected by the choice of deletion or contraction for each element of
I.

3. Algebraic matroids

One of the main objects of study in this thesis are algebraic matroids.
Let K be a field and L an extension field of K. Elements a1, . . . , an ∈ L are
called algebraically independent over K if there exists no nonzero polynomial
f ∈ K[x1, . . . , xn] such that f(a1, . . . , an) = 0. Algebraic independence satisfies
the matroid independence axioms [43], and this leads to the following notions.
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Definition 2.8. Let M be a matroid on a finite set E, and let K be a field.
An algebraic representation of M over K is a pair (L, φ) consisting of a field
extension L of K and a map φ : E → L such that any I ⊆ E is independent in
M if and only if the multiset φ(I) is algebraically independent over K.

Definition 2.9. If a matroid M admits an algebraic representation, M is
called an algebraic matroid.

Algebraic independence and algebraic representations can also be defined
in a different manner as follows. For now, we call this type of representation
‘algebro-geometric’ rather than algebraic. In Section 2 of Chapter 5 we argue
that these notions of algebraic representation are equivalent, which is also one
of the results of [26]. First we define the notion of algebraic variety that we
use throughout the thesis.

Definition 2.10. Let K be an algebraically closed field. An algebraic variety
over K is a set V such that there exist polynomials f1, . . . , fs in K[x1, . . . , xn]
such that

V = {(a1, . . . , an) ∈ Kn : fi(a1, . . . , an) = 0 for all i ∈ {1, . . . , s}} .

We proceed to define algebro-geometric representations of matroids. Let
K be a field, E a finite set and I ⊆ E. Then πI : KE → KI is the projection
from KE on KI given by v 7→ vI .

The vector space KE is equipped with the Zariski topology, in which the
closed sets are those defined by polynomial equations; we will use the term
variety or closed subvariety for such a set. In particular, let X ⊆ KE be the
closed subvariety defined as the {a ∈ KE : ∀f ∈ P : f(a) = 0}. Since P is
prime, X is an irreducible closed subvariety, and by Hilbert’s Nullstellensatz,
P is exactly the set of all polynomials that vanish everywhere on X.

Definition 2.11. An algebro-geometric representation of a matroid M on
the ground set E over the algebraically closed field K is an irreducible, closed
subvariety Y of KE such that I ⊆ E is independent in M if and only if the
Zariski-closure of πI(Y ) equals KI .

We denote the matroid M represented by Y as M(Y ).

4. Octahedra, pure quadrangles and the Tutte group

Let M be a rank r matroid on a ground set E with basis set B. Consider

S ∈
(
E
r−2

)
and let {a, b, c, d} ∈

(
E\S

4

)
. Define an ordering on E and assume
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a < b < c < d. Then we define

B11 := S + a+ b;

B12 := S + c+ d;

B21 := S + a+ c;

B22 := S + b+ d;

B31 := S + a+ d;

B32 := S + b+ c.

We define an octahedron of M to be an ordered tuple (B11, . . . , B32) as
above, such that all six sets B11, . . . , B32 are in B. An octahedron gives rise to
a U2,4-minor of M : (M/S)|{a,b,c,d} ∼= U2,4.

If two pairs Bi1, Bi2 and Bj1, Bj2 are in B, then we call the set Q =
{Bi1, Bi2, Bj1, Bj2} a pure quadrangle of M . Then if not both Bk1 and Bk2

are in B, Q is called degenerate.
Degenerate pure quadrangles are used in the definition of the Tutte group.

Non-degenerate pure quadrangles are part of an octahedron.
In order to define the Tutte group of M , we use Definition 1.2 from [14],

which we will give next. Denote by FM be the free abelian group generated by
ε and brackets [b1, . . . , br] for {b1, . . . , br} ∈ B. Denote by KM the subgroup of
FM generated by

(T1) ε2;
(T2) ε[b1, . . . , br][bσ(1), . . . , bσ(r)]

−1 for all {b1, . . . , br} ∈ B and odd permu-
tations σ ∈ Sym(r);

(T3)
[b1, . . . , br−2, a, b][b1, . . . , br−2, c, d]

[b1, . . . , br−2, a, d][b1, . . . , br−2, c, b]

for all degenerate pure quadrangles

{S + a+ b, S + c+ d, S + a+ d, S + b+ c},
where S = {b1, . . . , br−2}.

Definition 2.12. The group

TM := FM/KM
is called the Tutte group of M .

Let A be an r × E matrix over K linearly representing M . Consider
the homomorphism ϕA : FM → K∗ given by ε 7→ −1 and [b1, . . . , br] 7→
det(Ab1 · · ·Abr ) for B ∈ B, where Abi is column bi of A. The following lemma
follows from [14, Prop. 3.1].
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Lemma 2.13.

KM ⊆ kerϕA.

Proof. We show that each generator of KM lies in the kernel of ϕA. We
have ϕA(ε2) = (−1)2 = 1, so ε2 ∈ kerϕA. Since the determinant function
is alternating in the columns of the matrix, we also find that the generators
of type (T2) lie in kerϕA. For generators of type (T3), let {S + a + b, S +
c + d, S + a + d, S + b + c} be a degenerate pure quadrangle. Then we have
either S + a + c 6∈ B or S + b + d 6∈ B. Without loss of generality, suppose
S+a+c 6∈ B. We may assume that A has an identity submatrix in the columns
(b1, . . . , br−2, a, b). Then

A =




S a b c d

Ir−2 0 0 ∗ ∗
0 1 0 x z
0 0 1 0 y


,

where x, y 6= 0. Now

ϕA

(
[b1, . . . , br−2, a, b][b1, . . . , br−2, c, d]

[b1, . . . , br−2, a, d][b1, . . . , br−2, c, b]

)
=

1 · xy
y · x = 1,

and hence generators of type (T3) lie in kerϕA. Since all generators of KM lie
in kerϕA, we conclude that KM ⊆ kerϕA. �

So ϕA induces a homomorphism ϕ̃A : TM → K∗. This homomorphism can
be used to relate TM to linear representations of M over K. The following
theorem is part of the statement of [14, Prop. 3.2].

Theorem 2.14. Let M be a matroid on E that is linear over K. Let S =
{b1, . . . , br−2} be given. Suppose Q = {S+ a+ b, S+ c+ d, S+ a+ d, S+ b+ c}
is a pure quadrangle of M and suppose S + a + c ∈ B. The following are
equivalent:

(1) for all r × E matrices A over K linearly representing M we have

ϕ̃A

(
[b1, . . . , br−2, a, b][b1, . . . , br−2, c, d]

[b1, . . . , br−2, a, d][b1, . . . , br−2, c, b]

)
6= 1;

(2)

[b1, . . . , br−2, a, b][b1, . . . , br−2, c, d]

[b1, . . . , br−2, a, d][b1, . . . , br−2, c, b]
6= 1 in TM ;

(3) Q is non-degenerate.
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5. Matroid valuations

Matroid valuations were introduced by Dress and Wenzel [15]. All results
in this section are due to them. Let E be a set, and 0 ≤ r ≤ |E| an integer. A

matroid valuation is a map ν :
(
E
r

)
→ R∞ such that

(V0) there exists B such that ν(B) <∞; and

(V1) for all B,B′ ∈
(
E
r

)
and i ∈ B \B′ there exists j ∈ B′ \B such that

ν(B) + ν(B′) ≥ ν(B − i+ j) + ν(B′ + i− j).
Here and later we use the notation R∞ := R ∪ {∞}.

This definition bears a strong resemblance with the definition of a matroid.
The B for which ν(B) is finite form the set of bases of a matroid. We use the
notation Bν for the bases and Mν for the matroid. If M is a matroid with
basis set B, then a valuation of M is a map ν : B → R such that the map
τ :
(
E
r

)
→ R∞ given by

τ(B) =

{
ν(B), B ∈ B;
∞, else.

is a matroid valuation. Conversely, if ν is a matroid valuation, then the
restriction ν|Bν is a valuation of Mν .

For I ⊆ E, we write eI =
∑
i∈I ei, where ei is the i’th standard basis

vector. A valuation ν of M is a trivial valuation if for every B, ν(B) = eB · w
for some w ∈ RE . The following property of matroid valuations follows from
the fact that the inequalities in (V1) are ‘balanced’ in the sense that each e ∈ E
appears the same number of times on the left-hand side of the inequality as on
the right-hand side.

Lemma 2.15. Let M be a matroid. Let τ be a trivial valuation of M . Then ν
is a valuation of M if and only if ν + τ is a valuation of M .

The bases B for which ν(B) is minimal form the basis set of a matroid.

Lemma 2.16. Let M be a matroid with basis set B and let ν ∈ RB≥0 be a

valuation of M . Let B′ := {B ∈ B : ν(B) = 0}. If B′ 6= ∅, then B′ is the basis
set of a matroid.

Proof. We show the symmetric basis exchange axiom. Let B,B′ ∈ B′
and e ∈ B \B′ be given. By (V1), there exists f ∈ B′ \B such that

0 = ν(B) + ν(B′) ≥ ν(B − e+ f) + ν(B + e− f).

Then since ν ≥ 0, equality holds and ν(B − e + f) = ν(B + e − f) = 0, as
required. �

The following characterisation of matroid valuations is implicit in [15].
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Lemma 2.17. A map ν :
(
E
r

)
→ R∞ is a matroid valuation if and only if

(1) Bν satisfies the base exchange axiom (B); and

(2) for all S ∈
(
E
r−2

)
and {a, b, c, d} ∈

(
E\S

4

)
, the minimum of

ν(S+a+b)+ν(S+c+d), ν(S+a+c)+ν(S+b+d), ν(S+a+d)+ν(S+b+c)

is attained at least twice.

Proof. Necessity is straightforward. We prove sufficiency. Let ν,B,B′, e
be a counterexample with |B \B′| as small as possible. So conditions (1) and
(2) hold for ν, and we have

ν(B) + ν(B′) < ν(B − e+ f) + ν(B′ + e− f)

for all f ∈ B′ \B. It follows that |B \B′| > 1. If |B \B′| = 2, then

ν(B)+ν(B′) < min{ν(B−e+f)+ν(B′+e−f), ν(B−e+f ′)+ν(B′+e−f ′)}
where B′ \ B = {f, f ′}. Taking S = B ∩ B′, {a, b, c, d} = B ∪ B′ − S, this
violates assumption (2). So |B \ B′| > 2. We may assume without loss of
generality that ν(B) + ν(B′) = 0, using the trivial valuation τ from Lemma
2.15 with weight function w = −(ν(B) + ν(B′))ee. While preserving that
ν(B) + ν(B′) = 0, we can also make sure that

0 < min{ν(B − e+ f), ν(B′ + e− f)}
for each f ∈ B′ \B, by using weight functions w = λf (ef −ee) for some λf ∈ R.

Let X attain the minimum of

min {ν(X) : X = B − e′ + f ′, e′ ∈ B \B′ − e, f ′ ∈ B′ \B}
Since ν(B) + ν(B′) = 0, we have B,B′ ∈ Bν , and by assumption (1) the base
exchange axiom (B) holds for Bν . Hence for each e′ ∈ B \B′ − e there exists
an f ′ ∈ B′ \ B so that B − e′ + f ′ ∈ Bν , i.e. so that ν(B − e′ + f ′) < ∞. It
follows that ν(X) <∞. As |X \B′| < |B \B′|, we have

ν(X) + ν(B′) ≥ ν(X − e+ f) + ν(B′ + e− f) > ν(X − e+ f)

for some f ∈ B′ \X ⊆ B′ \B. Put Y := X−e+f . Then |B \Y | = 2 < |B \B′|,
hence

ν(B) + ν(Y ) ≥ ν(B − e+ g) + ν(Y + e− g) > ν(Y + e− g)

for some g ∈ Y \B ⊆ B′ \B. Hence for X ′ = Y + e− g, we have

ν(X) = ν(X) + ν(B) + ν(B′) > ν(B) + ν(Y ) > ν(X ′),

which contradicts the choice of X. �
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Valuated matroids can be modelled in several different ways. For instance,
if M is a matroid on E, then consider the matroid polytope of M , which is the
convex hull of the points eB ∈ RE for all bases B of M . A map ν : B → R
is a valuation if and only if the regular subdivision of the matroid polytope
corresponding to ν is a subdivision into smaller matroid polytopes [49].

5.1. Deletion and contraction. Let ν :
(
E
d

)
→ R∞ be a matroid val-

uation. Let i ∈ E be a non-coloop of Mν . Then define ν \i :
(
E−i
d

)
→ R∞

by ν \i(B) = ν(B). Similarly, let j ∈ E be a non-loop of Mν . Then define

ν/j :
(
E−j
d−1

)
→ R∞ by ν/j(B) = ν(B + j). For i a coloop, set ν\i = ν/i, and if

j is a loop, set ν/j = ν\j. Note that an element cannot be both a loop and a
coloop.

The following lemmas are from [15].

Lemma 2.18. Let ν :
(
E
d

)
→ R∞ be a matroid valuation, and let i ∈ E. Then

the maps ν\i and ν/i are matroid valuations.

Define the relation of strong equivalence ‘∼=’ on matroid valuations as
follows: ν ∼= τ if and only if there exists c ∈ R such that ν = τ + c.

Lemma 2.19. Let ν :
(
E
d

)
→ R∞ be a matroid valuation, and let i, j ∈ E be

distinct elements. The following commutation properties are satisfied:

(1) ν\i\j ∼= ν\j\i;
(2) ν/i/j ∼= ν/j/i;
(3) ν/i\j ∼= ν\j/i,

For a valuation ν, we denote its equivalence class under ‘∼=’ by ν + R. Let
I ⊂ E. We recursively define ν\I := ν +R if I = ∅, and ν\I := (ν\I − i)\i+R
otherwise. Analogously, define ν/I := ν+R if I = ∅, and ν/I := (ν/I−i)/i+R
otherwise. By Lemma 2.19, the choices of i are irrelevant.

5.2. Duality. Just like deletion and contraction, there exists a notion
of duality for matroid valuations. Let ν :

(
E
d

)
→ R∞ be a matroid valuation.

Define ν∗ :
(

E
|E|−d

)
→ R∞ by ν∗(B) = ν(B). The following lemma is due to

Dress and Wenzel [15].

Lemma 2.20. Let ν :
(
E
d

)
→ R∞ be a matroid valuation. Then ν∗ is a matroid

valuation.

Proof. (V0) is satisfied due to (V0) for ν. For (V1), consider B,B′ ∈(
E
|E|−d

)
and i ∈ B \B′ = B′ \B. By definition of ν∗, we have ν∗(B) +ν∗(B′) =

ν(B) + ν(B′). By (V1) for ν, there exists j ∈ B \ B′ = B′ \ B such that
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ν(B) + ν(B′) ≥ ν(B + i− j) + ν(B′ − i+ j) = ν∗(B − i+ j) + ν∗(B′ + i− j),
proving (V1). Thus ν∗ is a valuation. �

5.3. Circuit-hyperplane relaxation. If E is a set, and M is a matroid
on E, then a circuit-hyperplane of M is a subset of E that is both a circuit
and a hyperplane. If H is a circuit-hyperplane of M , then adding H to the
list of bases of M (relaxing H) yields a matroid. Let MH denote the matroid
obtained from M by relaxing H. The following lemma about circuit-hyperplane
relaxation in valuated matroids is due to Dress and Wenzel [15].

Lemma 2.21. Let M be a matroid of rank d with basis set B, and let H
be a circuit-hyperplane of M . If ν is a valuation of M , then there exists
k0 ∈ Z ∪ {−∞} so that the map νHk :

(
E
d

)
→ R∞ given by

B 7→





ν(B), B ∈ B;
k, B = H;
∞, else.

is a valuation matroid valuation with MνHk = MH for all k > k0.

Proof. Let a, b be distinct elements of H. Let c, d be distinct elements
of H. Let S = H \ {a, b}. Then by Lemma 2.17, the minimum of

ν(H) + ν(S+ c+d), ν(S+a+ c) + ν(S+ b+d), ν(S+a+d) + ν(S+ b+ c)

is attained at least twice. Since H is a circuit-hyperplane,

{S + a+ c, S + b+ d, S + a+ d, S + b+ c} ⊆ Bν

and ν(H) =∞, the minimum is attained by both ν(S + a+ c) + ν(S + b+ d)
and ν(S + a+ d) + ν(S + b+ c). So put

k0 = sup
a,b,c,d

{ν(S + a+ d) + ν(S + b+ c)− ν(S + c+ d)}.

Hence for k ≥ k0 the minimum of

νH(H) + νH(S + c+ d), νH(S + a+ c) + νH(S + b+ d),

νH(S + a+ d) + νH(S + b+ c)

is attained at least twice. It follows from Lemma 2.17 that νH is a valuation
of MH . �
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6. Polyhedral complexes

We define basic notions related to polyhedral complexes that are used in
this paper, following Ziegler [53].

Definition 2.22. A set P ⊆ RE is a polyhedron if

P = {x ∈ RE : Ax ≤ b},
where A ∈ Rn×E and b ∈ Rn for some nonnegative integer n.

Definition 2.23. If P is a polyhedron, then F is a face of P if

F = P ∩ {x ∈ RE : a · x = b0},
where a ∈ RE and b0 ∈ R are such that a · x ≤ b0 holds for all x ∈ P .

It follows that a nonempty cell F is a face of P = {x ∈ RE : Ax ≤ b} if
F = P ∩ {x ∈ RE : A′x = b′}, where A′ is obtained from A by deleting some
rows, and b′ is obtained from b by deleting the same rows. Moreover, the empty
polyhedron is a face of any other polyhedron.

Definition 2.24. Let P ⊆ RE be a polyhedron . Then the lineality space of P
is defined by

Λ(P ) := {y ∈ RE : x+ ty ∈ P for all x ∈ P, t ∈ R}.
Clearly Λ(P ) is a linear subspace of RE .

Definition 2.25. A polyhedral complex D is a finite collection of polyhedra
in RE such that

(1) the empty polyhedron is in D;
(2) if C ∈ D, then all the faces of C are also in D;
(3) the intersection C ∩D of two polyhedra C,D ∈ D is a face of both C

and D.

We extend the notion of lineality space to polyhedral complexes.

Definition 2.26. Let D be a polyhedral complex. Then the lineality space of
D is

Λ(D) :=
⋂

C∈D
Λ(C).

We denote by |D| :=
⋃D the support of D. If C,D are two polyhedral

complexes, then their intersection is defined by

C ∧ D := {C ∩D : C ∈ C, D ∈ D},
which is a polyhedral complex.

When D is a polyhedral complex, we call an element of D a cell. Cells of a
polyhedral complex have a natural notion of dimension.
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Definition 2.27. Let D be a polyhedral complex in RE. Let C be a nonempty
cell of D, and let α ∈ C. Then we call dim〈β − α : β ∈ C〉 the dimension of C.
Furthermore, dim ∅ := −1.

In the remainder of the thesis, we only consider polyhedral complexes with
rational polyhedra. That is, with polyhedra defined by a rational matrix A
and a rational vector b. The lowest and second-lowest dimensional cells play
an important role in this thesis.

Definition 2.28. Let D be a polyhedral complex and let k ∈ N. Then we call

Sk(D) := {C ∈ D : dimC ≤ k}
the k-skeleton of D. When n = dim Λ(D), we sometimes use the notation
Sk−n(D) for the k-skeleton of D.

The k-skeleton of a polyhedral complex is itself a polyhedral complex.

7. The Dressian

Let M be a matroid with basis set B. For each octahedron

O = (B11, . . . B32)

of M , we define the polyhedra

P 0
O := {ν ∈ RB : ν(B11) + ν(B12) = ν(B21) + ν(B22) = ν(B31) + ν(B32)},

and

P iO := {ν ∈ RB : ν(Bi1) + ν(Bi2) ≥ ν(Bj1) + ν(Bj2) = ν(Bk1) + ν(Bk2)},
where i, j, k are distinct members of {1, 2, 3}. Now

PO := {∅, P 0
O, P

1
O, P

2
O, P

3
O}

is a polyhedral complex.
Next, for each degenerate pure quadrangle

Q = {S + a+ b, S + c+ d, S + a+ d, S + b+ c},
we define the polyhedron

PQ := {ν ∈ RB : ν(S + a+ b) + ν(S + c+ d) = ν(S + a+ d) + ν(S + b+ c)}
and the polyhedral complex PQ := {∅, PQ}.
Definition 2.29. Let M be a matroid. The Dressian of M is defined by

D(M) :=
∧

O

PO ∧
∧

Q

PQ,

where O ranges over the octahedra of M , and Q ranges over the degenerate
pure quadrangles of M .
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Theorem 2.30. Let M be a matroid on E of rank r with bases B. The following
are equivalent:

(1) ν : B → R∞ is a valuation of M ;
(2) ν ∈ |D(M)|.

Proof. Suppose ν is a valuation of M , and let O be an octahedron of M .
Due to Lemma 2.17, ν must lie in one of the polyhedra P iO for i ∈ {0, 1, 2, 3},
and hence in |PO|.

Next, suppose Q = {S+a+ b, S+ c+d, S+a+d, S+ b+ c} is a degenerate
pure quadrangle of M . Since either S + a+ c or S + b+ d is not in B, we have
ν(S + a+ c) + ν(S + b+ d) =∞. Therefore due to Lemma 2.17, νB must lie in
PQ. It follows that ν ∈ |D(M)|.

Conversely, suppose ν ∈ |D(M)|. Now let S ∈
(
E
r−2

)
and {a, b, c, d} ∈(

E\S
4

)
, and consider the corresponding sets S = {B11, . . . , B32} as in Section

4. We distinguish three cases. If S contains no pure quadrangle, then Lemma
2.17(2) holds trivially for S, a, b, c, d. If S contains a degenerate pure quadrangle
Q, Lemma 2.17(2) is satisfied for S, a, b, c, d due to the fact that νB ∈ PQ. Fi-
nally, if S contains a non-degenerate pure quadrangle, then O = (B11, . . . , B32)
is an octahedron of M . Since ν lies in one of the polyhedra P iO for i ∈ {0, 1, 2, 3},
Lemma 2.17(2) is satisfied for S, a, b, c, d. We conclude that Lemma 2.17(2) is
satisfied for ν. Since Bν = B, ν is a valuation of M due to Lemma 2.17. �

Consider the trivial valuation τw : B → R, B 7→ eB · w for some w ∈ RE .
We strengthen Lemma 2.15.

Lemma 2.31. Let M be a matroid on E. Let w ∈ RE be given. Then
τw ∈ Λ(D(M)).

Proof. Each cell C of D(M) is the intersection of a number of polyhedra
of the form PQ or P iO, where Q is a degenerate pure quadrangle, O is an
octahedron of M and i ∈ {0, 1, 2, 3}. Clearly τw ∈ Λ(PQ) for each Q, since for
each e ∈ E there are as many bases containing e on the left-hand side of the
defining equation as on the right-hand side. Similarly, τw ∈ Λ(P iO) for each O
and i. We conclude that ν + τw ∈ C for each ν ∈ C and for each C ∈ D(M),
as required. �

We define the space of trivial valuations of M :

T (M) := 〈τw : w ∈ RE〉.

By the previous lemma, T (M) ⊆ Λ(D(M)).
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Definition 2.32. Let M be a matroid with bases B. If ν is a valuation of M ,
then the combinatorial type of ν is the inclusionwise minimal cell C ∈ D(M)
such that ν ∈ C.

Let O(M) be the set of octahedra of M . Then the combinatorial type
of ν is characterised by the map κν : O(M)→ {0, 1, 2, 3}, mapping O to the
(unique) i such that ν lies in the interior of P iO. Then we have

ν ∈
⋂

O∈O(M)

P
κν(O)
O ∩

⋂

Q

PQ ∈ D(M).

From Lemma 2.31, we may conclude that the combinatorial type of ν does
not change by adding a trivial valuation. The same is true for scaling by a
positive scalar.

Lemma 2.33. Let M be a matroid and ν ∈ |D(M)|. Let λ ∈ R>0 be given.
Then λν is a valuation of M with κν = κλν .

Proof. The defining inequalities of the polyhedra PQ and P iO are all
homogeneous in ν. Therefore they are satisfied by ν if and only if they are
satisfied by λν, since λ > 0. Hence λν lies in the interior of the same cell of
D(M) as ν. By Theorem 2.30, λν is a valuation. �

8. Murota’s discrete duality theory

We briefly review the definitions and results we use from [39]. For an
x ∈ Zn, let

supp(x) := {i : xi 6= 0}, supp+(x) := {i : xi > 0},

supp−(x) := {i : xi < 0}.
For any function f : Zn → R∞, we write dom(f) := {x ∈ Zn : f(x) ∈ R}.
Definition 2.34. A function f : Zn → Z∞ is called M-convex if:

(1) dom(f) 6= ∅; and
(2) for all x, y ∈ dom(f) and i ∈ supp+(x−y), there exists j ∈ supp−(x−

y) so that f(x) + f(y) ≥ f(x− ei + ej) + f(y + ei − ej).

Let x, y ∈ Zn. We write x∨y := (max{xi, yi})i and x∧y := (min{xi, yi})i,
and let 1 denote the all-one vector.

Definition 2.35. A function g : Zn → Z∞ is L-convex if

(1) dom(g) 6= ∅;
(2) g(x) + g(y) ≥ g(x ∨ y) + g(x ∧ y) for all x, y ∈ Zn; and
(3) there exists an r ∈ Z so that g(x+ 1) = g(x) + r for all x ∈ Zn.
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For any h : Zn → Z∞ with nonempty domain, the Legendre-Fenchel dual
is the function h• : Zn → Z∞ defined by

h•(x) = sup{x · y − h(y) : y ∈ Zn}.
The following key theorem describes the duality of M-convex and L-convex
functions [39].

Theorem 2.36. Let f, g : Zn → Z∞. The following are equivalent.

(1) f is M-convex, and g = f•; and
(2) g is L-convex, and f = g•.

Finally, Murota provides the following local optimality criterion for L-
convex functions.

Lemma 2.37. (Murota [39], 7.14) Let G be an L-convex function on Zn, and
let x ∈ Zn. Then

∀y ∈ Zn : G(x) ≤ G(y)⇐⇒
{
∀I ⊂ {1, . . . , n} : G(x) ≤ G(x+ eI),
G(x) = G(x+ 1).





CHAPTER 3

Matroid flocks and cell complexes

This chapter is based on joint work with Jan Draisma and Rudi Pendavingh
[7, 6].

1. Introduction

In this chapter, I introduce matroid flocks and their associated cell com-
plexes.

Definition 3.1. A matroid flock of rank d on E is a map M which assigns
a matroid Mα on E of rank d to each α ∈ ZE, satisfying the following two
axioms:

(MF1) Mα/i =Mα+ei \i for all α ∈ ZE and i ∈ E;
(MF2) Mα =Mα+1 for all α ∈ ZE.

Matroid flocks started out as a ‘side product’ of vector space flocks, which
are the subject of chapter 4. However, after we had discovered the relation
between matroid flocks and integer-valued matroid valuations, they turned into
an object of greater interest. In the second section of this chapter we make
this relation precise.

There is also a bijective relation between matroid flocks and certain poly-
hedral complexes, which will be studied in the third section of this chapter. As
a consequence we have three different interpretations of matroid flocks that
are all equivalent. This allows us to gain a firm understanding of the structure
of matroid flocks, as will be the focus of the fifth section of this chapter.

2. Matroid flock characterisation

We begin with an example of a matroid flock as defined in Definition 3.1.

Example 3.2. Let E = {1, 2} and let M0 be the matroid on E with bases
{1} and {2}. We claim that this extends in a unique manner to a matroid
flock M on E of rank 1. Indeed, by (MF1) the rank-zero matroid M0/1 equals
Me1 \1, so that {1} is the only basis in Me1 . Repeating this argument, we
find Mke1 =Me1 for all k > 0. Similarly, Mke2 is the matroid with only one

25
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basis {2} for all k > 0. Using (MF2) this determines Mα for all α = (k, l):
it equals M0 if k = l, Me1 if k > l, and Me2 if k < l. The phenomenon that
most Mα follow from a small number of them, like migrating birds follow a
small number of leaders, inspired our term matroid flock. p

We proceed with a characterisation of matroid flocks. For a matroid
valuation ν :

(
E
d

)
→ R∞ and an α ∈ RE , let

Bνα := arg max
B∈(Ed)

{eB · α− ν(B)}

and put Mν
α := (E,Bνα). Then Mν

α is a matroid. Moreover, let

gν(α) := max
B∈(Ed)

{eB · α− ν(B)}

be the maximal value obtained by the elements of Bνα.
The main result of this section will be the following characterization of

matroid flocks.

Theorem 3.3. Let E be a finite set, let d ∈ N, and let Mα be a matroid on
E of rank d for each α ∈ ZE. The following are equivalent:

(1) M : α 7→ Mα is a matroid flock; and

(2) there is a matroid valuation ν :
(
E
d

)
→ Z∞ so that Mα =Mν

α for all

α ∈ ZE.

The implication (2)⇒(1) of Theorem 3.3 is relatively straightforward.

Lemma 3.4. Let ν :
(
E
d

)
→ Z∞ be a valuation. Then

(1) Mν
α/i =Mν

α+ei \i for all α ∈ ZE and i ∈ E; and

(2) Mν
α =Mν

α+1 for all α ∈ ZE.

Proof. We prove (1). Consider α ∈ ZE and i ∈ E. If i is a loop of Mν
α,

then gν(α+ ei) = gν(α). Then B is a basis of Mν
α/i if and only if

eB · (α+ ei)− ν(B) = eB · α− ν(B) = gν(α) = gν(α+ ei)

if and only if B is a basis of Mν
α+ei \i. On the other hand, if i is not a loop of

Mν
α, then gν(α+ ei) = gν(α) + 1, and then B′ is a basis of Mν

α/i if and only
if B = B′ + i is a basis of Mν

α, if and only if

eB · (α+ ei)− ν(B) = eB · α− ν(B) + 1 = g(α) + 1 = g(α+ ei)

if and only if B′ is a basis of Mν
α+ei \i.

To see (2), note that gν(α+ 1) = gν(α) + d. Then B is a basis of Mν
α if

and only if

eB · (α+ 1)− ν(B) = eB · α− ν(B) + d = gν(α) + d = gν(α+ 1)
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if and only if B is a basis of Mν
α+1. �

We show the implication (1)⇒(2) of Theorem 3.3. Our proof makes
essential use of the discrete duality theory of Murota [39]. Specifically, we
will first construct an L-convex function g : ZE → Z from the matroid flock
M. The Fenchel dual f of g is then an M-convex function, from which we
derive the required valuation ν. Before we can prove the existence of a suitable
function g, we need a few technical lemmas.

In the context of a matroid flockM, we will write rα for the rank function
of the matroid Mα. We first extend (MF1).

Lemma 3.5. Let M be a matroid flock on E, let α ∈ ZE and let I ⊆ E. Then
Mα/I =Mα+eI \I.

Proof. By induction on I. Clearly the lemma holds if I = ∅. If I 6= ∅,
pick any i ∈ I. Using the induction hypothesis for α and I − i, followed by
(MF1) for α+ eI−i and i, we have

Mα/I =Mα/(I − i)/i = Mα+eI−i \(I − i)/i
= Mα+eI−i/i\(I − i)
= Mα+eI \i\(I − i)
= Mα+eI \I,

as required. �

The above lemma allows us to extend (MF1) as follows.

(MF1’) Mα/I =Mα+eI \I for all α ∈ ZE and I ⊆ E.

Lemma 3.6. Let M be a matroid flock on E, let α ∈ ZE and let I ⊆ J ⊆ E.
Then

rα(J) = rα(I) + rα+eI (J \I).

Proof. Using Lemma 3.5, we have rα+eI (J \I) = r(Mα+eI \I \J) =
r(Mα/I\J) = rα(J)− rα(I), as required. �

If α, β ∈ RE , we write α ≤ β if αi ≤ βi for all i ∈ E.

Lemma 3.7. Let M be a matroid flock on E, let α, β ∈ ZE and let I ⊆ E. If
I ∩ supp(β − α) = ∅ and α ≤ β, then rα(I) ≥ rβ(I).

Proof. We use induction on maxi(βi − αi). Let J := supp(β − α). Then

rα(I) = r(Mα\J \I ∪ J) ≥ r(Mα/J \I ∪ J)

= r(Mα+eJ \J \I ∪ J) = rα+eJ (I).



28 3. MATROID FLOCKS AND CELL COMPLEXES

Taking α′ := α + eJ , we have α′ ≤ β, maxi(βi − α′i) < maxi(βi − αi) and
supp(β − α′) ⊆ supp(β − α). Hence

rα(I) ≥ rα+eJ (I) ≥ rβ(I),

by using the induction hypothesis for α′, β. �

We are now ready to show the existence of the function g alluded to above.

Lemma 3.8. Let M be a matroid flock on E. There is a unique function
g : ZE → Z so that

(1) g(0) = 0, and
(2) g(α+ eI) = g(α) + rα(I) for all α ∈ ZE and I ⊆ E.

Proof. Let D =
(
ZE , A

)
be the infinite directed graph with arcs

A := {(α, α+ eI) : α ∈ ZE , ∅ 6= I ⊆ E}.

Let l : A→ Z be a length function on the arcs determined by

l(α, α+ eI) = rα(I).

This length function extends to the undirected walks W = (α0, . . . , αk) of D
in the usual way, by setting

l(W ) :=

{
l(α0, . . . , αk−1) + l(αk−1, αk) if (αk−1, αk) ∈ A
l(α0, . . . , αk−1)− l(αk, αk−1) if (αk, αk−1) ∈ A

if k > 0, and l(W ) = 0 otherwise. A walk (α0, . . . , αk) is closed if it starts and
ends in the same vertex, i.e. if α0 = αk.

If we assume that l(W ) = 0 for each closed walk W , then we can construct
a function g satisfying (1) and (2) as follows. For each α ∈ ZE , let Wα be an
arbitrary walk from 0 to α, and put g(α) = l(Wα). Then g(0) = l(W 0) = 0 by
our assumption, since W 0 is a walk from 0 to 0. Also, if α ∈ ZE and I ⊆ E,
then writing β := α+ eI we have

l(Wα) + l(α, β)− l(W β) = l(α0, . . . , αk, βm, . . . , β0) = 0,

by our assumption, where Wα = (α0, . . . , αk) and W β = (β0, . . . , βm). It
follows that

g(α+ eI) = l(W β) = l(Wα) + l(α, β) = g(α) + rα(I),

as required. So to prove the lemma, it will suffice to show that l(W ) = 0 for
each closed walk W .
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Suppose for a contradiction that W = (α0, . . . , αk) is a closed walk with
l(W ) 6= 0. Fix any i ∈ E so that α0

i 6= α1
i . If J ⊆ E is such that i ∈ J , then

for any α ∈ ZE we have

(1) l(α, α+ eJ) = rα(J) = rα(i) + rα+ei(J − i) = l(α, α+ ei, α+ eJ)

by applying Lemma 3.6 with I = {i}. Hence, if we replace each subsequence
(αt−1, αt) = (α, α + eJ) of W with i ∈ J by (α, α + ei, α + eJ), and each
subsequence (αt−1, αt) = (α + eJ , α) with i ∈ J by (α + eJ , α + ei, α), then
we obtain a closed walk U = (β0, . . . , βm) with l(U) = l(W ) 6= 0, such
that if βt − βt−1 = ±eJ , then i 6∈ J or J = {i}, and moreover such that
βt − βt−1 = ±ei for some t. Pick such U, i with m as small as possible, and
minimizing |U |i :=

∑{t ∈ {1, . . . ,m} : βti 6= βt−1
i }.

We claim that there is no t > 0 so that βt−1
i = βti 6= βt+1

i . Consider that
by applying Lemma 3.6 with I = J − i, we have

(2) l(α, α+ eJ) = rα(J) = rα(J − i) + rα+eJ−i(i) = l(α, α+ eJ−i, α+ eJ),

so that using (1) we obtain l(α, α + eJ−i, α + eJ , α + ei, α) = 0. Hence,
l(α, α+ eJ−i, α+ eJ) = l(α, α+ ei, α+ eJ) and l(α+ eJ−i, α, α+ ei) = l(α+
eJ−i, α+ eJ , α+ ei). It follows that any subsequence (βt−1, βt, βt+1) of U with
βt−1
i = βti 6= βt+1

i can be rerouted to (βt−1, β′, βt+1) with βt−1
i 6= β′i = βt+1

i ,
which would result in a closed walk U ′ with |U ′|i < |U |i, a contradiction.

So there exists an m′ ∈ {1, . . . ,m} such that βt − βt−1 = ±ei if and only

if t ≤ m′. Then β0 = βm
′

= βm, and l(β0, . . . , βm
′
) = 0. Hence

l(βm
′
, . . . , βm) = l(β0, . . . , βm

′
) + l(βm

′
, . . . , βm) = l(U) 6= 0,

which contradicts the minimality of m. �

For any matroid flockM, let gM denote the unique function g from Lemma
3.8.

Theorem 3.9. Let M be a matroid flock of rank d on E, and let g = gM.
Then

(1) g(α) + g(β) ≥ g(α ∨ β) + g(α ∧ β) for all α, β ∈ ZE; and
(2) g(α+ 1) = g(α) + d for all α ∈ ZE.

Proof. We first show (1). Let α, β ∈ ZE . Since (β−α)∨ 0 ≥ 0, there are

I1 ⊆ . . . ⊆ Ik ⊆ E so that (β−α)∨0 =
∑k
j=1 eIj . Let γ(t) := α∧β+

∑t
j=1 eIj .

Then γ(0) = α ∧ β, γ(k) = α ∧ β + (β − α) ∨ 0 = β, and γ(t) = γ(t− 1) + eIt ,
so that

g(β)− g(α ∧ β) =

k∑

t=1

g(γ(t))− g(γ(t− 1)) =

k∑

t=1

rγ(t−1)(It).
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Let δ := (α−β)∨ 0. Then γ(0) + δ = α and γ(k) + δ = α∨β, and we also have

g(α ∨ β)− g(α) =

k∑

t=1

g(γ(t) + δ)− g(γ(t− 1) + δ) =

k∑

t=1

rγ(t−1)+δ(It).

For each t we have It ∩ supp(δ) ⊆ supp((β − α) ∨ 0) ∩ supp((α− β) ∨ 0) = ∅,
and δ ≥ 0. By Lemma 3.7, it follows that rγ(t−1)(It) ≥ rγ(t−1)+δ(It) for each t,
and hence

g(β)− g(α ∧ β) =

k∑

t=1

rγ(t)(It) ≥
k∑

t=1

rγ(t)+δ(It) = g(α ∨ β)− g(α),

which implies (1).
To see (2), note that g(α+ 1) = g(α) + rα(E) = g(α) + d. �

It follows that for any matroid flock M, the function gM is L-convex in
the sense of Murota.

Lemma 3.10. Let M be a matroid flock on E, let g = gM and f := g•, and
let α, ω ∈ ZE. The following are equivalent.

(1) ω · α = f(ω) + g(α); and
(2) ω = eB for some basis B of Mα.

Proof. We first show that (1) implies (2). So assume that ω · α =
f(ω)+g(α). Then f(ω) is finite, as g(α) and ω ·α are both finite. Since f = g•,
we have

ω · α− g(α) = f(ω) = sup{ω · β − g(β) : β ∈ ZE},
and hence α minimizes the function G : β 7→ g(β)−ω ·β over all β ∈ ZE . Since

0 ≤ G(α− ei)−G(α) = g(α− ei)−ω · (α− ei)− g(α) +ω ·α = −rα−ei(i) +ωi

for each i ∈ E, it follows that ω ≥ 0. Since

0 ≤ G(α+ ei)−G(α) = g(α+ ei)− ω · (α+ ei)− g(α) + ω · α = rα(i)− ωi,
we have ω ≤ 1. Hence ω = eB for some B ⊆ E. Then

0 ≤ G(α+ eB)−G(α) = g(α+ eB)−ω · (α+ eB)− g(α) +ω ·α = rα(B)− |B|,
so that rα(B) = |B|. Moreover,

0 ≤ G(α− eB)−G(α) = g(α− eB)−ω · (α− eB)− g(α) +ω ·α = −rα−eB (B),

so that rα−eB (B) = 0. It follows by Lemma 3.5 that

|B| = rα(B) = r(Mα\B) = r(Mα−eB/B) = d− rα−eB (B) = d,

and hence that B is a basis of Mα.
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We now show that (2) implies (1). Suppose ω = eB for some basis B
of Mα. Consider again the function G : α 7→ g(α) − ω · α over ZE . As g is
L-convex, G is L-convex. We show that α minimizes G over ZE , using the
optimality condition for L-convex functions given in Lemma 2.37. First, note
that as g(α+ 1) = g(α) + d, we have

G(α+ 1) = g(α+ 1)− ω · (α+ 1) = g(α) + d− ω · α− |B| = G(α).

Let I ⊆ E. As B is a basis of Mα, we have |B ∩ I| ≤ rα(I), and hence

G(α+eI)−G(α) = g(α+eI)−ω · (α+eI)−g(α)−ω ·α = rα(I)−|B∩ I| ≥ 0.

Thus α minimizesG over ZE , hence f(ω) = sup{−G(α) : α ∈ ZE} = ω·α−g(α),
as required. �

Let M be a matroid flock on E of rank d. We define the function νM :(
E
d

)
→ Z∞ by setting νM(B) := f(eB) for each B ∈

(
E
r

)
, where f = g• is the

Lagrange-Fenchel dual of g = gM.

Lemma 3.11. Let M be a matroid flock, and let ν = νM. Then ν is a
valuation, and Mν

α =Mα for all α ∈ ZE.

Proof. Suppose M is a matroid flock. Then g = gM is L-convex by
Theorem 3.9, and f := g• is M-convex by Theorem 2.36. That ν : B 7→ f(eB)
is a matroid valuation is straightforward from the fact that f is M-convex. We
show that Mν

α =Mα for all α ∈ ZE . By Theorem 2.36, we have g = f•. By
Lemma 3.10, we have

g(α) = f•(α) = sup{ω · α− f(ω) : ω ∈ ZE}

= sup

{
eB′ · α− ν(B′) : B′ ∈

(
E

r

)}
,

as the first supremum is attained by ω only if ω = eB′ for some B′ ∈
(
E
r

)
.

Again by Lemma 3.10, B is a basis of Mα if and only if g(α) = eB · α− ν(B),
i.e. if B is a basis of Mν

α. �

This proves the implication (1)⇒(2) of Theorem 3.3. Finally, we note:

Lemma 3.12. Let M be a matroid flock, and let ν = νM. Then gM = gν .

Proof. Let f : ZE → Z∞ be defined by f(eB) = ν(B) for all B ∈
(
E
d

)
,

and =∞ otherwise. Then gM = f• = gν , as required. �
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3. Polyhedral complexes associated to matroid flocks

3.1. The support matroid and the cells of a matroid flock. If M
is a matroid flock, then the support matroid of M, denoted by M(M), is just
the support matroid Mν of the associated valuation ν = νM.

Lemma 3.13. Suppose M : α 7→ Mα = (E,Bα) is a matroid flock with
M(M) = (E,B). Then B =

⋃
α∈ZE Bα.

Proof. Let ν = νM, and put g = gν . By Lemma 3.11, we have

Bα = Bνα =

{
B ∈

(
E

d

)
: eB · α− ν(B) = g(α)

}

for all α ∈ ZE , and B = {B ∈
(
E
d

)
: ν(B) < ∞}. Since ν(B′) < ∞ for some

B′ ∈
(
E
d

)
by (V0), we have g(α) > −∞ for all α ∈ ZE . Consider a B ∈

(
E
d

)
.

Suppose first that B ∈ B, i.e. ν(B) <∞. Consider the difference h(α) :=
g(α) − eB · α + ν(B). Then h(α) is nonnegative and finite for all α ∈ ZE ,
and B ∈ Bα if and only if h(α) = 0. Moreover, if B is not a basis of Mν

α,
then g(α + eB) ≤ g(α) + |B| − 1 and eB · (α + eB) = eB · α + |B|, so that
h(α+ eB) ≤ h(α)− 1. It follows that for any fixed α and any sufficiently large
k ∈ Z, we have h(α+ keB) = 0, and then B ∈ Bα+keB . Then B ∈ ⋃α∈ZE Bα.

If on the other hand B 6∈ Bν , i.e. ν(B) =∞, then eB · α− ν(B) = −∞ <
g(α) for all α ∈ ZE , so that B 6∈ Bα for any α ∈ ZE . Then B 6∈ ⋃α∈ZE Bα. �

The geometry of valuations is quite intricate, and is studied in much greater
detail in tropical geometry [49, 19]. We mention only those results we need

in this thesis. For any matroid valuation ν :
(
E
d

)
→ R∞, put Cνβ := {α ∈ RE :

Bνα ⊇ Bνβ}.
Lemma 3.14. Let ν :

(
E
d

)
→ Z∞ be a matroid valuation, and let β ∈ RE.

Then

Cνβ = {α ∈ RE : αi − αj ≥ ν(B)− ν(B′)

for all B ∈ Bνβ , B′ ∈ Bν s.t. B′ = B − i+ j}.

Proof. Let C denote the right-hand side polyhedron in the statement of
the lemma. Directly from the definition of Bνα, it follows that Bνα ⊇ Bνβ if and
only if

eB · α− ν(B) ≥ eB′ · α− ν(B′)

for all B ∈ Bνβ and B′ ∈ Bν . In particular, Cνβ ⊆ C.
To see that Cνβ ⊇ C, suppose that α 6∈ Cνβ , that is, Bνα 6⊇ Bνβ , so that

eB · α− ν(B) < eB′ · α− ν(B′)
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for some B ∈ Bνβ and B′ ∈ Bν . Consider the valuation ν′ : B 7→ ν(B)− eB · α.

Pick B ∈ Bνβ , B′ ∈ Bν such that ν′(B) > ν′(B′) with B\B′ as small as possible.

If |B\B′| > 1, then by minimality of |B\B′| we have

ν′(B)+ν′(B) > ν′(B)+ν′(B′) ≥ ν′(B− i+j)+ν′(B′+ i−j) ≥ ν′(B)+ν′(B),

for some i ∈ B\B′ and j ∈ B′\B, since ν′ is a valuation. This is a contradiction,
so |B\B′| = 1 and B′ = B − i+ j, and hence

αi − αj = (eB − eB′) · α < ν(B)− ν(B′),

so that α 6∈ C. �

Thus the cells Cνβ are ‘alcoved polytopes’ (see [28]). The relative interior
of such cells is connected also in a discrete sense.

Lemma 3.15. Let M : α 7→ Mα be a matroid flock on E, and let α, β ∈ ZE.
If Mα = Mβ, then there is a walk γ0, . . . , γk ∈ ZE from α = γ0 to β = γk

so that Mγi = Mα for i = 0, . . . , k, and for each i there is a Ji so that

γi − γi−1 = ±eJi

Proof. By (MF2), there is such a walk from α to α+ k1 for any k ∈ Z,
taking steps of the form ±1. Fixing any i0 ∈ E, we may assume that αi0 = 0,
and similarly that βi0 = 0.

Let ν = νM. Using Lemma 3.14, we have {γ ∈ RE :Mγ =Mα} = (Cνα)◦,
where (Cνα)◦ denotes the relative interior of Cνα. For each i, j let cij :=
min{αi − αj , βi − βj}. Then by inspection of the system of inequalities which
defines Cνα (Lemma 3.14), we have

α, β ∈ C := {γ ∈ RE : γi − γj ≥ cij for all i, j, and γi0 = 0}

⊆ {γ ∈ RE :Mγ =Mα}.
Then C is a bounded polyhedron defined by a totally unimodular system of
inequalities with integer constant terms cij . It follows that C is an integral
polytope. Moreover α, β are both vertices of C, and hence there is a walk from
α to β over the 1-skeleton of C. Since C has integer vertices, and each edge of
C is parallel to eJ for some J ⊆ E, the lemma follows. �

Lemma 3.16. Let ν be a matroid valuation, and let α ∈ RE be given. Then

〈β − α | β ∈ Cνα〉 = 〈eJ | J component of Mν
α〉.

Moreover, dimCνα equals the number of components of Mν
α.
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Proof. For the inclusion ’⊆’. Suppose β ∈ Cνα. Then for all B,B′ ∈ Bνα,
we have eB · α − ν(B) = eB′ · α − ν(B′) and eB · β − ν(B) = eB′ · β − ν(B′).
When we consider the difference, we get that for all B,B′ ∈ Bνα, we have

(3) eB · (β − α) = eB′ · (β − α).

Let J be a component of Mν
α. We show that β − α is constant on J by

induction. Suppose β−α is constant on I such that ∅ 6= I ( J , which is clearly
true when I is a singleton. Then for each I ( J , due to Lemma 2.2 there exists
a pair of bases B,B′ ∈ Bνα such that |B ∩ I| 6= |B′ ∩ I|. As the base exchange
graph of any matroid is connected, we may assume B′ = B − e+ f for some
e ∈ I, f ∈ J \ I. Hence (β−α)e = (β−α)f due to (3), and so β−α is constant
on I + f . Thus by induction β − α is constant on J , proving the inclusion ’⊆’.

For the inclusion ’⊇’, let J be a component of Mν
α . By Lemma 2.2, for

all B,B′ ∈ Bνα, |B ∩ J | = |B′ ∩ J |. Hence for all ε > 0 and B,B′ ∈ Bνα, we
have eB · α − ν(B) = eB′ · α − ν(B′) if and only if eB · (α + εeJ) − ν(B) =
eB′ · (α + εeJ) − ν(B′). Denote hν(α) := supB∈Bν\Bνα{eB · α − ν(B)}, the

second highest value taken by eB · α − ν(B) on Bν . Picking ε ≤ gν(α)−hν(α)
rν(J)

thus ensures that Bα ⊆ Bα+εeJ . Hence α+ εeJ ∈ Cνα, as required.
Finally, taking the dimension on both sides we get that dimCνα equals the

number of components of Mν
α. �

As a consequence, the cells CνB := {α ∈ RE | B ∈ Bνα} for B ∈ Bν are the
|E|-dimensional cells, since in its interior, where Bνα = {B}, all elements of Mν

α

are loops or coloops.
Let Dν := {Cνα | α ∈ RE} ∪ {∅}.

Theorem 3.17. Let ν be a matroid valuation. Then Dν is a polyhedral complex.

Proof. First note that Dν is finite, since each cell Cνα uniquely determined
by Bνα, and Bν only has finitely many subsets. By Lemma 3.14, each C ∈ Dν
is a polyhedron.

Now we show that for any C,C ′ ∈ Dν , C ∩ C ′ is a face of both C and C ′.
Consider α, β ∈ ZE such that C = Cνα and C ′ = Cνβ . We claim

C ∩ C ′ = C ∩A,
where

A := {γ ∈ RE : γi − γj = ν(B)− ν(B′)

for all B ∈ Bνα, B′ ∈ Bνβ s.t. B′ = B − i+ j}.
The inclusion ’⊆’ is straightforward from Lemma 3.14. For the inclusion ’⊇’,
let γ be an element of the right-hand side. Clearly γ ∈ C. To see γ ∈ C ′,
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we check that all inequalities for Cνβ in Lemma 3.14 are satisfied. Thus let

B ∈ Bνβ , B′ ∈ Bν be given such that B′ = B − i+ j. We need to show that

γi − γj ≥ ν(B)− ν(B′).

Pick B′′ ∈ Bνα. Since γ ∈ C, we have

(eB′′ − eB′) · γ ≥ ν(B′′)− ν(B′).

Furthermore as γ ∈ A, we have

(eB′′ − eB) · γ = ν(B′′)− ν(B).

Subtracting these equations we obtain the desired inequality. Hence C ∩ C ′ is
a face of C. By symmetry, C ∩ C ′ is a face of both C and C ′.

Finally we show that for each C ∈ Dν , each face F of C is in Dν . Let α be
such that C = Cνα. As F is a face of C, there exist S ⊆ Bνα and T ⊆ Bν \ Bνα
such that each B ∈ T has a neighbor in S, and

F = C ∩ {γ ∈ RE : γi − γj = ν(B)− ν(B′)

for all B ∈ S, B′ ∈ T s.t. B′ = B − i+ j},
due to Lemma 3.14. We want to show

F = {γ ∈ RE : γi − γj ≥ ν(B)− ν(B′)(4)

for all B ∈ Bνα ∪ T , B′ ∈ Bν s.t. B′ = B − i+ j}.
The inclusion ’⊇’ holds since the set of inequalities for F is a subset of the
inequalities on the right-hand side. We now prove the inclusion ’⊆’. Let γ ∈ F
be given. Now suppose B ∈ Bνα ∪ T and B′ ∈ Bν such that B′ = B − i + j.
So we must show that γi − γj ≥ ν(B) − ν(B′). As γ ∈ C, this clearly holds
if B ∈ Bα. So suppose B ∈ T . Then there exists B′′ ∈ S neighboring to B,
when by assumption

(eB′′ − eB) · γ = ν(B′′)− ν(B).

As γ ∈ C and B′′ ∈ Bνα, we also have

(eB′′ − eB′) · γ ≥ ν(B′′)− ν(B′).

Hence indeed, by subtracting these equations we obtain γi−γj ≥ ν(B)−ν(B′).
So (4) holds, and hence

F =
⋂

B∈Bνα∪T
CνB ,

which is a cell in Dν , as required.
We conclude that Dν is a polyhedral complex. �
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We remark that a matroid valuation ν is uniquely determined (up to tropical
scalar multiplication) by its polyhedral complex Dν . Hence there is a three-way
relation between matroid flocks, matroid valuations and polyhedral complexes.
If M is a matroid flock such that M =Mν , then we call Dν the polyhedral
complex of M. In this case, we will use the notation Sk(M) := Sk(Dν) for
the k-skeleton of the polyhedral complex of M. Similarly, we use the notation
Λ(M) := Λ(Dν) for the lineality space.

In the following lemma we characterize the set of components of Mα for
α ∈ ZE .

Lemma 3.18. Let M be a matroid flock. Let α ∈ ZE be given. Then the set
of components of Mα is a refinement of the set of components of M(M).

Proof. Let J be a component of M(M). Note that rα(S) ≤ r(S) for any
S ⊆ E, since each basis ofMα is a basis of M(M). So comparing connectivity
functions, we get

λα(J) = rα(J) + rα(J)− rα(E) ≤ r(J) + r(J)− r(E) = λ(J) = 0,

so λα(J) = 0. Hence J is a union of components of Mα, as required. �

Next, we characterize the lineality space of the polyhedral complex of M.

Lemma 3.19. Let M be a matroid flock. Then Λ(M) = 〈eJ1 , . . . , eJn〉, where
J1, . . . , Jn are the components of M(M).

Proof. Let ν be the valuation such that M = Mν by Theorem 3.3.
Suppose y ∈ Λ(M) is not constant on the components of M := M(M). Let
i, j ∈ J such that yi < yj be given for some component J of M . As i, j are in
the same component of M , there exist bases B,B′ of M such that B′ = B−i+j.
Consider the cell CνB ∈ Dν and let α ∈ CνB be given. By Lemma 3.14, we have
αi − αj ≥ ν(B)− ν(B′). But then since yi − yj < 0, we have that for t large
enough, α+ ty 6∈ CνB . Hence y 6∈ Λ(CνB); contradiction.

Conversely, let J be a component of M . Then by Lemma 2.2 each basis
of M intersects J in r(J) elements, and hence the same is true for each Mν

α,
whose basis set is contained in that of M . Therefore B ∈ Bνα if and only if
B ∈ Bνα+teJ for each α ∈ RE and t ∈ R. Hence eJ ∈ Λ(M), as required. �

Next we show that the boundary of any cell Cα of the polyhedral complex
of M is connected in a special way.

Lemma 3.20. Let M be a matroid flock. Let α ∈ RE. Then for each pair
β, β′ ∈ Cα ∩ |S0(M)| ∩ ZE, there is a sequence β = γ0, . . . , γm = β′ such that
for each 0 ≤ i < m:

(1) γi ∈ |S0(M)|;
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(2) there exist ki ∈ Z and I ⊆ E such that γi+1 = γi + kieI ;
(3) the line segment in RE [γi, γi+1] ⊆ Cα ∩ |S1(M)|.
Proof. Since the cell Cα is a polyhedron, its boundary is connected in

the sense that for each pair β, β′ ∈ Cα ∩ |S0(M)| ∩ ZE there is a sequence
of cells β ∈ D0, D1, . . . , D2k 3 β′ where D2i ∈ S0(M) for all 0 ≤ i ≤ k, and
D2i, D2i+2 ⊂ D2i+1 ∈ S1(M) \S0(M) for all 0 ≤ i < k. We will now construct
a sequence β = γ0, . . . , γm = β′, where γi ∈ D2i for all 0 ≤ i ≤ k and γj ∈ D2k

for all j ≥ k.
For a cell D, denote M(D) :=Mβ where β is such that D = Cβ . Due to

Lemma 3.18, for all D ∈ S0(M), the set of components of M(D) is equal to the
set of components of M(M). Let n be the size of this set of components. Let
0 ≤ i < k be given, and suppose γi ∈ D2i. Then D2i+1 is (n+ 1)-dimensional
and D2i is n-dimensional, so due to Lemma 3.16 there exists a component I of
M(D2i+1) that is not a component of M(M) = M(D2i) = M(D2i+2). Hence
D2i+1 is bounded in both directions eI and −eI , and D2i and D2i+2 are the
cells at the boundaries. Thus since D2i+1 is an integral polyhedron, there exists
ki ∈ Z such that γi+1 := γi + kieI ∈ D2i+2. By convexity of D2i+1, the line
segment [γi, γi+1] then lies completely inside D2i+1.

Now γk and β′ both lie in D2k. Thus by Lemma 3.16, β′−γk =
∑n
i=1 kieJi

where J1, . . . , Jn are the components of M(D2k). So we may put γk+t :=∑t
i=1 kieJi for all 1 ≤ t ≤ n, when γk+t+1 = γk+t + kteJt and γk+n = γm =

β′. �

We call the elements of |S0(M)| ∩ ZE the central points of M.

4. Matroid flock translation

If ν is a valuation of M , then adding a trivial valuation τ of M to ν yields
a valuation due to Lemma 2.15. The effect of adding a trivial valuation τ on
the matroid flock Mν is translation by τ .

Lemma 3.21. Let M be a matroid on E. Let ν be a valuation of M . Let
γ ∈ RE and let τ be the trivial valuation of M defined by B 7→ eB · γ. Then
Mν

α =Mν+τ
α+γ for all α ∈ RE.

Proof. We have

Bνα = arg max
B∈B(M)

{eB ·α−ν(B)} = arg max
B∈B(M)

{eB ·(α+γ)−(ν(B)+eB ·γ)} = Bν+τ
α+γ ,

which is well-defined as ν + τ is a valuation of M due to Lemma 2.15. �

We next characterize when two valuations determine the same matroid
flock.
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Theorem 3.22. Let M be a matroid on E. Let ν, ν′ be valuations of M . Then
the following are equivalent:

(1) Mν =Mν′ ;
(2) ν ∼= ν′.

Proof. We first show the implication (2) ⇒ (1). As ν ∼= ν′, there exists
k ∈ R such that ν′ = ν + k. If d is the rank of M , let γ := k

d1. Then for all
bases B of M we have eB · γ = k, and hence ν′(B)− ν(B) = eB · γ. Thus for
each α ∈ RE we have Bνα = Bνα−γ . By Lemma 3.21, for each α ∈ RE we now

have Mν
α =Mν

α−γ =Mν′

α , proving the implication (2) ⇒ (1).
Conversely, let B,B′ be neighboring bases. That is, B′ = B − i + j for

some i, j ∈ E. Then there exists α ∈ RE such that {B,B′} ⊆ Bνα = Bν′α . By
Lemma 3.14, αi − αj = ν(B)− ν(B′) = ν′(B)− ν′(B′). Hence since the basis
exchange graph of a matroid is connected, for all bases B,B′ we have

ν′(B)− ν(B) = ν′(B′)− ν(B′),

proving the implication (1) ⇒ (2). �

Due to the above theorem, we may define Mν+R :=Mν for any matroid
valuation ν.

5. Matroid flock structure

In this section we will explore structural properties of matroid flocks.

5.1. Deletion and contraction. We define deletion and contraction for
matroid flocks.

Definition 3.23. (Matroid flock deletion) Let M be a matroid flock, and let

ν :
(
E
d

)
→ Z∞ be a matroid valuation such that M =Mν . Let I ⊂ E. Then

we define M\I :=Mν\I .

Definition 3.24. (Matroid flock contraction) Let M be a matroid flock, and

let ν :
(
E
d

)
→ Z∞ be a matroid valuation such that M =Mν . Let I ⊂ E. Then

we define M/I :=Mν/I .

Each matroid flock is of the form Mν for some matroid valuation ν due to
Theorem 3.3. Thus the following is a direct consequence of Lemma 2.19.

Lemma 3.25. Let M be a matroid flock on E, and let I, J ⊂ E be disjoint.
The following commutation properties are satisfied:

(1) M\I\J =M\J \I;
(2) M/I/J =M/J/I;
(3) M/I\J =M\J/I.
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Lemma 3.26. Let ν :
(
E
d

)
→ R∞ be a valuation. Let i ∈ E and α ∈ ZE−i be

given. Then there exists k0 ∈ Z such that for all α′ ∈ ZE such that α′E−i = α
and α′i < k0: (Mν \i)α =Mν

α′ \i.

Proof. If i is a coloop of Mν , then i is a coloop inMν
α′ for each α′. Now

Bν\iα = Bν/iα = arg max
B∈(E−id−1)

{eB · α− ν/i(B)} = arg max
B∈(E−id−1)

{eB+i · α′ − ν(B + i)}.

But this is just the basis set of Mν
α′/i =Mν

α′ \i for any k, since i is in every
basis of Mν .

If, on the other hand, i is not a coloop, then we reason similarly:

Bν\iα = arg max
B∈(E−id )

{eB · α− ν\i(B)} = arg max
B∈(E−id )

{eB · α− ν(B)}.

Now if k = α′i is small enough, then for all B ∈
(
E
d

)
with i ∈ B we have

eB · α′ − ν(B) < supB′∈(Ed)
{eB′ · α′ − ν(B′)}, so that B 6∈ Bνα′ . On the other

hand, if i 6∈ B, then B ∈ Bνα′ if and only if B ∈ Bν\iα . Hence there exists k0 ∈ Z
so that for all k < k0 we have Bν\iα = Bνα′ , and thus (Mν \i)α =Mν

α′ \i. �

We generalise the lemma. Let S be a set and I ⊆ S. We say α′ ∈ ZS is a
(k, I,<)-expansion of α ∈ ZS−I if α′S−I = α and α′i < k for all i ∈ I.

Lemma 3.27. Let ν :
(
E
d

)
→ R∞ be a valuation. Let I ⊂ E and α ∈ ZE−I

be given. Then there exists k such that (Mν \I)α =Mν
α′ \I, for all (k, I,<)-

expansions α′ of α.

Proof. By induction on |I|. The statement is trivial when I = ∅. Now

suppose I is nonempty. Let i ∈ I be given. Then (Mν\I)α =Mν\I
α =Mν\I−i\i

α

by definition. By Lemma 3.26, for some k′′ ∈ Z this equals Mν\I−i
α′′ \i for all

(k′′, i, <)-expansions α′′ of α. Then by the induction hypothesis, there exists
k′ ∈ Z so that this is equal toMν

α′\I−i\i for all (k′, I−i, <)-expansions α′ of α′′.
Choosing k = min{k′, k′′}, we get that for all α′ that are (k, I,<)-expansions
of α, we have that (Mν \I)α equals Mν

α′ \I, as required. �

A similar fact holds for contraction. Let S be a set and I ⊆ S. We say
α′ ∈ ZS is a (k, I,>)-expansion of α ∈ ZS−I if α′S−I = α and α′i > k for all
i ∈ I.

Lemma 3.28. Let ν :
(
E
d

)
→ R∞ be a valuation. Let I ⊂ E and α ∈ ZE−I

be given. Then there exists k such that (Mν/I)α =Mν
α′/I, for all (k, I,>)-

expansions α′ of α.
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We omit the proof as it is analogous to the proof of Lemma 3.27. Alterna-
tively, the lemma follows from Lemma 3.27 using the notion of duality from
the following subsection.

5.2. Duality. We define duality for matroid flocks.

Definition 3.29. (Matroid flock duality) Let M be a matroid flock, and let
ν be a valuation so that M = Mν . Then we define the dual matroid flock
M∗ :=Mν∗ .

Lemma 3.30. LetM be a matroid flock. ThenM∗α = (M−α)∗ for all α ∈ ZE.

Proof. Using Theorem 3.3, let ν be a valuation such that M = Mν .
Rewriting the definition of Bν∗α , we obtain

Bν∗α = arg max
B∈( E

|E|−d)
{eB · α− ν∗(B)}

= arg max
B∈( E

|E|−d)
{(1− eB) · α− ν(B)}

= arg max
B∈( E

|E|−d)
{eB · (−α)− ν(B)}.

This is the set of cobases of Mν
−α =M−α. The statement follows. �

5.3. Lines. In this subsection we investigate matroid flocks along lines
α + ZeI for α ∈ ZE and I ⊆ E. The following lemma is a straightforward
consequence of (MF1’) and (MF2).

Lemma 3.31. Let M be a matroid flock on E. Let α ∈ ZE and I ⊆ E be
given. Suppose S ⊆ I ⊆ S′ and T ⊆ I ⊆ T ′. Then:

(1) rα(S) ≤ rα+eI (S);
(2) rα(S′) ≤ rα+eI (S

′);
(3) rα(T ) ≥ rα+eI (T );
(4) rα(T ′) ≥ rα+eI (T

′);

Lemma 3.32. Let M be a matroid flock on E, let I ⊆ E and let α ∈ ZE.
Then λα(I) = rα(I)− rα−eI (I).

Proof. By (MF1’), we haveMα−eI/I =Mα\I. The rank of the left-hand
matroid is d − rα−eI (I), while the rank of the right-hand matroid is rα(I).
Thus we have λα(I) = rα(I) + rα(I)− d = rα(I)− rα−eI (I), as required. �

When M,M ′ are two matroids, we write M ≥ M ′ when for all I ⊆ E:
rM (I) ≥ rM ′(I). M ′ is then also said to be a weak image of M .
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Lemma 3.33. Let M be a matroid flock on E, let α ∈ ZE and let I ⊆ E. The
following are equivalent.

(1) Mα ≥Mα+eI ;
(2) rα(I) = rα+eI (I);
(3) λα+eI (I) = 0;
(4) Mα+eI =Mα/I ⊕Mα\I.

Proof. (1) ⇒ (2) is trivial using Lemma 3.31(1), and the implication
(2)⇒ (3) is immediate from Lemma 3.32.

For the implication (3)⇒ (4), note that by (MF1’) and (MF2),Mα+eI/I =
Mα+1\I =Mα\I. Similarly, by (MF1’), Mα+eI \I =Mα/I. By (3) we have
Mα+eI/I =Mα+eI \I so that Mα+eI is indeed a direct sum as in (4).

For the implication (4) ⇒ (1), let J ⊆ E be given. Then rα(J ∩ I) =
rα+eI (J ∩ I) and rα(J) = rα(J ∩ I) + rα(J ∩ I) by (4). On the other hand,
by Lemma 3.31, rα(J ∩ I) ≥ rα+eI (J ∩ I). It follows that rα(J) ≥ rα+eI (J),
proving (1). �

Theorem 3.34. Let M be a matroid flock on E, let I ⊆ E, and let α ∈ ZE.
Then the set S = {k ∈ Z : λα+keI (I) > 0} is finite. Moreover, λ(I) =∑

k∈S λα+keI (I).

Proof. By Lemma 3.27 and 3.28 respectively there exist integers k0 and

k1 such that rα+k0eI (I) = rM\I(I) = r(I) and rα+k1eI (I) = rM/I(I) = d− r(I)
and that moreover, the difference rα+keI (I)−rα+(k−1)eI (I) can only be nonzero
when k lies in the interval (k1, k0]. Hence S is finite. Thus

λ(I) = rα+k0eI (I)− rα+k1eI (I)

=

k0∑

k=k1+1

rα+keI (I)− rα+(k−1)eI (I) =
∑

k∈S
λα+keI (I)

using Lemma 3.32 for each k to obtain the last equation. �

Corollary 3.35. Let M be a matroid flock on E. Let I ⊆ E and let α ∈ ZE.
Then Mα+keI =Mα+(k+1)eI for all but finitely many k ∈ Z.

Proof. By Theorem 3.34, the set S = {k ∈ Z : λα+keI (I) > 0} is finite.
Hence the set T of consecutive pairs k, k + 1 such that not both λα+keI and
λα+(k+1)eI are zero is finite. Only these pairs in T haveMα+keI 6=Mα+(k+1)eI

due to Lemma 3.33. �

Remark 3.36. Figure 1 illustrates a line in a matroid flock. A point α lies
within a gray rectangle if λα(I) = 0. Two points α and α+ eI are connected
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≤≤ ≥≥
eI
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Figure 1. A line α+ ZeI in a matroid flock.

by a line segment if Mα =Mα+eI . The relations inferred from Lemma 3.33
between other neighboring points are indicated on the line. By Corollary 3.35,
the matroid will be equal for all points far enough to the right on the line. By
Lemma 3.28, for such a point β we will have Mβ/I = (M/I)βI . Similarly, if
β is far enough to the left, then Mβ\I = (M\I)βI .

5.4. Direct sums. We define direct sums of matroid flocks.

Definition 3.37. Let M,M′ be two matroid flocks on disjoint sets E and E′

respectively. The direct sum of M and M′ is the map M⊕M′ : ZE∪E′ →
ME∪E′ given by α 7→ MαE ⊕MαE′ .

Theorem 3.38. Let M,M′ be two matroid flocks on disjoint sets E and E′

respectively. Then M⊕M′ is a matroid flock.

Proof. Let α ∈ ZE∪E′ be given, and let i ∈ E ∪ E′. Without loss of
generality we may assume i ∈ E. By (MF1) for M, MαE/i = MαE+ei \ i.
Since λM⊕M

′

α (E) = 0, we get

(M⊕M′)α/i =MαE/i⊕M′α′E =MαE+ei \i⊕M′α′E = (M⊕M′)α+ei \i.
This proves (MF1) for M⊕M′.

By (MF2) for M and M′, we have

(M⊕M′)α =MαE ⊕MαE′ =M1+αE ⊕M1+αE′ = (M⊕M′)1+α,

proving (MF2). Hence M⊕M′ is a matroid flock. �

Theorem 3.39. Let M be a matroid flock on E, and let I ⊆ E. Let M be the
matroid of M. If λM (I) = 0, then M =M\I ⊕M\I.

Proof. Let α ∈ ZE be given. Then λα(I) = 0. Hence for each J ⊆ I,

rMα (J) = r
M\I
αI (J). Similarly for J ′ ⊆ I, rMα (J ′) = r

M\I
αI (J ′). Thus Mα =

(M\I)αI ⊕ (M\I)αI , as required. �

5.5. The �-operator. Let M be a matroid on E and I ⊆ E. Then
define the left-associative operator � by M � I := M/I ⊕M\I. The following
are some basic properties of this operator.

Lemma 3.40. Let M be a matroid on E, and let I ⊆ E. Then M � I � I =
M � I.



5. MATROID FLOCK STRUCTURE 43

Lemma 3.41. Let M be a matroid on E, and let J ⊆ I ⊆ E be given. Then
M � I � J = M � J � I.

Proof.

M � I � J = (M/I ⊕M \I)� J

= M/I ∪ J ⊕M \I/J ⊕M/I\J ⊕M \I ∪ J

Note that I ∪ J = E, so that the factor M/I\J vanishes. Moreover, since J
and I are disjoint, we have M \I/J = M/J \I, and thus

. . . = M/J ∪ I ⊕M/J \I ⊕M \J ∪ I
= M � J � I.

�

Lemma 3.42. Let M be a matroid on E, and let I, J ⊆ E be disjoint. Suppose
the connectivity of I in M � I ∪ J is zero. Then M � I � J = M � I ∪ J .

Proof. Since I and I ∪ J are disjoint, we have M/I\J = M/I\I ∪ J =
M \I ∪ J/I. Now as the connectivity of I is zero in M � I ∪ J , and hence in
M \I ∪ J , by Lemma 2.1 we get M \I ∪ J/I = M \I ∪ J\I = M \J . Also note
that M \I/J = M \I, since J ⊆ I.

Thus we compute

M � I � J = M/I ∪ J ⊕M \I/J ⊕M/I\J
= M/I ∪ J ⊕M \I ⊕M \J
= M/I ∪ J ⊕M \I ∪ J
= M � I ∪ J,

where in the third equality we use that the connectivity of I is zero in M � I ∪
J . �

For α ∈ ZE , we define the left-associative � operator inductively as follows.

M � α :=

{
M if α = k1
M � (α− eI)� I otherwise, where I = arg maxi∈E{αi}

We may derive a direct formula for M � α.

Lemma 3.43. Let M be a matroid on E, and let α ∈ ZE. Write α =∑n
i=1 cieIi , where ∅ = I0 ( I1 ( . . . ( In = E and ci > 0 for i < n. Then

M � α =
⊕n

i=1M \Ii/Ii−1.
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Proof. By definition we have

M � α = M(�In−1)cn−1 � . . . (�I1)c1 .

By Lemma 3.40, we may simplify this expression to

M � In−1 � . . .� I1.

Let 1 ≤ i ≤ n be given and define I := Ii \ Ii−1. Then I ⊆ Ij for all j ≥ i and

I ⊆ Il for all l < i. Thus, restricting M � α to I, we get

M \In−1\. . .\Ii/Ii−1/ . . . /I1.

This is exactly M \Ii/Ii−1, as required.
To see that M�α is a direct sum of these matroids, note that λM�α(Ij) = 0

for all j, and hence also λM�α(Ii \ Ii−1) = 0. �

Lemma 3.44. Let M be a matroid. Then M : α 7→M � α is a matroid flock.

Proof. Denote by ν the zero valuation of M . We will show that Mν
α =

M � α. We have Bνα = arg maxB∈B(M){eB · α}. Hence if α =
∑n
i=1 cieIi with

∅ = I0 ( I1 ( . . . ( In = E and ci > 0 for i < n, then B ∈ Bνα if and only if
for all i ≤ n, |B ∩ (Ii \ Ii−1)| = r(Ii) − r(Ii−1). Indeed, when the index i is
smaller, αIi\Ii−1

is larger. But then Mν
α|Ii\Ii−1

= M \Ii/Ii−1 and by Lemma

2.2, λM
ν
α(Ii \ Ii−1) = 0. So in total, Mν

α =
⊕n

i=1M \Ii/Ii−1, which equals
M � α due to Lemma 3.43. �

Lemma 3.45. Let M be a matroid flock. Suppose β ∈ Cα. Write α − β =
c1 +

∑n
i=1 eIi , where I1 ⊆ . . . ⊆ In ( E and c ∈ ZE. Then

Mβ ≥Mβ+eI1
≥Mβ+eI1+I2

≥ . . . ≥Mβ+
∑n
i=1 eIi

=Mα.

Proof. By (MF2), we haveMβ =Mβ+s1 so that we may assume without

loss of generality that c = 0. Let γ(t) := β +
∑t
i=1 eIi . As β ∈ Cα, we have

Mβ ≥Mα. Then by Lemma 3.7 we have for each t

rα(It) ≥ rγ(t−1)(It) ≥ rγ(t)(It) ≥ rβ(It).

Since also rβ(It) ≥ rα(It) by choice of β, we have equality throughout, so
that rγ(t)(It) = rγ(t−1)(It) for each t, and by Lemma 3.33 that implies that
Mγ(t−1) ≥Mγ(t), as required. �

Lemma 3.46. Let M be a matroid flock. Let α ∈ ZE and β ∈ Cα. Then
Mα =Mβ � (α− β).



5. MATROID FLOCK STRUCTURE 45

Proof. Write α− β as in Lemma 3.45. By (MF2) we may assume c = 0.

Let γ(t) := β +
∑t
i=1 eIi . For each t < n, Mγ(t) ≥ Mγ(t+1) due to Lemma

3.45. By Lemma 3.33(4), Mγ(t+1) = Mγ(t) � It+1. Hence by induction
on t, Mα = Mγ(n) = Mβ � I1 � . . . � In. By Lemma 3.41 this equals
Mβ � In � . . .� I1 =Mβ � (α− β), as required. �

5.6. Circuit-hyperplanes. We state some results about matroid flocks
related to circuit-hyperplanes.

Lemma 3.47. Let M be a matroid, and let H be a circuit-hyperplane of M .
Let ν be a valuation of M . Then there exists a valuation νH of MH such that

(1) if α ∈ |S0(Mν)|, then MνH

α =Mν
α;

(2) if H 6∈ BνHα , then MνH

α =Mν
α.

Proof. Let C be the set of central points of Mν . Pick

k > sup{(eH − eB) · α+ ν(B) : α ∈ C,B ∈ B}.
Note that this supremum is finite, since (eH − eB) ·1 = 0 for each B, and there
are only finitely many classes of central points. Put νH = νHk as in Lemma
2.21. Then νH is a valuation of MH . Next, let α be a central point of Mν .
Then

eH · α− νH(H) < eH · α− ((eH − eB) · α+ νH(B)) = eB · α− νH(B)

for all B ∈ B. Thus H 6∈ BνHα and BνHα = Bνα, proving property (1).

For property (2), note that for any α such that H 6∈ BνHα , we have

BνHα = arg max
B∈BνH

{eB · α− νH(B)} = arg max
B∈BνH \H

{eB · α− νH(B)}.

Since νH(B) = ν(B) for all B 6= H, the latter equals Bνα, as required. �

Lemma 3.48. Let M be a matroid flock. Let H be a circuit-hyperplane of
M(M). Then there is a unique 2-dimensional cell C ∈ S2(M) such that for
any α ∈ C, H is a circuit-hyperplane of Mα.

Proof. Let M = M(M). Since H is a circuit, M \H is a cycle matroid.
Thus let α ∈ ZH ∩ |S1(M\H)|. Note that α is unique up to adding multiples
of eH , since any matroid N < M \H is disconnected. Then (M\H)α = M \H.
Now there exists k ∈ Z such that

(M\H)α =Mβ\H
for all (k,H,<)-expansions β of α by Lemma 3.27.
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Similarly, since H is a hyperplane, M/H is a uniform matroid of rank 1.

Thus let α′ ∈ ZH ∩ |S1(M/H)|. Note that α′ is unique up to adding multiples
of eH , since any matroid N < M/H is disconnected. Then (M/H)α′ = M/H.
Again there exists k′ ∈ Z such that

(M/H)α′ =Mβ′/H

for all (k′, H,>)-expansions β′ of α′ by Lemma 3.28.
Let α̂ ∈ ZE be such that α̂H = α and α̂H = 0 and let α̂′ ∈ ZE be such

that α̂′H = 0 and α̂′
H

= α′. Now pick

l > max{k −min
i∈H

αi, k
′ + max

i∈H
α′i}

and let γ := α̂+ α̂′+ leH . Then γ is a (k′, H,>)-expansion of α′. HenceMγ/H
is a uniform matroid of rank 1, so that H is a hyperplane in Mγ . Similarly,

γ − l1 = α̂+ α̂′ − leH is a (k,H,<)-expansion of α. ThusMγ−l1\H is a cycle
matroid, so that H is a circuit in Mγ−l1. By (MF2), Mγ−l1 =Mγ , and thus
H is a circuit-hyperplane of Mγ .

In particular, Mγ has at most 2 components, so that dimCγ ≤ 2 due to
Lemma 3.16. Note that γ + ceH ∈ Cγ for all c > 0 since H is not a basis of
M(M). So Cγ+eH ∈ S2(M) \ S1(M), and hence Cγ+eH is as required.

By uniqueness of α and α′, only points in ZE which are, up to addition
of multiples of eH and eH , both a (k,H,<)-expansion of α and a (k′, H,>)-
expansion of α′ can have H as a circuit-hyperplane. Hence Cγ+eH is the unique
maximal cell satisfying the requirements of the lemma. �

If M(M) is connected, then the unique 2-dimensional cell from the above
lemma contains a unique cell C ′ ∈ S1(M).



CHAPTER 4

Linear flocks

Throughout this chapter, let E be a finite set, let K be a field equipped
with an automorphism f and let d ≤ |E| be a positive integer. Whenever
important, we denote this field by (K, f). This chapter is largely based on [6].

1. Introduction

Define an action of ZE on subsets X of KE by

αX = {(f−αi(xi))i∈E : x ∈ X}.
The automorphism f ofK is applied−αi times to the i’th entry of all elements of
X. Note that if V ∈ Grd(K

E), then 1V ∈ Grd(K
E). However, not necessarily

αV ∈ Grd(K
E) for all α ∈ ZE .

Definition 4.1. A linear flock over (K, f) is a map V : ZE → Grd(K
E),

mapping α to Vα, satisfying the following axioms:

(LF1) Vα/i = Vα+ei \i for all α ∈ ZE and i ∈ E; and
(LF2) Vα+1 = 1Vα for all α ∈ ZE.

When f is the Frobenius automorphism of K, then we call a linear flock
over (K, f) a Frobenius flock. Frobenius flocks play a special role as algebraic
matroid representations give rise to such flocks. In Chapter 5 we will elaborate
on this relation.

This chapter is concerned with understanding many features of linear flocks.
The map M(V) : α 7→ M(Vα) is a matroid flock. One main goal we will be
working towards is the following.

Theorem 4.2. Let V,V ′ be linear flocks.Then V = V ′ if and only if:

(1) M(V) =M(V ′);
(2) for each C ∈ S0(M(V)) there exists αC ∈ ZE ∩ C such that VαC =
V ′αC .

Not each combination of matroid flock and vector spaces as in the above
theorem yields a linear flock. Our second main goal is to characterize exactly
when these data yield a linear flock.

47
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Using the powerful linear flock characterisation theorem (Theorem 4.30) we
then proceed by investigating the class of linear-flock representable matroids.
If M =M(V), then we say V is a linear-flock representation of both M and
M(M). We show that the class of linear-flock representable matroids is closed
under circuit-hyperplane relaxation. We use this fact to conclude that the
Vámos matroid, among others, is linear-flock representable. Moreover, we are
able to bound the number of linear-flock representable matroids from below.

Theorem 4.3. Let E be a set with |E| = 2n. The number of pairwise non-
isomorphic matroids on E that are linear-flock representable over some field is
at least

22n−1

(2n)!
.

2. Linear flocks and matroid flocks

Linear flocks and matroid flocks are similar objects. The following lemma
shows that each linear flock has an underlying matroid flock.

Lemma 4.4. Let V be a linear flock of rank d on E over (K, f). Then
M : ZE →ME given by α 7→M(Vα) is a matroid flock.

Proof. As f is an automorphism of K, a set of vectors v1, . . . , vk ∈ Kd

is linearly dependent if and only if f(v1), . . . , f(vk) are linearly dependent. By
(LF2), for all α ∈ ZE , Mα and Mα+1 are thus equal, proving (MF2) for M.

Next, let V ∈ Grd(K
E), and let M = M(V ). For any i ∈ E, M(V/i) =

M/i and M(V \ i) = M \ i. So let α ∈ ZE and i ∈ E be given. By (LF1),
Mα/i =Mα+ei \i, proving (MF1) for M.

It follows that M is a matroid flock. �

Definition 4.5. Let M be a matroid flock. We call a linear flock V : ZE →
Grd(K

E) a linear-flock representation of M if M(Vα) =Mα for all α ∈ ZE.
Conversely, if V is a linear flock, then M(V) denotes the matroid flock α 7→
M(Vα).

3. Linear flock structure

In this section, we investigate the structure of linear flocks. We consider
lines, deletion, contraction, duality, direct sums and the boxdot operator.
Many of the results for linear flocks are very similar to their matroid flock
counterparts.
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3.1. Lines. The following generalisation of (LF1) holds in analogy with
(MF1’):

(LF1’) Vα/I = Vα+eI \I for all α ∈ ZE and I ⊆ E.

Using (LF1’) we see that on the line α + ZeI , the following chain of
inclusions hold:

· · · ⊆ Vα/I = Vα+eI \I ⊆ Vα+eI/I ⊆ Vα+2eI/I ⊆ · · · .
The same holds when we replace I by I, and thus after applying (LF2) we
obtain

· · · ⊇ Vα/I ⊇ (−1)Vα+eI/I ⊇ (−21)Vα+2eI/I ⊇ · · · .
Lemma 4.6. Let V be a linear flock and let M = M(V). Let α ∈ ZE and
I ⊆ E. Then Mα ≥Mα+eI if and only if Vα+eI = Vα/I ⊕ eIVα\I.

Proof. Note that due to Lemma 3.33, Mα ≥ Mα+eI is equivalent to
Mα+eI = Mα/I ⊕Mα\I. So suppose Vα+eI = Vα/I ⊕ eIVα\I. Then taking
the matroid on both sides, we obtain Mα+eI = Mα/I ⊕Mα\I, as required.

Conversely, by (LF1’), Vα/I = Vα+eI \I and Vα+eI/I = Vα+1\I. Due to
(LF2), the latter equals eIVα\I. Due to the assumptionMα+eI = Mα/I⊕Mα\I,
Vα+eI now splits in the same way as Vα/I ⊕ eIVα\I, as required. �

Lemma 4.7. Let V be a linear flock. Let k > 0 be given and suppose
λα+leI (I) = 0 for all 0 < l < k. Then

(1) Vα/I = Vα+keI \I; and
(2) Vα\I = −k1Vα+keI/I.

Proof. By repeated application of (LF1’) and Lemma 2.7, we have

Vα/I = Vα+eI \I = Vα+eI/I = . . . = Vα+(k−1)eI/I = Vα+keI \I.
And similarly we have

Vα\I = Vα−keI/I = −k1Vα+keI/I,

using (LF2). �

3.2. Deletion and contraction. Before we can define deletion and con-
traction for linear flocks, we need the following technical lemmas.

Lemma 4.8. Let V be a linear flock on E, I ⊂ E and α ∈ ZI . Then there
exist k ∈ Z and V Iα so that V Iα = Vα′ \I for all (k, I,<)-expansions α′ of α.

Proof. It suffices to show that Vα′ \I = Vα′+ei \I for all α′ and i ∈ I
so that both α′ and α′ + ei are (k, I,<)-expansions of α, since each pair of
(k, I,<)-expansions of α is connected by a path of (k, I,<)-expansions in which
each pair of consecutive points differs by ei for some i ∈ I.
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Let M =M(V). By Lemma 3.27, there exists k ∈ Z such that (M\I)α =
Mα′ \I for all (k, I,<)-expansions α′ of α.

Let α′ be a (k − 1, I, <)-expansion of α. Then both α′ and α′ + eI are
(k, I,<)-expansions of α. Thus we know Mα′ \I = (M\I)α = Mα′+eI \I,
implying rMα′ (I) = rMα′+eI (I) = rMα′−eI (I). Lemma 3.33 then yields λMα′ (I) = 0.

So let i ∈ I be given, and suppose α′ and α′ + ei are both (k, I,<)-
expansions of α. Then λMα′ (I) = λMα′+ei(I) = 0, and we compute

Vα′ \I = Vα′/i\I − i = Vα′+ei \i\I − i = Vα′+ei \I,

using Lemma 2.7 in the first equation and (LF1) in the middle equation. �

A similar statement holds for contraction. We omit the proof as it is
analogous to the proof of the previous lemma.

Lemma 4.9. Let V be a linear flock on E, I ⊂ E and α ∈ ZI . Then there
exist k ∈ Z and W I

α so that W I
α = Vα′/I for all (k, I,>)-expansions α′ of α.

We are now ready to define deletion and contraction for linear flocks.

Definition 4.10. (linear flock deletion) Let V be a linear flock on E, and let

I ⊂ E. For α ∈ ZI , let V Iα be as in Lemma 4.8. Then we set (V\I)α := V Iα .

Theorem 4.11. Let V be a linear flock on E, and let I ⊂ E. Then V\I is a
linear flock on I.

Proof. Let α ∈ ZI and j ∈ I be given. Using Lemma 4.8, let k be so
that (V\I)α = Vα′\I and (V\I)α+ej = Vα′+ej \I for all (k, I,<)-expansions α′

of α. Then (V\I)α/j = Vα′/j\I = Vα′+ej \j\I = (V\I)α+ej \j, proving (LF1)
for V\I.

For (LF2), compute 1I(V\I)α = 1EVα′\I = Vα′+1E\I = (V\I)α+1I , where
the exponent of 1 indicates its dimensions. �

Definition 4.12. (linear flock contraction) Let V be a linear flock on E, and let

I ⊂ E. For α ∈ ZI , let W I
α be as in Lemma 4.9. Then we set (V/I)α := W I

α.

Theorem 4.13. Let V be a linear flock on E, and let I ⊂ E. Then V/I is a
linear flock on I.

Lemma 4.14. Let V be a linear flock on E, and let I, J ⊂ E be disjoint. The
following commutation properties are satisfied:

(1) V\I\J = V\J \I;
(2) V/I/J = V/J/I;
(3) V/I\J = V\J/I.
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3.3. Duality. Just like for matroid flocks, there is a notion of duality for
linear flocks.

Definition 4.15. (linear flock duality) Let V be a linear flock. The dual
V∗ : ZE → Grd−|E|KE is defined by V∗α = V⊥−α.

Theorem 4.16. Let V be a linear flock on E over (K, f) of dimension d. Then
V∗ is a linear flock on E over (K, f−1) of dimension |E| − d.

Proof. For each α ∈ ZE , V⊥−α is an (|E| − d)-dimensional vector space.

To see that (LF1) holds for V∗, we calculate for given α ∈ ZE and i ∈ E:

V∗α+ei/i = V⊥−α−ei/i = (V−α−ei \i)⊥ = (V−α/i)⊥ = V⊥−α\i = V∗α\i.

To see (LF2) for V∗, we evaluate V∗α+1 = V⊥−α−1 = f [V−α]⊥ = f−1[V⊥−α] =
1V∗α. �

3.4. Direct sums. The definition of direct sums for linear flocks is anal-
ogous to the matroid flock case.

Definition 4.17. Let V be a linear flocks on E of rank d, and let V ′ be a linear
flock on E′ of rank d′, where E and E′ are disjoint. The direct sum of V and
V ′ is the map V ⊕ V ′ : ZE∪E′ → Grd+d′(K

E∪E′) given by α 7→ VαE ⊕ VαE′ .
Theorem 4.18. Let V,V ′ be two linear flocks on disjoint sets E and E′ re-
spectively. Then V ⊕ V ′ is a linear flock.

Theorem 4.19. Let V be a linear flock on E, and let I ⊆ E. Let M = M(V).
If λM (I) = 0, then V = V\I ⊕ V\I.

The proofs are analogous to the matroid flock case, and therefore omitted.

3.5. The �-operator. Let V ∈ Grd(K
E) and I ⊆ E. Then we may

define � for vector spaces similarly to the matroid version as follows. Define
the left-associative operator � by V � I := V/I ⊕ eIV \I. The following basic
properties are similar to their matroid versions. The proofs are analogous, and
therefore omitted.

Lemma 4.20. Let V ∈ Grd(K
E), and let I ⊆ E. Then V � I � I = eIV � I.

Lemma 4.21. Let V ∈ Grd(K
E), and let J ⊆ I ⊆ E be given. Then V � I �

J = V � J � I.

Lemma 4.22. Let V ∈ Grd(K
E), and let I, J ⊆ E be disjoint. Suppose the

connectivity of I in M(V )� I ∪ J is zero. Then V � I � J = V � I ∪ J .
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We again extend the �-operator to take its second argument in ZE . Let
α ∈ ZE .

V � α :=

{
k1V if α = k1
V � (α− eI)� I otherwise, where I = arg maxi∈E{αi}

We may give a direct formula for V � α.

Lemma 4.23. Let V ∈ Grd(K
E), and let α ∈ ZE. Write α =

∑n
i=1 cieIi ,

where ∅ = I0 ( I1 ( . . . ( In = E and ci > 0 for i < n. Then V � α =
α
⊕n

i=1 V \Ii/Ii−1.

Lemma 4.24. Let V ∈ Grd(K
E), α ∈ ZE and i ∈ E. Then

(1) V � α/i = V � (α+ ei)\i;
(2) 1V � α = V � (α+ 1).

Proof. Write α = c1 +
∑n
i=0 eIi , where ∅ = I0 ⊆ I1 ⊆ . . . ⊆ In ( E and

c ∈ ZE . Let j be the largest index such that i 6∈ Ij . By Lemma 4.21,

V � (α+ ei) = V � I0 � . . .� (Ij + i)� . . .� In = V � I0 � . . .� In � (Ij + i).

If λM(V )�(α+ei)(i) = 0, then by Lemma 4.22,

V � (α+ ei) = V � I0 � . . .� In � Ij � i,

which equals V � α� i by Lemma 4.21. Then

V � (α+ ei)\i = V � (α+ ei)/i = (V � α� i)/i = V � α/i,

as required.
Similarly, if λM(V )�α(i) = 0, then

V � α = −1V � (α+ 1) = −1V � (α+ ei)� i.

Thus

V � α/i = V � α\i = −ei(V � (α+ ei)� i)\i = V � (α+ ei)\i,
as required.

The case when both λM(V )�(α+ei)(i) > 0 and λM(V )�α(i) > 0 remains.
But M : α 7→M(V � α) is a matroid flock by Lemma 3.44. Thus by Theorem
3.34

λMα(i) + λMα+ei (i) ≤ λM(V )(i) ≤ 1,

contradicting the assumption that both connectivities are positive. �

Theorem 4.25. Let V ∈ Grd(K
E). Then the map V : α 7→ V � α is a linear

flock.
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Proof. Let α ∈ ZE and i ∈ E be given. By Lemma 4.24, we have
Vα/i = Vα+ei , proving (LF1), and moreover, 1Vα = Vα+1, proving (LF2).
Finally, dimVα = dimV � α = dimV , which is in particular independent of
α. �

4. Flock characterisation

In this section we prove Theorem 4.2 and the linear flock characterization
theorem.

Lemma 4.26. Let V be a linear flock. Let α ∈ ZE and β ∈ Cα. Then
Vα = Vβ � (α− β)

The proof is similar to the proof of Lemma 3.46.

Proof. Write α − β as in Lemma 3.45. We may assume c = 0, since
by (LF2) Vα−c1 = −c1Vα and by the definition of �, Vβ � (α − β − c1) =
−c1Vβ � (α− β).

Let γ(t) := β+
∑t
i=1 eIi . For each t < n,Mγ(t) ≥Mγ(t+1) due to Lemma

3.45. By Lemma 4.6, Vγ(t+1) = Vγ(t) � It+1. Hence by induction on t,

Vα = Vγ(n) = Vβ � I1 � . . .� In = Vβ � In � . . .� I1 = Vβ � (α− β),

as required. �

The following technical lemma is essential for the linear flock characteriza-
tion theorem.

Lemma 4.27. Let V, V ′ ∈ Grd(K
E), α ∈ ZE, k ∈ Z and I ⊆ E, such that

(1) V ′/I = V \I;
(2) V ′\I = keIV/I;
(3) M(V )� α = M(V ′)� (α+ keI);
(4) λM(V )�α(I) = 0.

Then V � α = V ′ � (α+ keI).

Proof. Denote M := M(V )� α = M(V ′)� (α+ keI). Write

α =

n∑

i=1

cieSi where ∅ = S0 ( S1 ( . . . ( Sn = E

and ci > 0 for i < n. Similarly, write

α+ keI =

m∑

i=1

dieTi where ∅ = T0 ( T1 ( . . . ( Tm = E
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and di > 0 for i < m. Then by Lemma 3.43,

M =

n⊕

i=1

M(V )\Si/Si−1 =

m⊕

i=1

M(V ′)\Ti/Ti−1.

Similarly by Lemma 4.23,

V � α = α

n⊕

i=1

V \Si/Si−1

and

V ′ � (α+ keI) = (α+ keI)

m⊕

i=1

V ′\Ti/Ti−1.

Let J be a component of M . Then J ⊆ Sa \ Sa−1 =: X for some a, and
J ⊆ Tb \Tb−1 =: Y for some b. Since by assumption λM (I) = 0, we have either
J ⊆ I or J ⊆ I. Suppose J ⊆ I.

Write WJ := V � α\J and W ′J := V ′ � (α+ keI)\J . We will show that
WJ = W ′J . Since M(WJ) = M(W ′J), we know dimWJ = dimW ′J = rM (J).
So it suffices to show WJ ⊆W ′J .

Let w ∈WJ × {0}J ⊆ V � α be given. Then since

WJ = αJV \Sa/Sa−1/(X \ J),

there exists v ∈ V such that αJvJ = wJ and supp(v) ⊆ J ∪ Sa.
Now by assumption (1) there exists v′ ∈ V ′ such that v′

I
= vI and

supp(v′) ⊆ I. Then supp(v′) = supp(v) \ I = J ∪ Sa \ I.
We claim J ∪ Sa \ I ⊆ J ∪ Tb. As J is disjoint from both Sa and Tb, we

may show instead that Sa \ I ⊆ Tb. Let l be such that αJ = leJ . Let j ∈ Sa \ I,
when necessarily αj < l. Since J ⊆ I, (α + keI)J = leJ and since j ∈ I,

(α+ keI)j = αj . Hence (α+ keI)j < l and thus j ∈ Tb, proving the claim. So

we may conclude that supp(v′) ⊆ J ∪ Tb.
Thus since

W ′J = αJV
′\Tb/Tb−1/(Y \ J),

there exists w′ ∈W ′J × {0}J ⊆ V ′ � (α+ keI) such that w′J = αJv
′
J . But then

we have wJ = αJvJ = αJv
′
J = w′J ∈W ′J , as required.

Note that assumption (2) was not used in the above. Finally we claim

that the case J ⊆ I follows from the former case by setting Ṽ ′ = k1V , Ṽ = V ′,
α̃ = α+ keI and Ĩ = I. By assumption (2), we get Ṽ /Ĩ = Ṽ ′\Ĩ. Moreover by
(3),

M(Ṽ )� α̃ = M(V ′)� (α+ keI) = M(V )� α = M(Ṽ )� (α̃+ keI).
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Similarly λM(Ṽ )�α̃(Ĩ) = 0 by (4). Finally

Ṽ � α̃ = V ′ � (α+ keI)

and

V � α = (−k1Ṽ ′)� (α̃+ keĨ − k1) = Ṽ ′ � (α̃+ keĨ),

proving the claim. �

Next we define skeleton representations of a matroid flock. Recall that
Sk(M) = Sk−n(M) is the k-skeleton of a matroid flock, where n is the
dimension of the lineality space ofM. Due to Lemma 3.16 n is also the number
of components of M(M).

Definition 4.28. LetM be a matroid flock. Then we call a map V : |S0(M)|∩
ZE → Grd(K

E) a skeleton representation of M if and only if

(1) for all α ∈ |S0(M)| ∩ ZE, M(Vα) =Mα;
(2) for all α ∈ |S0(M)| ∩ ZE and all components J of M(M) we have

eJVα = Vα+eJ ;

(3) for all α ∈ ZE, k ∈ Z and I ⊆ E such that α, α+ keI ∈ |S0(M)| ∩C
for some C ∈ S1(M), we have

Vα/I = Vα+keI \I.
Skeleton representations are intuitive in the sense that any linear flock

restricted to its 0-skeleton is a skeleton representation of its underlying matroid
flock.

Lemma 4.29. Let V be a linear flock. Let M =M(V). Then V||S0(M)|∩ZE is
a skeleton representation of M.

Proof. We verify the points of Definition 4.28. Property (1) holds by
definition of M.

By Theorem 4.19, V is a direct sum of linear flocks on its components.
Property (2) holds due to (LF2) on each component.

For property (3), consider α, α+ keI ∈ |S0(M)| ∩ C for some C ∈ S1(M).
Then due to Lemma 3.16, λ(I) = 0 in the interior of C, so in particular
λα+leI (I) = 0 for all 0 < l < k. So by Lemma 4.7, property (3) holds. �

We are now ready to prove the linear flock characterization theorem, which
is the following.

Theorem 4.30. Let M be a matroid flock. Then any skeleton representation
of M extends uniquely to a linear-flock representation of M.
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Proof. Suppose V ′ is a skeleton representation of M. Now for each
α ∈ ZE \ |S0(M)| we want to choose Vα ∈ Grd(K

E) in such a way that
M(Vα) =Mα and that V : ZE → Grd(K

E) is a linear flock. For α ∈ |S0(M)|,
pick Vα := V ′α. We will first show that for each β ∈ Cα∩|S0(M)|, V ′β�(α−β) is

identical. This will allow us to put Vα := V ′β�(α−β) for any α ∈ ZE \|S0(M)|
and any choice of β ∈ Cα ∩ |S0(M)|. Then finally we will verify that V : ZE →
Grd(K

E) is a linear flock.
Let α ∈ ZE be given. We now show that for each β ∈ Cα ∩ |S0(M)|,

V ′β � (α− β) is identical. Consider β, β′ ∈ Cα ∩ |S0(M)|. As Cα ∩ |S1(M)| is

connected in the sense of Lemma 3.20, we may assume β′ = β − keI for some
k ∈ Z and I ⊆ E.

We now want to apply Lemma 4.27. As V ′ is a skeleton representation of
M, we have V ′β′/I = V ′β\I and V ′β′\I = keIV ′β/I. As M is a matroid flock, by
Lemma 3.46 we have

Mα =Mβ � (α− β) =Mβ′ � (α− β′) =Mβ′ � (α− β + keI).

Finally since eI is parallel to Cα, by Lemma 3.16 we have λMβ�(α−β)(I) = 0.
Thus by Lemma 4.27 we have

V ′β � (α− β) = V ′β′ � (α− β′).
So we may put Vα := V ′β�(α−β) for any β ∈ Cα∩|S0(M)|. ThenM(Vα) =Mα

due to Lemma 3.46.
Next, we show V : ZE → Grd(K

E) is a linear flock. Let α ∈ ZE and
i ∈ E be given. Then either Cα ⊆ Cα+ei or Cα+ei ⊆ Cα. So there exists
β ∈ |S0(M)| ∩ (Cα ∪ Cα+ei), for which Vα = Vβ � (α − β) and Vα+ei =
Vβ � (α+ ei − β). By Lemma 4.24, we obtain Vα/i = Vα+ei \i, proving (LF1).
Furthermore, α+ 1 ∈ Cα, so that (LF2) holds similarly by Lemma 4.24. Hence
indeed, V is a linear flock.

To see that the extension is unique, we note that due to Lemma 4.26, none
of the Vα could have been chosen differently. �

If V is a skeleton representation of a matroid flockM, then V is determined
by a finite number of vector spaces, as will be clear from the following lemma.

Lemma 4.31. LetM be a matroid flock, and let V be a skeleton representation
ofM. Let a map ζ : S0(M)→ ZE be given with the property that ζ(p) ∈ p∩ZE.
Let the map W : S0(M) → Grd(K

E) be given by p 7→ Vζ(p). Then for each
central point α of M, Vα = (α− ζ(Cα))W (Cα).

Proof. Since α and ζ(Cα) lie in the same cell of S0(M), their difference
α− ζ(Cα) =

∑n
i=1 kieJi , where J1, . . . , Jn are the components of M(M) and
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ki ∈ Z for all i. By repeated application of (2) of definition 4.28, we get

Vα = Vζ(Cα)+(α−ζ(Cα)) = (α− ζ(Cα))Vζ(Cα) = (α− ζ(Cα))W (Cα).

�

Thus the map W together with a description of the polyhedral complex of
M completely determine the central points of V . Since the polyhedral complex
ofM is completely determined by the valuation ν such thatMν =M(V), and
since W determines a skeleton representation of M due to Lemma 4.31, which
in turn uniquely determines V due to Theorem 4.30, we obtain the following
result.
Theorem 4.2. Let V,V ′ be linear flocks.Then V = V ′ if and only if:

(1) M(V) =M(V ′);
(2) for each C ∈ S0(M(V)) there exists αC ∈ ZE ∩ C such that VαC =
V ′αC .

We may conclude that a matroid valuation ν such that Mν =M(V) and
a vector space for each n-dimensional cell of M(V) completely determine V.
In particular, if the vector spaces can be finitely described, then so can V.

4.1. The skeleton graph. To the aid of the next section, we introduce
the skeleton graph of a matroid flock. Let M be a matroid flock. The set

P (M) := {C/Λ(M) | C ∈ S0(M)}
is then a set of points in RE/Λ(M). Similarly,

L(M) := {C/Λ(M) | C ∈ S1(M) \ S0(M)}
is a set of line segments in RE/Λ(M).

Definition 4.32. Let M be a matroid flock. Then

GM := (P (M), L(M), ends)

is the skeleton graph of M, where the map

ends : L(M)→ 2P (M), l 7→ {p ∈ P (M) | p ⊂ l}
assigns endpoints to the edges.

Remark 4.33. If M = M1 ⊕ . . . ⊕Mn, then GM is the Cartesian product
of the graphs GM1 , . . . , GMn . Thus skeleton graphs of disconnected matroid
flocks can be reconstructed from the skeleton graphs of their components. It is
often more practical to work with skeleton graphs of connected matroid flocks.
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5. The class of linear-flock representable matroids

Since each linear flock corresponds to a matroid, we may regard a linear
flock as a representation of this matroid. This section is concerned with the
question which matroids are linear-flock representable over a fixed field (K, f).
That is, for a matroid M on E of rank d we wonder if there exists a map
V : ZE → Grd(K

E) with M(V) = M . Each valuated matroid corresponds to a
matroid flock by Theorem 3.3, but not necessarily to a linear flock for any K.

Figure 1. The Fano matroid.

Example 4.34. Not every matroid is linear-flock representable. Let M be the
Fano matroid, depicted in Figure 1, and let K be a field of characteristic > 2.
It can be shown that any valuation of M is trivial, and hence in any matroid
flock M of M , there exists α such that Mα = M . However, since M is only
linear in characteristic 2, there cannot be a linear flock V such that M(V) = M ,
as Vα would then be a linear representation of M over K.

The Fano matroid is in the class of Lazarson matroids, which will be
discussed in Chapter 6 Section 4. p.

Lemma 4.35. The class of linear-flock representable matroids over (K, f) is
minor-closed.

Proof. Suppose V is a linear flock, and let M = M(V). It suffices to show
that, for each i, there exist linear flocks V ′ and V ′′ such that M(V ′) = M/i
and M(V ′′) = M \i. By Theorems 4.13 and 4.11 respectively, V ′ = V/i and
V ′′ = V\i have these properties. �

Lemma 4.36. If f = f−1, then the class of linear-flock representable matroids
over (K, f) is closed under duality.
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Proof. Suppose V is a linear flock over (K, f), and M = M(V). By
Theorem 4.16, the dual V∗ is a linear flock over (K, f) = (K, f−1). The
matroid of V∗ is M∗. �

5.1. Circuit hyperplane relaxation. Recall that if H is a circuit-
hyperplane of M , MH denotes the matroid obtained from M by relaxing
H. The following theorem states that the class of linear-flock representable
matroids over (K, f) is closed under circuit-hyperplane relaxation.

Theorem 4.37. Let V be a linear flock over (K, f), and let M = M(V).
Suppose M is connected and H is a circuit-hyperplane of M . Then there exists
a linear flock of MH over (K, f).

Proof. Let ν be such that Mν = M(V). Using Lemma 3.47, pick a

valuation ν′ of MH so that for all central points α ofMν , we haveMν′

α =Mν
α

and for all α such that H 6∈ Bν′α , we have Mν′

α =Mν
α.

Let C be the unique 2-dimensional cell from Lemma 3.48 such that for all
α ∈ C, H is a circuit-hyperplane of Mν

α. Then we claim

C =
⋂

e∈H,f∈H
CνH−e+f .

Indeed, all bases H − e + f for e ∈ H and f ∈ H must be present in order
for H to be a circuit-hyperplane, proving the inclusion ’⊆’. To see equality,
note that the right-hand side has at most 2 components, and therefore due
to Lemma 3.16 has dimension at most 2. Since ν(H) =∞, it is closed under
addition of positive integer multiples of eH , and hence has dimension exactly 2.
But then due to uniqueness of C, we have equality, proving the claim.

Next let α ∈ C ∩ |S1(Mν)| be given. Now there exists a minimal k ∈ Z≥0

so that H ∈ Bν′α+keH
. Since for all central points α ofMν , we haveMν′

α =Mν
α,

we have k > 0 and thus the cell Cν
′

H only intersects the basis cells of neighboring

bases to H of Mν′ . Then

Bν′α+keH = {H − e+ f | e ∈ H, f ∈ H} ∪ {H},
which is the basis set of a connected matroid, and hence α+ keH is a central
point of Mν′ . Since Cν

′

H only intersects the basis cells of neighboring bases to

H of Mν′ , there cannot be any other central point in Cν
′

H . Thus the skeleton
graph GMν′ only differs from GMν in the extra vertex p := α+ keH +A(M)
and an edge between this vertex and q := α+A(M).

We now construct a skeleton representation V ′ of Mν′ . For each central
point β of Mν , put V ′β = Vβ . Let v be a spanning vector in Vα/H × {0}H .

Pick nonzero s ∈ K, and pick h ∈ H. Put V ′α+keH
= span(v+seh)+keHVα\H.
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Furthermore, put V ′α+keH+γ = γV ′α+keH
for all γ ∈ q, so that property (2) of

Definition 4.28 is satisfied.
Now as V is a linear flock, property (3) of Definition 4.28 is satisfied

between all neighboring pairs of vertices of GMν′ that are also in GMν due to
Lemma 4.7. It remains to check property (3) of Definition 4.28 between p and q.
Indeed, V ′α+keH

\H = span(v\H) = V ′α/H. Moreover, V ′α+keH
/H = keHV ′α\H

as required. Finally, it is straightforward to verify that M(V ′α+keH
) =Mν′

α+keH
.

Hence V ′ is a skeleton representation of Mν′ . By Theorem 4.30, V ′ can
now be extended to a linear-flock representation of MH . �

We may generalise Theorem 4.37 to allow several circuit-hyperplanes to be
relaxed at once.

Theorem 4.38. Let (K, f) be a field. Let V be a linear flock over (K, f).
Let M = M(V). Let H be a set of circuit-hyperplanes of M . Let MH be the
matroid obtained from M by relaxing all circuit-hyperplanes in H. Then there
exists a linear flock of MH over (K, f).

Proof. Suppose R is a subset of H of maximal cardinality so that there
exists a linear flock of MR. Suppose H ∈ H\R. Then H is a circuit-hyperplane
of MR. By Theorem 4.37, (MR)H = MR∪{H} is linear-flock representable.
But R was maximal, so R = H. �

The case where f is the Frobenius automorphism is the most important
case if we want to say something about algebraic matroids. As will become
apparent in Chapter 5, each algebraic representation of a matroid gives rise to
a Frobenius flock. One of the implications of Theorem 4.37 is that the class
of Frobenius-flock representable matroids is strictly larger than the class of
algebraic matroids.

Corollary 4.39. The Vámos matroid is Frobenius-flock representable.

Let E = {a1, b1, a2, b2, a3, b3, a4, b4}. The Vámos matroid is the matroid
on E where all four-element subsets of E are bases, except

{a1, b1, a2, b2}, {a1, b1, a3, b3}, {a1, b1, a4, b4}, {a2, b2, a3, b3}, {a2, b2, a4, b4}.
See figure 2. The Vámos matroid bears significance as one of the smallest
matroids that is not algebraically representable [25].

If the set {a3, b3, a4, b4} is added to the list of non-bases, we obtain the
Non-Vámos matroid, which has {a3, b3, a4, b4} as a circuit-hyperplane. The Non-
Vámos matroid is linear, and hence linear-flock representable over (K, f), where
K is any field over which the Non-Vámos matroid is linearly representable, and
f is any automorphism of K, due to Theorem 4.25. Thus relaxing {a3, b3, a4, b4}



5. THE CLASS OF LINEAR-FLOCK REPRESENTABLE MATROIDS 61

a1 a2

a3

a4

b1 b2

b3

b4

Figure 2. The Vámos matroid

in a linear flock of the Non-Vámos matroid yields a linear flock for the Vámos
matroid. We conclude that the Vámos matroid is Frobenius-flock representable,
but non-algebraic [25].

Corollary 4.40. The Tic-Tac-Toe matroid is Frobenius-flock representable.

Let E = {a1, a2, a3, b1, b2, b3, c1, c2, c3}. The Tic-Tac-Toe matroid is the
matroid on E where all five-element subsets of E are bases, except

{a1, a2, a3, b1, c1}, {a1, a2, a3, b2, c2}, {a1, a2, a3, b3, c3},

{b1, b2, b3, a1, c1}, {b1, b2, b3, a3, c3},
{c1, c2, c3, a1, b1}, {c1, c2, c3, a2, b2}, {c1, c2, c3, a3, b3}.

The non-bases can be seen as the L-shapes and T-shapes in the Tic-Tac-Toe-like
grid

a1 a2 a3

b1 b2 b3
c1 c2 c3

.

The dual of the Tic-Tac-Toe matroid is non-algebraic [27], while it is unknown
whether the Tic-Tac-Toe matroid itself is algebraic. According to Hochstättler
[22], this matroid is a good candidate to answer the question whether the class
of algebraic matroids is closed under duality ([43] problem 6.7.15) negatively.

If the set {b1, b2, b3, a2, c2}, the +-shape, is added to the list of non-
bases, then once again the resulting matroid is linearly representable, and
{b1, b2, b3, a2, c2} is a circuit-hyperplane.
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5.2. The number of linear-flock representable matroids. The class
of linear-flock representable matroids is large. This is follows from the fact
that binary spike matroids are linear-flock representable and have many circuit-
hyperplanes.

Definition 4.41. Let M be a matroid on {a, e1, f1, e2, f2, . . . , en, fn} so that
{a, e1, . . . , en} is a circuit and for each i, {a, ei, fi} is a circuit. Then M \a is
called a spike matroid, and its rank is n. The pairs {ei, fi} are called the legs
of the spike matroid. See Figure 3.

a

e1 e2 enen−1

f1 f2 fn−1 fn

Figure 3. A spike matroid

For each n ≥ 3, there is an unique spike matroid on n legs that is binary.
Peter Nelson made us aware of the following [42].

Lemma 4.42. Let M be the binary spike matroid with n legs. Then M has
2n−1 circuit-hyperplanes.

Proof. By [21] (Corollary 2.4(2)) applied to binary spikes, exactly half
of the transversals of the legs of M are bases. Here a transversal of the legs is
a set containing exactly one element from each leg. Moreover, if {e, f} is a leg
and X 3 e is a non-basis transversal of the legs of M , then X − e+ f is a basis
of M . Hence each non-basis transversal is a circuit, but also a hyperplane as it
has size n. As there are 2n transversals of the legs, the statement follows. �

Using Theorem 4.38, Nelson proceeded to conclude the following.
Theorem 4.3. Let E be a set with |E| = 2n. The number of pairwise non-
isomorphic matroids on E that are linear-flock representable over some field is
at least

22n−1

(2n)!
.

Proof. Let M be the rank n binary spike on |E| = 2n points. Due to
Theorem 4.25, M is linear-flock representable. By Lemma 4.42, M has 2n−1

circuit-hyperplanes H1, . . . ,H2n−1 . Let S ⊆ {1, . . . , 2n−1} be given. Let M ′ be
the matroid obtained by relaxing (Hs)s∈S in M . By Theorem 4.38, M ′ is linear-
flock representable. Since each choice of S yields a linear-flock representable
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matroid in this way, the number of linear-flock representable matroids is at

least 22n−1

. We divide by (2n)! to account for possible isomorphisms. �

Note that (2n)! is negligible compared to 22n−1

for large n. In contrast, the

number of linear matroids over any field is at most 2n
3/4 if n = |E| ≥ 12 [41].





CHAPTER 5

Algebraic matroid representations

The first four sections of this chapter are based on [7].

1. Introduction

In this chapter we discuss how algebraic matroid representations in positive
characteristic give rise to a Frobenius flock.

Theorem 5.1. Let K be an algebraically closed field of nonzero characteristic.
Then every algebraic matroid over K is Frobenius-flock representable over K.

Throughout this chapter, we use the language of algebraic geometry to
describe matroid representations, and we work over an algebraically closed field
K. An irreducible algebraic variety X ⊆ KE determines a matroid M(X) with
ground set E by declaring a set I ⊆ E independent if the projection of X on
KI is dominant, that is, if the closure of {xI : x ∈ X} in the Zariski topology
equals KI . In the special case that X is a linear space, M(X) is exactly the
matroid represented by the columns of any matrix whose rows span X. We
next translate results of Ingleton and Lindström to the language of algebraic
geometry.

Ingleton [24] argued that if K has characteristic 0, then for any sufficiently
general point x ∈ X, the tangent space TxX of X at x will have the same
dominant projections as X itself, so that then M(X) = M(TxX). Since such a
sufficiently general point always exists — it suffices that x avoids finitely many
hypersurfaces in X — a matroid which has an algebraic representation over K
also has a linear representation over K, in the form of a tangent space TxX.

Ingleton’s argument does not generalize to fields K of positive characteristic
p. Consider the variety X = V (x1 − xp2) = {x ∈ K2 : x1 − xp2 = 0}, which
represents the matroid on E = {1, 2} with independent sets ∅, {1}, {2}. The
tangent space of X at any x ∈ X is TxX = V (x1), which represents a matroid
in which {1} is a dependent set. Thus, M(X) 6= M(TxX) for all x ∈ X.

Lindström demonstrated that for some varieties X this obstacle may be
overcome by applying the Frobenius map F : x 7→ xp to some of the coordinates,

65
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to derive varieties from X which represent the same matroid. In case of the
counterexample X = V (x1−xp2) above, we could define X ′ = {(x1, F (x2)) : x ∈
X}. Then M(X ′) = M(X), and X ′ = V (x1−x2), so that M(X ′) = M(Tx′X

′)
for some (in fact, all) x′ ∈ X ′. In general for an X ⊆ KE , if we fix a vector
α ∈ ZE , put

αx := (F−αixi)i∈E and αX := {αx : x ∈ X},
then it can be argued that M(αX) = M(X). This gives additional options for
finding a suitable tangent space.

Lindström showed in [31] that if X is any algebraic representation of the
Fano matroid, then there necessarily exists an α so that M(X) = M(TξαX)
for a sufficiently general ξ ∈ αX. Thus any algebraic representation of the
Fano matroid spawns a linear representation in the same characteristic. Since
the Fano matroid is linear only in characteristic 2, it follows that the Fano
matroid is non-algebraic over K if char(K) 6= 2.

The choice of the matroid in Lindström’s argument is not arbitrary. If we
consider an algebraic representation X of the non-Fano matroid, then there
does not necessarily exist an α ∈ ZE so that in a sufficiently general point
ξ ∈ αX we have M(X) = M(TξαX). Indeed, since the non-Fano matroid is
algebraic in characteristic 2, but not linear.

In the present chapter, we consider the overall structure of the map α 7→
M(TξααX), where for each α, ξα is the generic point of αX. A central result
of this chapter is that a sufficiently general x ∈ X satisfies M(TαxαX) =
M(TξααX) for all α ∈ ZE (Theorem 5.17). This is nontrivial, as now x
must a priori avoid countably many hypersurfaces, which one might think
could cover all of X. Fixing such a general x, we show that the assignment
V : α 7→ Vα := TαxαX is Frobenius flock.

Due to Lemma 4.4, any Frobenius flock V gives rise to a matroid flock M
by taking Mα = M(Vα). In particular, each algebraic matroid representation
X ⊆ KE gives rise to a matroid flockM : α 7→M(TαxαX). This matroid flock
does not depend on the choice of the general point x ∈ X, since M(TαxαX) =
M(Tαx′αX) for any two such general points. Due to Theorem 3.3, there exists
a matroid valuation ν such that M =Mν . Recognizing the seminal work of
Bernt Lindström, we named ν the Lindström valuation of X.

Theorem 5.1 can be applied to show non-algebraicity of matroids over
certain fields, much like Lindströms result. If a matroid admits no Frobenius
flock over a given field, then this matroid is non-algebraic over that field. In
particular, matroids that admit only trivial valuations, the so-called rigid
matroids, are prone to this argument. For example, the Fano matroid only has
trivial valuations. So each of the corresponding matroid flocks M has a point
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α such that Mα is the Fano matroid. Hence none of them admit a skeleton
representation over fields of characteristic 6= 2. Thus by Lemma 4.29, the Fano
matroid is not Frobenius-flock representable over such fields, and hence not
algebraic.

It is an open problem to characterize the valuated matroids which may
arise from algebraic representations in characteristic p.

In the final part of the chapter we define a notion of algebraic equivalence
of algebraic representations. We show that all algebraic representations of the
uniform matroid U1,2 are algebraically equivalent, but that U2,3 admits alge-
braically inequivalent algebraic representations. If two linear representations
are linearly equivalent, it is not hard to see that they are also algebraically
equivalent. Finally, we investigate how much more general algebraic equiv-
alence of linear representations is compared linear equivalence. We show
that algebraically equivalent linear representations must be componentwise
field-equivalent.

2. Algebraic matroids in the algebro-geometric setting

Definition 2.8 is the most common definition of algebraic matroids. In
this chapter it will be useful to take a more geometric viewpoint on algebraic
matroids; a good general reference for the algebro-geometric terminology that
we will use is [11]; and we refer to [26, 45] for details on the link to algebraic
matroids.

First, we assume throughout this chapter that K is algebraically closed.
This is no loss of generality in the following sense: take an algebraic closure
L′ of L and let K ′ be the algebraic closure of K in L′. Let E be a finite set
and consider a map φ : E → L. Then for any subset I ⊆ E the set φ(I) ⊆ L is
algebraically independent over K if and only if φ(I) is algebraically independent
over the algebraically closed field K ′.

Second, there is clearly no harm in assuming that L is generated by φ(E).
Then let P be the kernel of the K-algebra homomorphism from the polynomial
ring R := K[(xi)i∈E ] into L that sends xi to φ(i). Since L is a domain, P is a
prime ideal, so the quotient R/P is a domain and L is isomorphic to the field
of fractions of this domain.

By Hilbert’s basis theorem, P is finitely generated, and one can store
algebraic representations on a computer by means of a list of generators (of
course, this requires that one can already compute with elements of K). In
these terms, a subset I ⊆ E is independent if and only if P ∩K[xi : i ∈ I] = {0}.
Given generators of P , this intersection can be computed using Gröbner bases
[11, Chapter 3, §1, Theorem 2].
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We have now seen how to go from an algebraic representation over K of a
matroid on E to an irreducible subvariety of KE . Conversely, every irreducible
closed subvariety Y of KE determines an algebraic representation of some
matroid, as follows: let Q ⊆ R be the prime ideal of polynomials vanishing on
Y , let K[Y ] := R/Q be the integral domain of regular functions on Y , and set
L := K(Y ), the fraction field of K[Y ]. The map φ sending i to the class of xi
in L is a representation of the matroid M in which I ⊆ E is independent if
and only if Q ∩K[xi : i ∈ I] = {0}. This latter condition can be reformulated
as saying that the image of Y under the projection πI : KE → KI is dense in
the latter space, i.e., that Y projects dominantly into KI . Our discussion is
summarised in the following lemma.

Recall the definition of an algebro-geometric representation of a matroid
(Definition 2.11). We have seen:

Lemma 5.2. A matroid M admits an algebraic representation over the alge-
braically closed field K if and only if it admits an algebro-geometric representa-
tion over K.

The rank function on M corresponds to dimension:

Lemma 5.3. If Y is an algebro-geometric representation of M , then for each
I ⊆ E the rank of I in M is the dimension of the Zariski closure πI(Y ).

Because of this equivalence between algebraic and algebro-geometric rep-
resentations, we will continue to use the term algebraic representation for
algebro-geometric representations.

3. Tangent spaces

Crucial to our construction of a flock from an algebraic matroid are tangent
spaces, which were also used in [31] in the study of characteristic sets of
algebraic matroids. In this section, Y ⊆ KE is an irreducible, closed subvariety
with vanishing ideal Q ⊆ R, K[Y ] := R/Q is its coordinate ring, and K(Y ) its
function field.

Definition 5.4. Define the K[Y ]-module

JY :=

{(
∂f

∂xj
+Q

)

j∈E
: f ∈ Q

}
⊆ K[Y ]E .

For any v ∈ Y , define the tangent space TvY := JY (v)⊥ ⊆ KE, where JY (v) ⊆
KE is the image of JY under evaluation at v. Let η ∈ K(Y )E be the generic
point of Y , i.e., the point (xj +Q)j∈E, and define TηY as (K(Y )⊗K[Y ]JY )⊥ ⊆
K(Y )E. The variety Y is called smooth at v (and v a smooth point of Y ) if
dimK TvY = dimK(Y ) TηY .
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The K[Y ]-module JY is generated by the rows of the Jacobi matrix ( ∂fi∂xj
+

Q)i,j for any finite set of generators f1, . . . , fr of Q. The right-hand side in
the smoothness condition also equals the transcendence degree of K(Y ) over
K and the Krull dimension of Y . The smooth points in Y form an open and
dense subset of Y .

We recall the following property of smooth points.

Lemma 5.5. Assume that Y is smooth at v ∈ Y and let S be the local ring of
Y at v, i.e., the subring of K(Y ) consisting of all fractions f/g where g(v) 6= 0.
Then M := S ⊗K[Y ] JY ⊆ SE is a free S-module of rank equal to |E| − dimY ,

which is saturated in the sense that su ∈ M for s ∈ S and u ∈ SE implies
u ∈M .

Now we come to a fundamental difference between characteristic zero and
positive characteristic.

Lemma 5.6. Let v ∈ Y be smooth, and let I ⊆ E. Then dimπI(TvY ) ≤
dimπI(Y ). If, moreover, the characteristic of K is equal to zero, then the set
of smooth points v ∈ Y for which equality holds is an open and dense subset of
Y .

The inequality is fairly straightforward, and it shows that M(TvY ) is
always a weak image of M(Y ) (of the same rank as the latter). For a proof of
the statement in characteristic zero, see for instance [47, Chapter II, Section 6].
A direct consequence of this lemma is the following, well-known theorem [24].

Theorem 5.7 (Ingleton). If charK = 0, then every matroid that admits an
algebraic representation over K also admits a linear representation over K.

Proof. If Y ⊆ KE represents M , then the set of smooth points v ∈ Y
such that dimπI(TvY ) = dimπI(M) for all I ⊆ E is a finite intersection of
open, dense subsets, and hence open and dense. For any such point v, the
linear space TvY represents the same matroid as Y . �

A fundamental example where this reasoning fails in positive characteristic
was given in the introduction. As we will see next, in positive characteristic
Frobenius flocks take the role of the linear representations in Theorem 5.7.

4. Positive characteristic

Assume that K is algebraically closed of characteristic p > 0. Then we
have the action of ZE on KE by αw := (F−αiwi)i∈E .

Let X ⊆ KE be an irreducible closed subvariety. To study the orbit of X
under ZE , we need the following lemma.
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Lemma 5.8. The action of ZE on KE is via homeomorphisms in the Zariski
topology.

These homeomorphisms are not polynomial automorphisms since F−1 :
K → K, c 7→ c1/p, while well-defined as a map, is not polynomial.

Proof. Let α ∈ ZE and let Y ⊆ KE be closed with vanishing ideal Q.
Then

αY = {v ∈ KE : ∀f∈Qf((−α)v) = 0}.
Now for f ∈ Q the function g : K → K, v 7→ f((−α)v) is not necessarily
polynomial if α has negative entries. But for every e ∈ Z the equation g(v) = 0
has the same solutions as the equation g(v)p

e

= 0; and by choosing e sufficiently
large, h(v) := g(v)p

e

does become a polynomial. Hence αY is Zariski-closed,
and the map KE → KE defined by α is continuous. The same applies to −α,
so α is a homeomorphism. �

As a consequence of the lemma, αX is an irreducible subvariety of KE

for each α ∈ ZE , and has the same Krull dimension as X—indeed, both of
these terms have purely topological characterisations. The ideal of αX can
be obtained explicitly from that of X by writing α = c1− β with c ∈ Z and
β ∈ ZE≥0 and applying the following two lemmas.

Lemma 5.9. Let Y ⊆ KE be closed with vanishing ideal Q, and β ∈ ZE≥0.

Then the ideal of (−β)Y equals
{
f((xi)i∈E) : f

(
(x

(pβi )
i )i∈E

)
∈ Q

}
.

Proof. The variety (−β)Y is the image of Y under a polynomial map,
and by elimination theory [11, Chapter 3, §3, Theorem 1] its ideal is obtained

from the intersection Q ∩K
[(
x

(pβi )
i

)
i∈E

]
by replacing x(pβi ) by xi. �

Note that the ideal in the lemma can be computed from Q by means of
Gröbner basis calculations, again using [11, Chapter 3,§1, Theorem 2].

Lemma 5.10. Let Y ⊆ KE be closed with vanishing ideal generated by
f1, . . . , fk. Then for each c ∈ Z the ideal of (c1)Y is generated by g1 :=
F−c(f1), . . . , gk := F−c(fk), where F−c acts on the coefficients of these poly-
nomials only.

Proof. A point a ∈ KE lies in (c1)Y if and only if (−c1)a ∈ Y , i.e., if
and only if fi(F

c(a)) = 0 for all i, which is equivalent to gi(a) = 0 for all i.
So by Hilbert’s Nullstellensatz the vanishing ideal of αY is the radical of the
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ideal generated by the gi. But the gi are the images of the fi under a ring
automorphism R→ R, and hence generate a radical ideal since the fi do. �

Lemma 5.11. For each α ∈ ZE, the variety αX represents the same matroid
as X.

Proof. If I ⊆ E is independent in the matroid represented by X, then
the map πI : X → KI has a dense image. But the image of the projection
αX → KI equals (α|I) imπI , and is hence also dense in KI . So all sets
independent for X are independent for αX, and the same argument with −α
yields the converse. �

Lemma 5.12. Let Y ⊆ KE be an irreducible, closed subvariety with generic
point η and let j ∈ E. Then ej ∈ TηY if and only if the vanishing ideal of Y is
generated by polynomials in xpj and the xi with i 6= j.

Proof. If the ideal Q of Y is generated by polynomials in which all
exponents of xj are multiples of p, then Q is stable under the derivation ∂

∂xj
.

This means that the projection of JY ⊆ K[Y ]E onto the j-th coordinate is
identically zero, so that ej ⊥ (K(Y )⊗K[Y ] JY ). This proves the “if” direction.

For “only if” suppose that ej ∈ TηY , let G be a reduced Gröbner basis of

Q relative to any monomial order, and let g ∈ G. Then f := ∂g
∂xj

is zero in

K[Y ], i.e., f ∈ Q. Assume that f is a nonzero polynomial. Then the leading
monomial u of f is divisible by the leading monomial u′ of some element of
G \ {g}. But u equals v/xj for some monomial v appearing in g, and hence v

is divisible by u′; this contradicts the fact that G is reduced. Hence ∂g
∂xj

= 0,

and therefore all exponents of xj in elements of G are multiples of p. �

For any closed, irreducible subvariety X ⊆ KE , let M(X,α) := M(TξαX),
where ξ is the generic point of αX.

Theorem 5.13. Let K be algebraically closed of characteristic p > 0, X ⊆ KE

a closed, irreducible subvariety. Let v ∈ X be such that for each α ∈ ZE, we
have

(*) M(TαvαX) = M(X,α)

Then the assignment V : α 7→ Vα := TαvαX is a Frobenius flock that satisfies
M(V) = M(X).

Definition 5.14. This Frobenius flock is called the Frobenius flock associated
to the pair (X, v).
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Proof of Theorem 5.13. For each α ∈ ZE we have M(TαvαX) =
M(TξαX), and this implies that dimK Vα = dimX =: d.

Next, for j ∈ E the action by (−ej) ∈ ZE sends Y := (α + ej)X into
(−ej)Y = αX by raising the j-th coordinate to the power p. Hence the
derivative of this map at y := (α+ ej)v, which is the projection onto e⊥j along
ej , maps Vα+ej = TyY into Vα = T(−ej)y(−ej)Y , and therefore Vα+ej\j ⊆ Vα/j.
If the left-hand side has dimension d, then equality holds, and (LF1) follows.

If not, then ej ∈ TyY , i.e., j is a co-loop in M(TyY ). Then by (*) j is also
a co-loop in M(TηY ), where η is the generic point of Y . By Lemma 5.12 the
ideal of Y is generated by polynomials f1, . . . , fr in which all exponents of xj
are multiples of p. By Lemma 5.9, replacing xpj by xj in these generators yields
generators g1, . . . , gr of the ideal of ejY . Now the Jacobi matrix of g1, . . . , gr
at (−ej)y equals that of f1, . . . , fr at y except that the j-th column may have
become nonzero. But this means that Vα/j has dimension equal to that of
Vα+ej \ j, namely, d− 1. Hence (LF1) holds in this case, as well.

For (LF2), let Z := αY and z := αy, pick any generating set f1, . . . , fr
of IZ , raise all fi to the (1/p)-th power, and replace each xj in the result by
xpj . By Lemma 5.10, the resulting polynomials g1, . . . , gr generate I1Z . The

Jacobi matrix of g1, . . . , gr at 1z equals that of f1, . . . , fr at z except with F−1

applied to each entry. Hence Vα+1 = 1Vα as claimed. This proves that V is a
Frobenius flock.

We next verify that M(V) = M(X); by Lemma 5.11 the right-hand side
is also M(αX) for each α ∈ ZE . Assume that I is independent in M(Vα) for
some α. This means that the projection TαvαX → KI is surjective and since
αv is a smooth point of αX by (*) we find that the projection αX → KI is
dominant, i.e., I is independent in M(X).

Conversely, assume that I is a basis for M(X), so that |I| = d. Then K(X)
is an algebraic field extension of K(xi : i ∈ I) =: K ′. If this is a separable
extension, then by [8, AG.17.3] the projection TuX → KI is surjective (i.e.,
a linear isomorphism) for general u ∈ X, hence also for u = v by (*). If not,

then for each j ∈ Ī let αj ∈ Z≥0 be minimal such that x
(pαj )
j is separable over

K ′, and set αi = 0 for i ∈ I. Then the extension K ′ ⊆ K((−α)X) is separable,
and hence the projection T(−α)v : (−αX)→ KI surjective. �

For fixed α ∈ ZE , the condition (*) holds for v in some open dense subset
of X, i.e., for general v in the language of algebraic geometry—indeed, it says
that certain subdeterminants of the Jacobi matrix that do not vanish at the
generic point of αX do not vanish at the point αv either. However, we require
that (*) holds for all α ∈ ZE . This means that v must lie outside a countable
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union of proper Zariski-closed subsets of X, i.e., it must be very general in the
language of algebraic geometry. A priori, that K is algebraically closed does
not imply the existence of such a very general point v. This can be remedied
by enlarging K. For instance, if we change the base field to K(X), then the
generic point of X satisfies (*); alternatively, if K is taken uncountable (in
addition to algebraically closed), then a very general v also exists. But in fact,
as we will see in Theorem 5.17, certain general finiteness properties of flocks
imply that, after all, it does suffice that K is algebraically closed.

Corollary 5.15. Let K be algebraically closed of characteristic p > 0, and let
X ⊆ KE be a closed, irreducible subvariety. Then M : α 7→ M(X,α) is a
matroid flock with support matroid M(X).

Proof. Let v be the generic point of X over the enlarged base field K(X).
Then the Frobenius flock V associated with (X, v) satisfies M(Vα) = M(X,α).
As V is a Frobenius flock, the assignment α 7→ M(Vα), and hence M, is a
matroid flock. By Theorem 5.13, the support matroid of V, and hence of its
matroid flock M, is M(X). �

Due to Theorem 3.3, there is a valuation associated to M, which we
call the Lindström valuation. Cartwright found a direct construction of this
valuation from an algebraic representation [9]. In the setting of Definition 2.8,
the value assigned to a basis B is the p-logarithm of the inseparable degree of
the extension L of the set of elements of K(φ(B)) that are separable over L:

ν(B) = logp[L : K(φ(B))sep(L)].

We now prove that under certain technical assumptions, if v satisfies (*) at
some α ∈ ZE , then it also satisfies (*) at α− eI . This will reduce the number
of conditions on v from countable to finite, whence ensuring that a general v
satisfies them.

Lemma 5.16. Let v ∈ X satisfy (*) for some α ∈ ZE, and let I ⊆ E be such
that M(X,α) = M(X,α− eI). Then v satisfies (*) for α− eI .

Proof. Set Y := αX and set W := K(Y ) ⊗K[Y ] JY ⊆ K(Y )E . By
Lemma 3.33 applied to the matroid flock α 7→ M(X,α), we find that the
connectivity of I in M(W ) = M(X,α) is zero, and hence that W = (W/I)×
(W/Ī).

We claim that the same decomposition happens over the local ring S of Y
at αv. Let M := S⊗K[Y ] JX ⊆ SE . Let m ∈M and write m = m1 +m2 where

m1,m2 have nonzero entries only in I, Ī, respectively. By the decomposition
of W , we have m1,m2 ∈ W , and by clearing denominators it follows that
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s1m1, s2m2 ∈ JY ⊆ M for suitable s1, s2 ∈ K[Y ] ⊆ S. Then by Lemma 5.5,
m1,m2 themselves already lie in M . Thus M = (M/I)× (M/Ī), as claimed.

This means that there exist generators f1, . . . , fr, g1, . . . , gs of the maximal
ideal of S with r+s = |E|−dimY and such that ∂fi

∂xj
= 0 ∈ S for all i = 1, . . . , r

and j ∈ Ī and ∂gi
∂xj

= 0 ∈ S for all i = 1, . . . , s and j ∈ I. Thus the Jacobi

matrix of f1, . . . , fr, g1, . . . , gt looks as follows:

A =

f1...
fr
g1

gs

...

I Ī

A11 0

0 A22

By (*) the K-row space of A(y) defines the same matroid as the K(Y )-row
space of A itself.

It follows that the exponents of xj with j ∈ I in the gi are multiples of
p, and so are the exponents of the xj with j ∈ Ī in the fi. Let g′i be the
polynomial obtained from gi by replacing xpj with xj for j ∈ I, and let f ′i be

the polynomial obtained from fpi by replacing each xpj with xj for j ∈ I. Then

the f ′i and g′i lie in the maximal ideal of (−eI)Y at (−eI)y, and their Jacobi
matrix looks like this:

A =

f ′1...
f ′r
g′1

g′s

...

I Ī

FA11 0

A21 A22

Here FA11 is the matrix over S whose entries are obtained by applying the
Frobenius automorphism to all coefficients. In particular, the evaluation
A′((−eI)y) has full K-rank r+ s, (−eI)Y is smooth at (−eI)y, and the f ′i and
the g′i generate the maximal ideal of the local ring of (−eI)Y at (−eI)y. More-
over, if a subset I ′ of the columns of A is independent, then the columns labelled
by I ′ are also independent in A′((−eI)y). This means that M(T(−eI)y(−eI)Y )
has at least as many bases as M(TξY ) = M(TηeIY ), but it cannot have more,
so that v satisfies (*) at α− eI . �

Theorem 5.17. Let K be algebraically closed of characteristic p > 0 and let
X ⊆ KE be an irreducible closed subvariety of dimension d. Then for a general
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point v ∈ X the map V : α 7→ TαvαX is a Frobenius flock of rank d over K
such that M(X,α) = M(Vα) for each α ∈ ZE.

Proof. By Theorem 5.13 it suffices to prove that there exists a v ∈ X
satisfying (*) at every α ∈ ZE . For some field extension K ′ ⊇ K there does
exist a K ′-valued point v′ ∈ X(K ′) that satisfies (*) at every α, and we may
form the Frobenius flock V ′ associated to (X, v′) over K ′.

For each matroid M ′ on E the points α ∈ ZE with M(V ′α) = M ′ are
connected to each other by means of moves of the form α→ α+1 or α→ α−eI
for some subset I ⊆ E of connectivity 0 in M ′; see Lemma 3.15. Hence by
Lemma 5.16, for a v ∈ X(K) to satisfy (*) for all α ∈ ZE it suffices that v
satisfies this condition for one representative α for each matroid M ′. Since
there are only finitely many matroids M ′ to consider, we find that, after all, a
general v ∈ X(K) suffices these conditions. �

Observe the somewhat subtle structure of this proof: apart from commu-
tative algebra, it also requires the entire combinatorial machinery of flocks.
Theorem 5.1 is a direct consequence of this theorem.

Example 5.18. Let E = {1, 2, 3, 4} and consider the polynomial map φ : K2 →
K4 defined by φ(s, t) = (s, t, s+ t, s+ t(p

g)) where p = charK and g > 1. This
is a morphism of (additive) algebraic groups, hence X := imφ is closed. The
polynomials in the parameterisation φ are pairwise algebraically independent,
so that M(X) is the uniform matroid on E of rank 2.

One can verify that the point 0 is general in the sense of Theorem 5.17,
and

T0X = im d0φ = the row space of

[
1 0 1 1
0 1 1 0

]
.

Note that in M(T0X) the elements 1 and 4 are parallel. Compute

(−e2 − e3)X = {(s, tp, sp + tp, s+ t(p
g)) : s, t ∈ K}

= {(s, t, sp + t, s+ t(p
g−1)) : s, t ∈ K};

so

T0(−e2 − e3)X = the row space of

[
1 0 0 1
0 1 1 0

]
.

Here, not only 1 and 4 are parallel, but also 2 and 3. We see the same
matroid for (−ke2 − ke3)X with k = 2, . . . , g − 1. But (−ge2 − ge3)X =
{(s, t, spg + t, s+ t) : s, t ∈ K}, so

T0(−ge2 − ge3)X = the row space of

[
1 0 0 1
0 1 1 1

]
.
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Figure 1. The cell decomposition for a matroid flock of U2,4;
the two zero-dimensional cells are 0 and −ge2 − ge3.

Here only 2 and 3 are parallel. The cell decomposition of the underlying matroid
flock, intersected with the hyperplane where one of the coordinates is zero, is
depicted in Figure 1. p

5. Rigid matroids

Following Dress and Wenzel, we call a matroid M rigid if all valuations of M
are trivial. For rigid matroids, Ingleton’s equivalence between algebraicity and
linearity not only holds over fields of characteristic 0, but over any algebraically
closed field, as is shown in the following theorem.

Theorem 5.19. Let M be a matroid, and let K be an algebraically closed field
of positive characteristic. If M is rigid, then M is algebraic over K if and only
if M is linear over K.

Proof. If M is linear over K, then clearly M is also algebraic over K.
We prove the converse. Let X ⊆ KE be an algebraic representation of N , and
let ν = νX be the Lindström valuation of X. Since we assumed that M is
rigid, and ν is a valuation with support matroid M(X) = M , it follows that ν
is trivial. Hence ν(B) = eB · α for some α ∈ ZE . Then M(X,α) =Mν

α = M .
For a general x ∈ αX, we have M(TxαX) = M(X,α), and then TxαX is a
linear representation of M over K. �
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Using a consideration about the Tutte group, Dress and Wenzel showed
[15, Thm 5.11]:

Theorem 5.20. If the inner Tutte group of a matroid M is a torsion group,
then M is rigid. In particular:

(1) binary matroids are rigid; and
(2) if r ≥ 3 and q is a prime power, then the finite projective space

PG(r − 1, q) is rigid.

Next, we discuss rigidity of matroids with parallel elements. Recall that
T (M) is the space of trivial valuations of a matroid M .

Lemma 5.21. Suppose M is a matroid, and {i, j} is a circuit of M . If ν, ν′

are valuations of M such that ν\j = ν′\j, then ν′ ∈ ν + T (M).

Proof. Let ν be any valuation of M , and B,B′ be such that i ∈ B∩B′ and
B′ = B−k+ l, where j 6= k, l. By Lemma 2.17, we have ν(B) +ν(B′− i+ j) =
ν(B − i+ j) + ν(B′), since B − k + j = B′ − l + j is not a basis as it contains
the dependent set {i, j}. Hence ν(B)− ν(B− i+ j) = ν(B′)− ν(B′− i+ j) for
any adjacent bases B,B′ both containing i. Since any two bases of M \j are
connected by a walk along adjacent bases, it follows that there is a constant
c so that ν(B) − ν(B − i + j) = c for any basis B of M \j with i ∈ B. If ν′

is any other valuation of M , then by the same reasoning there is a c′ so that
ν′(B)− ν′(B − i+ j) = c′ for any basis B of M \j with i ∈ B. If ν′\j = ν\j,
then ν(B) + eB · (cej) = ν′(B) + eB · (c′ej) for all bases B of M , and it follows
that ν′ ∈ ν + T (M), as required. �

If M is a matroid then si(M), the simplification of M , is a matroid whose
elements are the parallel classes of M , and which is isomorphic to any matroid
which arises from M by restricting to one element from each parallel class.
Directly from the previous lemma, we obtain:

Lemma 5.22. Suppose M is a matroid. If si(M) is rigid, then M is rigid.

Similarly, matroids of rank or corank 1 are rigid.

Lemma 5.23. Suppose M ∼= U1,n or M ∼= Un−1,n. Then M is rigid.

Proof. If M ∼= U1,n, then si(M) ∼= U1,1 which is rigid. Hence by Lemma
5.22, M is rigid. If M = Un−1,n, then M∗ = U1,n is rigid, and hence M is
rigid. �

Another way to see this is by considering the Dressian. Matroids of rank
or corank 1 contain no octahedra, and hence the Dressian contains a single
nonempty cell.
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K(x′, y′)

K(x, y)

x y x3 + 2y

x′ (y′)2 + 2y′ (x′)2 + (y′)2 + 2y′

x y x3 + 2y

x′ (y′)2 + 2y′ (x′)2 + (y′)2 + 2y′

Frac(K[x, y, x′, y′]/(x3 − (x′)2, 2y − (y′)2 − 2y′))

Figure 2. Two algebraic representations of U2,3 that are alge-
braically equivalent, witnessed by an algebraic representation
of U2

2,3

6. Algebraic equivalence of algebraic representations

It would be beneficial for our understanding of algebraic matroids to be able
to identify algebraic representations with similar properties. In an attempt to
achieve that, we introduce an equivalence relation on algebraic representations.

Definition 5.24. Let M be a matroid on E and let k be a positive integer.
Define the matroid Mk on E×{0, . . . , k−1} as an extension of M by relabeling
e ∈ E to (e, 0), and adding parallel copies (e, i) of (e, 0) for each e ∈ E and
i ∈ {0, . . . , k − 1}.

In this section we will use the notation Si := S × {i} for S ⊆ E and i ∈
{0, . . . , k− 1}, and similarly ei := (e, i) for e ∈ E, i ∈ {0, . . . , k− 1}. Note that
Mk|Ei , the restriction of Mk to Ei, is isomorphic to M for i ∈ {0, . . . , k−1}. We
proceed to define a notion of algebraic equivalence of algebraic representations
of a matroid.

Definition 5.25. Let M be a matroid on E. Let X,X ′ be two algebraic
representations of M . Then X,X ′ are said to be algebraically equivalent if
there exists an algebraic representation Y of M2 such that Y |E0

= X and
Y |E1

= X ′.

Example 5.26. Figure 2 is an example of two representations of U2,3 over K
that are equivalent, witnessed by the right-hand representation. Equivalently,
the prime ideal giving the algebraic equivalence is

〈x3
1 + 2x2 − x3, (x

′
1)2 + x′2 − x′3, x3

1 − (x′1)2, 2x2 − x′2, x3 − x′3〉.
Algebraic equivalence is, as the name suggests, an equivalence relation.

In order to show this, we will use the geometric interpretation of algebraic
representations.
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Lemma 5.27. Let the algebraic representation Y of M2 witness algebraic
equivalence of X and X ′. Then dimY = dimX = dimX ′. Moreover, if S is
an independent set of M , then the image Z := πS0,S1

(Y ) is equal to a product∏
s∈S Cs with Cs ⊆ Ks0,s1 an irreducible curve projecting dominantly on both

coordinate axes of s0 and s1.

Proof.

dim(X) = dim(X ′) = rank(M) = rank(N) = dim(Y ).

For the second statement, since S is independent, the map Z → KS0 is

dominant, hence in particular Z projects dominantly to Ks0 for each s ∈ S. By

assumption, then, the image of Z in Ks0,s1 is a curve Cs projecting dominantly
to both coordinate axes. Now Z is contained in the product of the Cs, and for
dimension reasons equal to that product. �

We call the defining polynomials of each curve Cs the equivalence polyno-
mials of Y .

Theorem 5.28. Algebraic equivalence of algebraic K-representations is an
equivalence relation.

Proof. Let X,X ′, X ′′ be algebraic representations of M . Let Y ⊆ KE0 ×
KE1 be an algebraic equivalence of X,X ′ and let Y ′ ⊆ KE1 × KE2 be an
algebraic equivalence of X ′, X ′′. We want to construct a suitable algebraic
representation Y ′′ ⊆ KE0 ×KE2 . For this, let

Q := {(y, y′) ∈ Y × Y ′ | πE1(y) = πE1(y′)}red

be the reduced fibre product of Y and Y ′ over X ′. Note that in the matroid
of Q, the elements E0 are parallel to elements of E1 by virtue of Y . Similarly,
the elements E2 are parallel to elements of E1 by virtue of Y ′. Hence dimQ =
dimY = dimY ′ = dimX = dimX ′. Moreover, the map Q→ X ′ is dominant,
as both maps Y → X ′ and Y ′ → X ′ are dominant. Take any irreducible
component P of Q that dominates X ′, and let Y ′′ be the closure of the image

of P in KE0 ×KE2 . For each non-loop e0 ∈ E0, the image of P in Ke0,e1,e2

is an irreducible curve that projects dominantly on Ke1 , hence (by properties

of Y ) also on Ke0 and (by properties of Y ′) also on Ke2 . Hence the image of

Y ′′ in Ke0,e2 is a curve that projects dominantly on both coordinate axes. For

each loop e0, the images of Y, Y ′ in Ke0,e1 and Ke1,e2 have dimension zero,

hence so do the images of P and Y ′′ in Ke0,e2 .
It remains to check that the map P → X, and hence also the map Y ′′ → X,

is dominant (the corresponding statement about P → X ′′ follows similarly).
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But this follows since, on P , the coordinates xe1 and xe2 (with e0 a loop or
not) are algebraic over xe0 . Thus the fibre of the map P → X over the generic
point has dimension 0, and since dimP = dimX ′ the map must be dominant.

We conclude that the relation of algebraic equivalence is transitive. That
it is symmetric and reflexive is straightforward. �

While it is easy to construct many equivalent algebraic representations
from a given representation, we do not know of a general method to determine
whether two algebraic representations are equivalent, even for representations
of matroids as small as U2,3. Given two algebraic representations of a matroid,
is it decidable whether these representations are algebraically equivalent?

For a very small matroid we can show that all algebraic representations
are equivalent.

Theorem 5.29. Let K be an algebraically closed field. All algebraic represen-
tations of U1,2 over K are algebraically equivalent.

Proof. Let the algebraic representations be given by V (〈f〉) and V (〈g〉),
for irreducible bivariate polynomials f ∈ K[x, y] and g ∈ K[x′, y′]. Pick
P (x, x′) = x − x′ as the first equivalence polynomial. Then the resultant
resx(f(x, y), P (x, x′)) = f(x′, y).

Now set Q(y, y′) := resx′(f(x′, y), g(x′, y′)). As f and g are irreducible
with full support, Q is nonzero, irreducible [35], and has support {y, y′}. It
follows that any irreducible component of V (〈f, g, P,Q〉) witnesses algebraic
equivalence of the two algebraic representations. �

We show an invariant of equivalence classes of algebraic representations.

Theorem 5.30. Algebraically equivalent representations have the same Lind-
ström valuation up to translation.

Proof. Let X and X ′ be algebraically equivalent representations of a ma-
troid M witnessed by an algebraic representation Y of M2, with an associated
matroid flock M. Let ν be the Lindström valuation of Y . Then by submodu-
larity of ν, for each parallel pair (e0, e1), the difference ν(S + e0)− ν(S + e1)
is the same for each S ⊂ E0 ∪E1 not containing e0 and e1 such that S + e0 is
a basis of M2. By translation, we may assume this difference to be 0. Then
for all bases of B of M , we have ν(B0) = ν(B1). Hence the valuations ν\E0

and ν\E1 are the same up to translation. �

6.1. Inequivalent algebraic representations. In some special cases
we can solve the problem of determining whether two algebraic representations
are algebraically equivalent. We will now give an example of a case where two
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algebraic representations are not algebraically equivalent using the technique
of derivations [24].

Theorem 5.31. Let M = U2,3. Suppose K is a field of characteristic 0, and let
X,X ′ be algebraic representations given by the ideals (x+ y+ z) and (x′+ y′z′)
respectively. Then X and X ′ are not algebraically equivalent.

Proof. Suppose X ⊆ Kx,y,z and X ′ ⊆ Kx′,y′,z′ are algebraically equiva-
lent with parallel pairs (x, x′), (y, y′) and (z, z′). Let an algebraic equivalence
be given by an algebraic representation Y of M2. Let P (x, x′), Q(y, y′) and
R(z, z′) be the equivalence polynomials. Let

I = 〈x+ y + z, x′ + y′z′, P (x, x′), Q(y, y′), R(z, z′)〉
be the ideal of Y . Now consider the Jacobian matrix of I over

L := Frac(K[x, y, z, x′, y′, z′]/I) :

J(I) =




1 1 1 0 0 0
0 0 0 1 z′ y′
∂P
∂x 0 0 ∂P

∂x′ 0 0

0 ∂Q
∂y 0 0 ∂Q

∂y′ 0

0 0 ∂R
∂z 0 0 ∂R

∂z′



.

Since P , Q and R are irreducible and have full support, none of their partial
derivatives in this matrix are zero. Then the zero pattern makes sure that
this matrix represents (M2)∗: indeed, any quadruple of columns that does not
correspond to {x, x′, y, y′}, {x, x′, z, z′} or {y, y′, z, z′} is independent. As the
set of columns {2, 3, 5, 6} is dependent in (M2)∗,

0 = det




1 1 0 0
0 0 z′ y′
∂Q
∂y 0 ∂Q

∂y′ 0

0 ∂R
∂z 0 ∂R

∂z′


 = z′

∂R

∂z′
∂Q

∂y
− y′ ∂Q

∂y′
∂R

∂z
.

Dividing by ∂Q
∂y

∂R
∂z gives

z′
∂R
∂z′

∂R
∂z

− y′
∂Q
∂y′

∂Q
∂y

∈ I ∩K(y, y′, z, z′).

Due to Lemma 5.27, I ∩K(y, y′, z, z′) = 〈Q,R〉. In particular, the term y′
∂Q
∂y′
∂Q
∂y

is constant modulo 〈Q〉. So we get for some s ∈ K and f ∈ K[y, y′]:

(5) y′
∂Q

∂y′
+ s

∂Q

∂y
= fQ.



82 5. ALGEBRAIC MATROID REPRESENTATIONS

Since the degree of the left-hand side cannot exceed the degree of Q, we
must have f = c ∈ K. We now try to find a polynomial Q(y, y′) satisfying this
partial differential equation. Let

Q =

N∑

k=0

dk · (y′)k

be of degree N in y′, where dk = dk(y) is a polynomial in y for each k. Note
that N > 0, since Q has full support. As the degree of Q is assumed to be N ,
we have dN 6= 0. Then (5) gives

0 = y′
N∑

k=0

kdk · (y′)k−1 + s

N∑

k=1

∂dk
∂y
· (y′)k − c

N∑

k=0

dk · (y′)k

=

N∑

k=0

(
(k − c)dk + s

∂dk
∂y

)
· (y′)k.

Hence, all coefficients of (y′)k in this sum must be zero. Now we distinguish
between the cases s = 0 and s 6= 0. If s = 0, then since dN 6= 0, we must
have c = N . Then furthermore, we must have dk = 0 for k < N . But
then Q = dN · (y′)N , when either Q does not depend on y, or Q is reducible;
contradiction.

If, on the other hand, s 6= 0, then dN is non-constant. If now c 6= k, then
dk must be an exponential function, contradicting the assumption that Q is
polynomial. But then dk must be zero unless c = k. But then again c = N and
Q = dN · (y′)N , which is reducible; contradiction.

�

7. Algebraic equivalence of linear representations

There exists a natural notion of equivalence for linear matroid representa-
tions. Two linear representations of a matroid, viewed as row spaces of matrices
A and B respectively, are linearly equivalent if B can be obtained from A
by a column scaling and applying elementary row operations. In this section,
we consider algebraic equivalence of linear representations. Clearly, linearly
equivalent linear representations are also algebraically equivalent, by taking
the equivalence polynomials to be x− cex′, where ce is the column scalar of the
column labeled by e in the linear equivalence. A natural question is how much
larger algebraic equivalence classes of linear representations are compared to
linear equivalence classes. In characteristic 0, the answer is: not at all.
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Theorem 5.32. Let M be a matroid and let K be a field of characteristic 0.
Let V,W be two algebraically equivalent linear representations of M over K.
Then V,W are linearly equivalent.

Proof. Let Y be an algebraic representation of M2 witnessing algebraic
equivalence of V and W . Like in Theorem 5.7, for some smooth point v ∈ Y ,
the matroid represented by the tangent space TvY is M2. Since Y |E0

= V and
Y |E1

= W are both linear, we also have (TvY )|E0
= V and (TvY )|E1

= W .
Since for each e ∈ E, e0 is parallel to e1 in TvY , V and W must be linearly
equivalent. �

In positive characteristic we use the theory of Frobenius flocks.

Lemma 5.33. Let M be a matroid and let K be an algebraically closed field
of positive characteristic. Let V be a linear representation of M over K, and
let X an algebraic representation of M over K. Furthermore, suppose V and
X are algebraically equivalent witnessed by an algebraic representation Y of
M2. Let V := V(Y ) be the Frobenius flock of Y and let M := M(V) be the
matroid flock of Y . Then there exists β ∈ ZEV ∪EX such that (V\EX)βEV = V

and Mβ = M2.

Proof. As Y |EV is linear over K, we have (M\EX)0 = M(V ) = M , and
(V\EX)0 = V . By Lemma 3.27, let α′ ∈ ZEV ∪EX be such that Mα′ \EX =
(M\EX)0. Now consider a central point β of M such that β ∈ Cα′ . We may
assume βEV = 0. Since β is central in M, the non-loops of M are non-loops
in Mβ . Then as M2 ≥ Mβ , each e ∈ EX must be parallel in Mβ to its
counterpart in EV . Hence M2 =Mβ , as required. �

If X ′ is also linear, then both representations V and X ′ appear as a minor
of some, not necessarily the same, central point in the Frobenius flock of M2.
If these central points are indeed different, the Frobenius automorphism comes
into play.

Definition 5.34. Two algebraic representations X,X ′ of a matroid M over an
algebraically closed field K of characteristic p 6= 0 are said to be field-equivalent
if there exists i ≥ 0 such that they are algebraically equivalent witnessed by
an algebraic representation of M2 with equivalence polynomials of the form

x− de(x′)p
i

or x′ − dexp
i

, where de ∈ K \ {0}.
Theorem 5.35. Let M be a connected matroid and let K be an algebraically
closed field of positive characteristic. Let V,W be two algebraically equivalent
linear representations of M over K. Then V and W are field-equivalent.
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Proof. Suppose the algebraic representation Y of M2 witnesses the al-
gebraic equivalence of V and W . By Theorem 5.17, let V := V(Y ) be the
Frobenius flock of Y . Then by Lemma 5.33, there exist β ∈ {0}EV × ZEW and
β′ ∈ ZEV × {0}EW such that Mβ =Mβ′ = M2, and moreover Vβ \EW = V
and Vβ′ \EV = W . As M is connected, so is M2, and hence due to Lemma
3.16, β = β′ + k1 for some k ∈ Z. Without loss of generality, k ≥ 0. Then
Vβ\EW and Vβ\EV are linearly equivalent representations of M , since each
column of the matrix of Vβ is a nonzero multiple of its parallel counterpart.
Due to (LF2), Vβ\EV = k1Vβ′\EV . Thus V is linearly equivalent to k1W . As
K is algebraically closed, V and W are thus field-equivalent. �

Note that we assumed connectedness of the matroid in the last theorem.
This is because the theorem is false for disconnected matroids. Instead, the
linear representations are then componentwise field-equivalent.

Example 5.36. Consider the following linear representations of U2,4 ⊕ U2,4

over GF (2)(t):

A =




1 0 1 1 0 0 0 0
0 1 1 t 0 0 0 0
0 0 0 0 1 0 1 1
0 0 0 0 0 1 1 t


 ;

B =




1 0 1 1 0 0 0 0
0 1 1 t 0 0 0 0
0 0 0 0 1 0 1 1
0 0 0 0 0 1 1 t2


 .

These representations are algebraically equivalent, but not field-equivalent, be-
cause the equivalence polynomials in the first component must be linear, while
the equivalence polynomials in the second component must be quadratic.

Corollary 5.37. Two algebraically equivalent linear representations of a ma-
troid are componentwise field-equivalent.

Proof. Apply Theorem 5.35 to each component. �



CHAPTER 6

Some classes of matroids

1. Introduction

This chapter concerns algebraicity questions for certain interesting classes
of matroids. First of all we discuss linear matroids in the first section. Linear
matroids over K are algebraic over K. But this is also true for linear matroids
over Q, or more generally, linear matroids over the endomorphism ring of a
connected one-dimensional algebraic group, as will be discussed in Section 3.

In Sections 4 and 5, we discuss two classes of matroids with a small
characteristic set, revisiting results from Lindström [31] and Gordon [18].
We obtain slightly stronger results using Frobenius-flock methods. None
of the classes of matroids discussed here are rigid. Still, Frobenius-flock
methods are effective in showing that these matroids are non-algebraic in
certain characteristics.

In the final section of this chapter, we turn to Dowling geometries as a
class of matroids that is worth investigating. We discuss a matroid that was
investigated by Aner Ben-Efraim [2], which is single-element extension of a
Dowling geometry of rank 3. He showed that this matroid is only algebraic in
a single characteristic in a similar way to Lindström.

2. Linear matroids

Linear relations are a special case of algebraic relations, so linearly repre-
sentable matroids are also algebraic. This observation remains true when we
fix a characteristic p and consider (algebraic) representability over a field of
characteristic p.

Definition 6.1. For a matroid M , χL(M) denotes the linear characteristic
set of M , the set of integers p such that there exists a field of characteristic p
over which M is linearly representable. Similarly, χA(M) denotes the algebraic
characteristic set of M , the set of characteristics in which M is algebraically
representable.

85
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Hence we have χL(M) ⊆ χA(M). Moreover, Ingleton showed that if
0 ∈ χA(M) if and only if 0 ∈ χL(M), so that over fields of characteristic 0,
linear and algebraic matroids are the same. The following was observed by
Lindström [34]. For v ∈ Qd, denote

xv := xv11 · . . . · xvdd .
Lemma 6.2. Let K be any field. Let a1, . . . , an ∈ Zd. The vectors a1, . . . , an
are linearly dependent over Q if and only if xa1 , . . . , xan ∈ K(x1, . . . , xd) are
algebraically dependent over K.

Proof. Suppose a1, . . . , an are linearly dependent. Then there exist
c1, . . . , cn ∈ Q which are not all zero such that

∑n
i=1 ciai = 0. Hence

n∏

i=1

(xai)ci = x
∑n
i=1 ciai = 1.

Conversely, suppose a1, . . . , an are linearly independent. By contradiction,
let a minimal polynomial P of xa1 , . . . , xan over F be given. Consider a nonzero
term of P , which equals

c(xa1)c1 · . . . · (xan)cn = cx
∑n
i=1 ciai

for some c1, . . . , cn ∈ Z≥0 and c ∈ Z \ {0}. This term must vanish, so there is
a different term

c′(xa1)c
′
1 · . . . · (xan)c

′
n = c′x

∑n
i=1 c

′
iai

for some c1, . . . , cn ∈ Z≥0 such that
∑n
i=1 c

′
iai =

∑n
i=1 ciai. But since

a1, . . . , an are linearly independent, ci = c′i for all i, contradicting that the
second term is different from the first. Hence xa1 , . . . , xan are algebraically
independent, as required. �

The above lemma relates linear representability over Q to algebraic repre-
sentability over any commutative field. Thus we obtain the following theorem.

Theorem 6.3. If a matroid M is linearly representable over Q, then M is
algebraic in each characteristic.

This theorem is a special case Theorem 6.4 in the next section.

3. Matroids from connected one-dimensional algebraic groups

This section is based on ongoing work with Jan Draisma and Dustin
Cartwright [5]. The goal of this section is to show that matroids that are linear
over certain skew fields are algebraic. We also describe how the Lindström
valuation can be obtained from a linear representation over such a skew field.
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An algebraic group is an algebraic variety G endowed with a group structure,
where the multiplication and inversion operations of G are morphisms of
varieties [23]. The dimension of an algebraic group is its dimension as an
algebraic variety. We say G is connected if it is irreducible as a variety. We list
a classification of connected one-dimensional algebraic groups. Let K be an
algebraically closed field of characteristic p > 0, and let L be an algebraically
closed extension field of K. Then a connected one-dimensional algebraic group
G in L is one of the following [16, Section 3.1]:

(1) the multiplicative group Gm of L;
(2) the additive group Ga of L;
(3) an elliptic curve defined over K.

In all of these cases, G is abelian, in which case E := End(G) is the ring of
endomorphisms of G. so that the set E := End(G) of endomorphisms of G as an
algebraic group carries a natural (in general, noncommutative) ring structure,
with multiplication defined by (φ · ψ)(g) = φ(ψ(g)) and addition defined by
(φ+ ψ)(g) = φ(g) + ψ(g). We proceed to list the possible endomorphism rings
of connected one-dimensional algebraic groups G in nonzero characteristic [16,
Section 3.1]:

(1) if G = Gm, then End(G) ∼= Z;
(2) if G = Ga, then End(G) ∼= K[F ], a skew polynomial ring in which for

all a ∈ K, Fa = apF ;
(3) if G is an elliptic curve, then End(G) is one of the following [48,

Theorem V.3.1]:

• an order in Q(
√
D) for some D < 0;

• an order in a definite quaternion algebra over Q.

In each of these cases, End(G) embeds into a skew field S: End(Gm) embeds
into Q, and End(Ga) embeds into K(F ), the field of fractions of K[F ] [10,

Cor. 1.3.3]. When G is an elliptic curve, End(G) embeds into Q(
√
D) if G is

ordinary, or into a definite quaternion algebra over Q if G is supersingular.
Now let E be a finite set, and let G be a connected one-dimensional

algebraic group. Let X ⊆ GE be a closed, connected d-dimensional subgroup.
Then X gives rise to an algebraic matroid M(X) over G in the usual sense: a
subset I ⊆ E is independent in the matroid precisely when the projection of X
on GI is dominant. Now choose a non-constant rational function h : G 99K K
defined in an open neighborhood of the neutral element of G. Then we obtain a

rational map hE : GE 99K KE . The variety hE(X) ⊆ KE is then an algebraic
representation of M(X) over K.
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We associate to X a right submodule N of EE as follows:

N(X) := {ψ : ψ, seen as a map G→ GE , has its image in X}.
The algebraic matroid M(X) is also the linear matroid defined by N(X)S.

Theorem 6.4. Let K be an algebraically closed field of nonzero characteristic
and let M be a matroid. If M is linearly representable over

(1) Q; or
(2) K(F ); or

(3) Q(
√
D), where D < 0 and there exists an elliptic curve over K with

discriminant D; or
(4) a definite quaternion algebra over Q, an order in which is an endo-

morphism ring of some elliptic curve over K.

then M is algebraic over K.

Proof. The listed skew fields are the skew fields of fractions of E for some
connected one-dimensional algebraic group G defined over K. Let S be one of
the given skew fields. Without loss of generality, M is right-representable over
S. Let V ⊆ SE be a right subspace representing M . Consider the saturated
right submodule N = V ∩ EE of EE . One can show that as N is a saturated
right submodule of EE , there exists a closed, connected subgroup X ⊆ GE such
that N = N(X) [5]. Then we have M(X) = M(NS) = M(V ) = M . Hence M
is algebraic over K. �

For an elliptic curve G defined over the finite field GF (q), the Frobenius
endomorphism φ : x 7→ xq satisfies φ2−aφ+q = 0, where a = q+1−#G(GF (q))
is the trace of Frobenius [48, Theorem V.2.3.1]. Therefore one of the roots of
the polynomial x2 − ax+ q, namely

a±
√
a2 − 4q

2
,

must be in E. The number of points on G can be computed in polynomial time
[46]. Hence the number field Q(

√
D) in which E is an order can be computed

from G in polynomial time. This will be relevant in Chapter 8, where we focus
on small matroids in characteristic 2.

We proceed to construct the Lindström valuation of X ⊆ GE . In order to
do that, we need a valuation on E and a notion of determinant for matrices
over S.

We first construct a valuation on E given by v : E → Z≥0 ∪ {∞}. If ϕ
is a nonzero element of E, then ϕ gives rise to an injective homomorphism
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ϕ∗ : K(G)→ K(G). Suppose K has characteristic p. Define v(0) :=∞ and

v(ϕ) := logp[K(G) : ϕ∗K(G)]i,

the base-p logarithm of the inseparable degree of the given field extension.
Then v is a valuation on E, and v extends uniquely to S. Denote by S∗ the
multiplicative group of S. Since commutators in S have valuation 0, v also
induces a map v : S∗/[S∗, S∗]→ Z.

The notion of determinant we use is the Dieudonné determinant for matrices
over S. This is the unique group homomorphism Ddet : GLr(S)→ S∗/[S∗, S∗]
sending the diagonal matrix diag(a, 1, . . . , 1) to a, and sending Ir + bEi,jr to
1 for any b ∈ S∗ and i 6= j, where Ei,jr is the r × r matrix with 1 at position
(i, j) and 0 everywhere else. We now state a result from [5].

Theorem 6.5. Let G be a connected one-dimensional algebraic group with
endomorphism ring E. Let S be the skew field of fractions of E. Let X ⊆ GE
be a closed, connected subgroup. Let A be a matrix with column space N(X)S.
Then the Lindström valuation of X is given by:

ν : B 7→ v(Ddet(AB))

This theorem shows how to obtain the Lindström valuation of an algebraic
matroid from Theorem 6.4 directly from its linear representation over S.

Example 6.6. Let K be an algebraically closed field of characteristic p > 0.
Let G = Gm. Then E ∼= Z, S = Q, v is the p-adic valuation on Q, and Ddet
is the regular determinant on Q. p

4. Lazarson matroids

In this section, we revisit Lindström’s theorem on the class of Lazarson
matroids [31]. We strengthen his result by proving that each Lazarson matroid
is only linear-flock representable in a single characteristic.

Let p be prime. We denote by Mp the matroid which is linearly represented
over GF (p) by the matrix

(6)




x0 x1 · · · xp z y0 y1 · · · yp

1 1 0 1 1
1 1 1 0 1

. . .
...

...
...

. . .
...

1 1 1 1 0


.

By M−p we denote the matroid which is represented by the same matrix over
Q. The Lazarson matroids are the matroids

{Mp : p prime}.
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It is easy to verify that the following sets are the circuits of Mp:

• {x0, . . . , xp, z};
• {x0, . . . , xi−1, yi, xi+1, . . . , xp} for i = 0, . . . , p;
• {xi, z, yi} for i = 0, . . . , p;
• {y0, . . . , yp}.

Moreover, M−p has the same circuits, except {y0, . . . , yp}.
The following is known about Mp.

Theorem 6.7. (Lindström [31]) If Mp has an algebraic representation over a
field K, then the characteristic of K is p.

We prove a stronger result, which implies this theorem.

Theorem 6.8. Let K be a field and f an automorphism of K. If char(K) = p,
then for any linear flock V of Mp over (K, f) there exists α ∈ ZE such that
M(Vα) = Mp. If char(K) 6= p, then no linear flock of Mp over (K, f) exists.

Proof. Let K be a field and let V be a flock over (K, f) with M(V) = Mp.
Let M :=M(V).

Note that Mp restricted to C = {x0, . . . , xp, z} is isomorphic to Up+1,p+2.

By Lemma 5.23, Mp\C is rigid. Thus using Lemma 3.27, let α′ ∈ ZE be given so
that {x0, . . . , xp, z} is a circuit ofMα′ . Now consider α ∈ Cα′ ∩ |S0(M)| ∩ZE .
Since C is a spanning circuit, Mα also contains C as a spanning circuit.
Moreover, since α is a central point, Mα contains no loops.

We now argue that Vα equals the row space of (6) regarded as a matrix over
K (up to column scaling). As {x0, . . . , xp, z} is a circuit, we may row-reduce
so that the columns corresponding to this circuit are as in the matrix. Now
let i be given. As {x0, . . . , xi−1, yi, xi+1, . . . , xp} is a circuit, the i’th entry of
column yi is 0. Since {xi, z, yi} is a circuit, all entries j 6= i of the column yi
are equal, say bi. As Mα is loop-free, we must have bi 6= 0. So by column
scaling, we may choose bi = 1. Hence indeed, Vα equals the row space of (6)
up to column scaling.

Finally, {y0, . . . , yp} is a circuit. Hence the determinant corresponding to
the columns y0, . . . , yp must be zero. This determinant equals (−1)p+1p. If
char(K) 6= p, then we have a contradiction, and there exists no flock of Mp

over (K, f). If on the other hand char(K) = p, then M(Vα) = Mp. �

The argumentation in the above proof also yields a similar result about
M−p .

Theorem 6.9. Let K be a field with char(K) 6= p and f an automorphism of
K. Then for any linear flock V of M−p over (K, f) there exists α ∈ ZE such

that M(Vα) = M−p .
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Proof. Let K be a field with char(K) 6= p and let V be a linear flock
over (K, f) with M(V) = M−p . Using the circuits of M−p , we may construct
the matrix of Vα for a central point α in the same way as in the proof of
Theorem 6.8. Finally, {y0, . . . , yp} is not a circuit in M−p as opposed to Mp.
As char(K) 6= p, the determinant corresponding to the columns y0, . . . , yp is
nonzero. So M(Vα) = M−p as required. �

Theorem 6.7 follows by noting that any algebraic representation of Mp gives
rise to a linear flock due to Theorem 5.13. Theorems 6.8 and 6.9 show that Mp

and M−p have a property that is satisfied by rigid matroids. However, neither
class of matroid is rigid: for large enough p there exist nontrivial valuations of
Mp and M−p .

5. Reid geometries

We now move on to a result from Gordon on Reid geometries [18]. Again,
we show that each Reid geometry is only linear-flock representable in a single
characteristic, strengthening Gordon’s result.

Let p be prime. Let Np be the matroid which is linearly represented over
GF (p) by the matrix

(7)




x1 x2 x3 a0 b0 a1 b1 ap−1 bp−1

1 0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 · · · p− 1 p− 1
0 0 0 1 1 1 1 1 1


.

Let N−p be the matroid which is represented by the same matrix over Q. Note

that the circuits of N−p are exactly the circuits of Np, except {ap−1, b0, x3}.
The Reid geometries are the matroids

{Np : p prime}.
Theorem 6.10. (Gordon [18]) If Np has an algebraic representation over a
field K, then the characteristic of K is p.

We prove a stronger result, which implies this theorem.

Theorem 6.11. Let K be a field and f an automorphism of K. If char(K) = p,
then for any linear flock V of Np over (K, f) there exists α ∈ ZE such that
M(Vα) = Np. If char(K) 6= p, then no linear flock of Np over (K, f) exists.

Proof. Let K be a field and let V be a linear flock over (K, f) with
M(V) = Np. Denote M :=M(V).

Note that V\{x1, x2, x3, a0, a1, b0, b1} is a linear flock of a matroid isomor-
phic to M2 if char(K) = 2 or to M−2 if char(K) 6= 2. In both cases, due to
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Theorems 6.8 and 6.9 there is β such that (V\{x1, x2, x3, a0, a1, b0, b1})β equals
the row space of




x1 x2 x3 a0 b0 a1 b1

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1




up to column scaling.
Thus using Lemma 4.8, let α′ ∈ ZE be given so that

Vα′ \{x1, x2, x3, a0, a1, b0, b1} = (V\{x1, x2, x3, a0, a1, b0, b1})β .

Now consider α ∈ Cα′ ∩ |S0(M)| ∩ ZE . Then

Vα\{x1, x2, x3, a0, a1, b0, b1} = Vα′ \{x1, x2, x3, a0, a1, b0, b1}.

Moreover, since α is a central point, Mα contains no loops.
In each of the subsequent steps, we use the following important fact. By

definition of M, we have that for all I ⊆ E, rα(I) ≤ r(I). Hence if I is a
circuit of Np of size 3, then I is dependent in Mα.

For i = 2, . . . , p − 1 we consecutively find the columns bi and ai in the
matrix of Vα as follows. Consider the circuits {x2, b0, bi} and {x3, ai−1, bi}.
We find the column of bi:




x2 b0 bi x3 ai−1

0 1 1 1 0
1 0 i 1 i− 1
0 1 1 0 1


.

The column bi must be nonzero and lie in the intersection of the subspace
spanned by the columns x2, b0 and the subspace spanned by the columns
x3, ai−1, fixing bi up to scaling.

And then using similar reasoning, considering the circuits {x2, a0, ai} and
{x1, ai, bi}, we find the column of ai:




x2 a0 ai x1 bi

0 0 0 1 1
1 0 i 0 i
0 1 1 0 1


.

Finally we distinguish between the possible characteristics of K. As
{ap−1, b0, x3} is a circuit, the corresponding columns must be dependent.
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det




ap−1 b0 x3

0 1 1
p− 1 0 1

1 1 0


 = p = 0

if and only if the characteristic of K equals p. Hence if char(K) 6= p,
{ap−1, b0, x3} would be independent, contradicting the assumption that V
is a linear flock of Np. If, on the other hand, char(K) = p, then Mα = Np as
required. �

Theorem 6.12. Let K be a field with char(K) 6= p and f an automorphism
of K. Then for any linear flock V of N−p over (K, f) there exists α ∈ ZE such

that M(Vα) = N−p .

The proof is similar to the proof of Theorem 6.9. Similarly to the Lazarson
matroids, the matroid classes Np and N−p are not rigid either for sufficiently
large p.

6. Dowling geometries

In this section, we consider Dowling group geometries of rank 3.
Let G be a finite group with identity e. We define a matroid from G

as follows. Let J := {jAB , jBC , jAC} be a set of three points called ‘joints’.
Furthermore, let a point gx be given for each g ∈ G and x ∈ {A,B,C} and
define Gx := {gx : g ∈ G}. Let

E := J ∪GA ∪GB ∪GC .
Then we define D3(G), the rank 3 Dowling geometry of G, to be the matroid
on E whose lines are

• {jAB , jAC} ∪GA;
• {jAB , jBC} ∪GB ;
• {jAC , jBC} ∪GC ;
• {fA, gB , hC} for all f, g, h ∈ G such that fgh = e.

In Figure 1 the rank 3 Dowling geometry of the trivial group is shown.
This particular matroid is M(K4), the cycle matroid of the complete graph
on 4 vertices, and it is a matroid for which Evans and Hrushovski showed
that its algebraic representations must necessarily come from a connected
one-dimensional algebraic group [16].

On the other hand, Dowling [12, Thms. 9,10] showed that D3(G) is linear
over a field K if and only if G is a subgroup of the multiplicative group K∗

of K. In particular, D3(G) is only linear if G is cyclic. A natural question is:
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jAB

jAC jBC

eA eB

eC

Figure 1. The rank 3 Dowling geometry of the trivial group.

what can be said about algebraic representations or representations over skew
fields of rank 3 Dowling geometries?

The presence of many M(K4)-minors in rank 3 Dowling geometries suggests
the following conjecture.

Conjecture 6.13. Suppose M is a rank 3 Dowling geometry. Then any
algebraic representation of M comes from a connected one-dimensional algebraic
group.

Aner Ben-Efraim constructed a matroid which is only algebraic in char-
acteristic 2 [2]. Let Q8 = {e,−e, i,−i, j,−j, k,−k} be the quaternion group,
where e is the identity element. As Q8 is not abelian, D3(Q8) is not linear over
any field. We extend the matroid D3(Q8) by an element O such that the circuits
containing O are {jAB , O, (−e)C}, {jAC , O, (−e)B} and {jBC , O, (−e)A}. We
call this extension DO

3 (Q8). It is straightforward to check that the restriction of
DO

3 (Q8) to the elements {jAB , jAC , jBC , O, (−e)A, (−e)B , (−e)C} is isomorphic
to the Non-Fano matroid. Now Ben-Efraim shows the following.

Theorem 6.14. Suppose DO
3 (Q8) is algebraic over K. Then K has character-

istic 2.

We sketch the proof in terms of flocks. Let X be an algebraic representation
of DO

3 (Q8) over K. Since DO
3 (Q8) is nonlinear, the Lindström valuation of

X is not a trivial valuation. Let M =M(X). Then Ben-Efraim shows that
there must be a central point α ∈ S0(M) ∩ ZE such that Mα contains the
Fano matroid as a minor. Hence Mα can only be linear over K if K has
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characteristic 2. Thus if char(K) 6= 2, then M does not admit a linear-flock
representation over K. Due to Theorem 5.1, DO

3 (Q8) is then not algebraic over
K.





CHAPTER 7

Computational problems

1. Introduction

This chapter is concerned with the computational aspects of Frobenius
flocks. There are two main goals of this chapter: determining Frobenius-flock
representability of matroids, and computing the Frobenius flock of an algebraic
matroid representation. Both of these are computational tasks. All algorithms
mentioned in this chapter are supplemented with an implementation in Sage.
The code is available on
www.github.com/gpbollen/Algebraicity-of-Matroids-and-Frobenius-Flocks.

1.1. Determining Frobenius-flock representability. The first goal
is to determine whether a given matroid is Frobenius-flock representable in a
given characteristic. For that we will use Theorem 4.30. However, the theorem
applies to matroid flocks, and not to matroids. So we have to consider all
possible matroid flocks of a given matroid. Due to Theorem 3.3, matroid flocks
correspond to integer-valued valuations. The set of integer-valued valuations
of a matroid is infinite, as for instance scaling a valuation by a positive scalar
yields another valuation.

For many matroids, there is no need to check every valuation to know
whether or not the matroid is Frobenius-flock representable. This is obvious
if the answer is yes — one just needs to find a valuation ν such that Mν is
Frobenius-flock representable. If the answer is no, it often suffices to check a
finite number of valuations: one for each combinatorial type. Valuations of
the same combinatorial type share certain properties. One of these properties
(Theorem 7.13) is that the image of the matroid flock Mν is equal to the
image of Mτ if ν and τ are valuations of the same combinatorial type. If
one of the matroids in the image is nonlinear in the given characteristic, then
none of the valuations of this combinatorial type will give rise to a matroid
flock which is Frobenius-flock representable. Then only one valuation of the
combinatorial type needs to be checked in order to exclude all valuations of
the same combinatorial type.

97
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Section 2 is devoted to computing one valuation for each cell of the Dressian
of a matroid. An algorithm is described that computes one valuation for each
occurring combinatorial type. In Section 3, we compute the relevant properties
of a valuation so that the conditions of Theorem 4.30 can be checked. In
particular, the central points of the matroid flock Mν , and their relative
positions in the matroid flock are considered. Then in Section 4 an algorithm
is described that checks whether a matroid flock satisfies the conditions of
Theorem 4.30. Finally in Section 5, we use the algorithms to say something
about Frobenius-flock representability of a matroids. There are three possible
outcomes:

(1) a Frobenius-flock representation has been found;
(2) each matroid flock contains a non-linear matroid and thus the matroid

is not Frobenius-flock representable;
(3) neither (1) nor (2) hold.

Rigid nonlinear matroids will always fall into the second case. If a matroid
M is rigid, then each valuation ν of M is trivial, and M has only one combina-
torial type. Hence there exists α ∈ ZE such that Mν

α = M . If M is nonlinear,
then the matroid flock Mν is not Frobenius-flock representable. Similarly, as
was shown in the previous chapter, Lazarson matroids and Reid geometries are
not Frobenius-flock representable due to the second case.

In the third case, we generally do not know whether the matroid is
Frobenius-flock representable. However, in some cases we can still argue that
no Frobenius-flock representation exists. We illustrate this on the quaternary
butterfly matroid (Figure 1).

1.2. Computing Frobenius flocks. The second goal of this chapter
is to compute a Frobenius flock of an algebraic representation of a matroid.
That is, given an algebraic representation X, we want to compute a general
v ∈ X, and then compute the Frobenius flock associated to (X, v) according
to Theorem 5.13. In order to find a v ∈ X satisfying (*) from Theorem 5.13,
which exists due to Theorem 5.17, it suffices to check (*) for a specific set
of α ∈ ZE . Due to Theorem 4.30, these α are exactly the central points of
M(X). So it makes sense to first compute the underlying matroid flock of
X, which is derived from the Lindström valuation of X. In order to compute
the Lindström valuation, I use the construction by Cartwright [9], which is
described in Section 6. The required properties of the corresponding matroid
flock are computed in Section 3.

Finally, in Section 7, we compute the tangent space TαvαX for a given
v ∈ X. This gives us the tools we need to check whether some v satisfies (*)
from Theorem 5.13 at all central points α of M(X). Once such a general v is



2. COMPUTING THE CELLS OF THE DRESSIAN 99

found, the algorithm that computes TαvαX is, as a function of α, the Frobenius
flock associated to (X, v).

2. Computing the cells of the Dressian

The aim of this section is to provide an algorithm that yields one integral
valuation in the interior of each cell of the Dressian of a matroid M .

A naive approach to this would be to enumerate all cells of D(M) by
computing the intersections of all possible combinations of polyhedra from
the polyhedral complexes PQ and PO for degenerate pure quadrangles Q and
octahedra O, and then computing a valuation in the interior of each of the
cells. However, this number of cells is very large. As for each O, PO contains 4
nonempty cells, this approach requires enumeration and inspection of 4|O(M)|

open cells. Most of these cells are empty, and as O(M) is generally quite large,
this approach is extremely inefficient.

Instead, we use a type of backtracking approach, which is made precise in
Algorithm 1.

Lemma 7.1. Let a natural number n be given. On input

(1) a polyhedron D ⊆ Rn;
(2) a finite set U ;
(3) a finite set AO of disjoint polyhedra in Rn for each O ∈ U ,

Algorithm 1 returns the set

D(D,U,A) :=

{
P : P = D ∩

⋂

O∈U
PO 6= ∅, where PO ∈ AO for each O

}
.

Proof. We use induction on |U |. If U = ∅, the algorithm returns either ∅
(if D = ∅) or {D}, as required.

Now suppose |U | > 0. If after constructing A′O for each O ∈ U , there
exists O such that A′O = ∅, then D ∩ P = ∅ for all P ∈ AO, and it follows
that D(D,U,A) = ∅. Otherwise, for each O ∈ U such that |A′O| = 1, each
element of D must be contained in the unique set P ′O in A′O. Let D′ and U ′ be
as constructed in the algorithm. Then D(D,U,A) equals D(D′, U ′, A′). Thus
if D′ is empty, so is D(D,U,A). If D′ is nonempty and U ′ is empty, then
|A′O| = 1 for each O ∈ U , and D(D,U,A) equals the singleton set {D′}. Now
suppose D′ and U ′ are both nonempty, and consider any O ∈ U ′. Then any
element of D(D,U,A) is contained in some P ∈ A′O. Hence C ∈ D(D,U,A) =
D(D′, U ′, A′) if and only if C ∈ ⋃P∈A′O D(D′ ∩ P,U ′ − O, (A′T )T∈U ′−O). By

induction on |U |, this is exactly the set that is returned.
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Algorithm 1 CombinatorialTypes(D,U,A)

input: A polyhedron D; a finite set U ; a finite set AO of disjoint polyhedra
for each O ∈ U .
output: The set {P : P = D∩⋂O∈U PO 6= ∅, where PO ∈ AO for each O ∈
U}.
for O ∈ U do

A′O ← AO
for P ∈ AO do

if D ∩ P = ∅ then
A′O ← A′O − P

end if
end for

end for
if ∃O : AO = ∅ then

return ∅
end if
D′ ← D
U ′ ← U
for O ∈ U : |A′O| = 1 do

P ← ⋃
A′O

D′ ← D′ ∩ P
U ′ ← U −O

end for
if D′ = ∅ then

return ∅
end if
if U ′ = ∅ then

return {D′}
end if
pick O ∈ U ′
return

⋃
P∈A′O CombinatorialTypes(D′ ∩ P,U ′ −O, (A′T )T∈U ′−O)

Checking whether a polyhedron is empty can be done in polynomial time
by an LP-solver. The algorithm terminates because U and A are finite, and
|U | decreases in each iteration. �
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Let D :=
⋂
Q∈Q(M) PQ and let U := O(M) be the set of octahedra of M .

For O ∈ O(M) with O = (B11, . . . , B32), we set

P̃ 0
O := P 0

O;

P̃ iO := {ν ∈ RB : ν(Bi1) + ν(Bi2)− 1

≥ ν(Bj1) + ν(Bj2) = ν(Bk1) + ν(Bk2)} ⊆ int(P iO),

where i, j, k are distinct members of {1, 2, 3} and int denotes the interior. Let

AO := {P̃ iO : i ∈ {0, 1, 2, 3}}
for each O ∈ O(M). Let D be the set D(D,U,A) as in the previous lemma.

Lemma 7.2. Let M be a matroid and let D be as above. Then there exists a
bijection from D(M) to D given by T 7→ C such that C ⊆ T .

Proof. Let κ : O(M)→ {0, 1, 2, 3} be given such that

T =
⋂

O∈O(M)

P
κ(O)
O ∩

⋂

Q

PQ 6= ∅.

We show that there exists C ∈ D such that C ⊂ T .
If κ = 0, then this existence follows from Lemma 7.1. So suppose κ 6= 0.

Define the slack of an inequality a ≥ b to be a− b. Suppose ν ∈ T and let ε be

the smallest occurring slack of the defining inequality of P
κ(O)
O for O ∈ O(M)

such that κ(O) > 0. Then ε > 0. Hence by Lemma 2.33, ε−1ν ∈ T , and the
smallest occurring slack for ε−1ν is 1. Hence as T is nonempty, neither is

C =
⋂

O∈O(M)

P̃
κ(O)
O ∩

⋂

Q

PQ.

We have C ⊂ T and, due to Lemma 7.1, C ∈ D.
Conversely, each element of D is contained in a cell of D(M), but no two

in the same cell. This makes the map T 7→ C a bijection, as required. �

Now each element C ∈ D is a polyhedron. Using an LP-solver, we can find
some νC ∈ C ∩QB. Using Lemma 2.33, we may scale νC so that νC ∈ C ∩ ZB.
Due to Theorem 2.30, νC is a valuation of M . Due to the previous lemma,
each νC has a distinct combinatorial type. Hence the set

{νC : C ∈ D}
contains an integral valuation for each combinatorial type of M . With that,
we have achieved the goal of this section.
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3. Computing the skeleton graph of a matroid flock

In this section we compute the points and lines of the skeleton graph GM
of a matroid flock M. For each point of GM, we compute a representative
α ∈ ZE . Then for each pair of points, we check whether they are connected by
a line in GM. First, we recall how to compute M from its valuation.

By Theorem 3.3, it is straightforward to compute a matroid flock from
its valuation. Let M = Mν . Then for each α ∈ ZE , we have Mα = Mν

α.
Computing Mν

α requires finding the maximizers of a linear function on Bν :

Bνα = arg max
B∈Bν

{eB · α− ν(B)}.

This allows us to computeMα for each α. However, we also want to locate the
cells in S1(M) (the points and lines of the skeleton graph) for the linear-flock
representability algorithms. We show how we find them here.

Denote by T = T (M) the linear subspace of RBν of trivial valuations. By
Lemma 2.31, T ⊆ Λ(D(Mν)). For any ρ ∈ (ν + T ) ∩ RBν≥0, denote

Dρ := {B ∈ B : ρ(B) = 0}

Due to Lemma 2.16, Dρ is the basis set of a matroid.

Lemma 7.3. Let M be a matroid on E with basis set B. Let ν be a valuation
of M . Suppose α ∈ RE and ρ ∈ RB are such that ρ = ν −∑e∈E αeτe, and
minB∈B ρ(B) = 0. Then Mν

α = (E,Dρ).

Proof. The valuation
∑
e∈E αeτe ∈ T is the trivial valuation of M given

by B 7→∑
e∈B αe. Thus by Lemma 3.21, Mν

α =Mρ
0. But Bρ0 is just the set of

bases B for which ρ(B) is minimal, and hence 0 by the assumptions on ρ. In
other words, Bρ0 = Dρ, as required. �

For a given valuation ν, the set (ν + T ) ∩RB≥0 is a polyhedron in RB. The
vertices of this polyhedron correspond to valuations ρ for which Dρ is maximal.
Hence each vertex gives rise to a central point α of Mν due to the above
lemma. So in order to find the central points of Mν , we compute the vertices
(modulo lineality) of this polyhedron and retrieve one αC ∈ C ∩QE for each
C ∈ S0(Mν).

Due to Lemma 3.16, we may choose a canonical representative βC of C
satisfying mine∈J βe = 0 for each component J of M . That is, let ζ : ZE → ZE
be given by

ζ(αC) = αC −
∑

J

min
e∈J

(αCe )eJ .
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If ν is integral, then so is βC = ζ(αC), and in that case ζ coincides with ζ from
Lemma 4.31 on the central points of M. Define

C(Mν) := {ζ(αC) : C ∈ S0(Mν)}
as the set of representatives of the cells in S0(Mν). This is the vertex set of
the skeleton graph of Mν .

Next, we characterise when two vertices are neighbors in the skeleton graph.
So first, we find the pairs of points that are at distance keI from each other,
modulo Λ(Mν). For simplicity, we restrict ourselves to the case of connected
matroids, where the lineality space is just generated by 1 due to Lemma 3.19.
This is no loss of generality, as the skeleton graph of a disconnected matroid
flock can be reconstructed from the skeleton graphs of its components.

Lemma 7.4. Let E be a nonempty set. Let α, β ∈ ZE. Then there exists
I ⊂ E and k, l ∈ Z such that

β − α = keI + l1

if and only if

|{(β − α)e : e ∈ E}| ≤ 2.

Proof. If β−α = keI + l1, then the values assumed by (β−α)e for e ∈ E
are either k or l + k (which may coincide). Conversely, if {(β − α)e : e ∈ E} =
{a, b}, then we pick I such that (β − α)e = a. Pick k = a and l = b− a. Then
indeed, β − α = keI + l1. �

Let

N(Mν) := {(α, β, I) : α, β ∈ C(Mν), α 6= β, I ⊆ E,
and ∃k, l ∈ Z : β − α = keI + l1}.

Due to Lemma 7.4, N(Mν) is straightforward to compute. Note that being at
distance keI of each other modulo the lineality space is not sufficient for points
to be neighbors, as the points between them might not all lie in the same cell
of S1(Mν). Define

A(Mν) :=
{

(α, β, I) ∈ N(Mν) :Mν
α/I =Mν

β\I
}
.

Then whenever (α, β, I) and (β, α, I) are both elements of A(Mν), {α, β} is
an edge of the skeleton graph.

We conclude that points and lines of the skeleton graph GM are given by
C(M) and

{
{α, β} ∈

(C(M)

2

)
: ∃I ⊆ E : (α, β, I), (β, α, I) ∈ A(M)

}
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respectively.

4. Deciding Frobenius-flock representability of matroid flocks

Let K be an algebraically closed field of nonzero characteristic. A Frobenius-
flock representation of a matroid flockM over K exists if and only ifM admits
a skeleton representation over K due to Lemma 4.29 and Theorem 4.30. In
the previous section we have seen how to compute the set of representative
central points C(M) of M and the pairs of C(M) that are neighboring in the
skeleton graph of M. Moreover, it was described how to compute the labeled
arcs A(M) that determine the edges of the skeleton graph. So in order to find
a skeleton representation V of M, we must find a set of vector spaces Vα for
α ∈ C(M) satisfying two types of conditions.

The first condition, the linearity condition, is that for each central point
α ∈ C(M), Vα linearly represents Mα. The second condition, the neighbors
condition, is that the linear representations Vα,Vα+eI+l1 at neighboring central
points should be related by

Vα/I = (−l)1Vα+keI+l1\I;(8)

(−(k + l)1)Vα+keI+l1/I = Vα\I.(9)

The third property of a skeleton representation relates Vα and Vβ in the
same cell of S0(M), and hence it does not yield a condition on the Vα for
α ∈ C(M). Fixing Vα for one central point per cell fixes Vα for all central
points in agreement with this third property due to Lemma 4.31. Then due
to Theorem 4.30, if the Vα for α ∈ C(M) satisfy the linearity and neighbors
conditions, V uniquely extends to a Frobenius flock.

The remainder of this section is devoted to finding a set of vector spaces
Vα for each α ∈ C(M) that satisfies the linearity and neighbors conditions.
We describe these conditions by a system of polynomial equations over K.
Finally we check if all of these polynomial equations have a common solution.
We take the ideal I generated by the polynomial equations. Due to Hilbert’s
Nullstellensatz, 1 ∈ I if and only if there exists no common solution to the
polynomial equations. We can check whether 1 ∈ I by computing the Gröbner
basis g of I and checking if 1 ∈ g.

Note that a matroid flock M =M1 ⊕M2 is Frobenius-flock representable
if and only if both M1 and M2 are Frobenius-flock representable. So there is
no harm in assuming M is connected.

4.1. The linearity condition.

Definition 7.5. A matrix r × E A(x1, . . . , xN ) is a general matrix represen-
tation of a matroid M over an algebraically closed field K if and only if for
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each linear representation V ∈ Grr(K
E) of M there exist a1, . . . , aN ∈ K such

that A(a1, . . . , aN ) = V .

Clearly, an r ×E matrix with a variable at each entry is a general matrix
representation of any rank r matroid on E. If M is a matroid, A is an r × E
matrix, Q is an invertible r × r matrix and D is a nonsingular E ×E diagonal
matrix, then A is a general matrix representation of M if and only if QAD
a general matrix representation of M . We use this fact to bring A into the
simplest possible form.

Let M be a matroid over K of rank r on E. Let B be a basis of M . For
f ∈ B, let CBf denote the fundamental circuit of f with respect to B, which

is the unique circuit in B + f . Consider the matrix AB(xe,f : e ∈ B, f ∈ B)
over K defined by ABB = Ir, the rank r identity matrix, and the column
ABe =

∑
e∈CBf −f xe,f .

Lemma 7.6. Let M be a matroid over K of rank r on E. Let B be a basis
of M . Then AB(xe,f : e ∈ B, f ∈ B) is a general matrix representation of M
over K.

Proof. Let V be any general matrix representation of M . Row operations
preserve the fact that V is a general matrix representation of M . Hence for any
basis B we may row-reduce the matrix so that there is an identity matrix at B.
The fundamental circuits (CBf )f∈B with respect to B then fix the zero pattern

of the matrix. It follows that AB is a general matrix representation of M . �

There is further freedom of choosing the matrix in the form of column
scaling. While column scaling with a nonzero scalar alters the row space of the
matrix, it does not change the matroid it represents. Let B be the basis of M
corresponding to the identity, and consider the bipartite graph G(M,B) on E
where (e, f) is an edge if and only if e ∈ B, f ∈ B and e ∈ CBf − f . Let T be a

spanning forest of G. Define the matrix AB,T be the matrix obtained from AB

by setting xe,f = 1 for all (e, f) ∈ T .

Lemma 7.7. Let M be a matroid, let B be a basis of M , and let T be a
spanning forest of G(M,B). Then AB,T is a general matrix representation of
M up to column scaling.

Proof. Let [I, A] = AB. By row and column scaling, we morph this
matrix into [I, A′] = AB,T .

We label row i of A by the element e ∈ B such that the column correspond-
ing to e is ei, so that each edge of G corresponds to a nonzero entry of A. Now
consider a spanning forest T of G. Without loss of generality, assume G(M,B)
is connected, so that T is a tree. Let the weight function w on T be given by
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w(e, f) = Ae,f . Then scaling a column or row e of A amounts to scaling the
weights of all edges adjacent to e. Note that scaling both endpoints of an edge
by mutually inverse scalars keeps the edge weight the same. So pick any edge
(e, f) of T for which w(e, f) 6= 1. We scale e by w(e, f)−1, so that the new
weight of (e, f) is 1. Next, for all g in the component of e of T \{(e, f)}, we
scale g by

w(e, f)(−1)1+d(e,g) ,

where d(e, g) is the distance between e and g. The distance is indeed well
defined, since T is a tree. This ensures that all other edge weights remain
intact. Hence by induction, there are scalars λe for each vertex such that all
weights of the edges of T are 1.

Finally, we return to the matrix [I, A]. Applying the row and column scalars
as above yields a matrix [D,A′], where A′ has 1 at the entries corresponding
to edges of T , and D is a diagonal matrix. The identity matrix can be restored
by scaling the columns e ∈ B by the inverse of the diagonal elements of D.
Since [I, A′] was obtained from [I, A] by only row and column scaling, AB,T is
a general matrix representation of M up to column scaling if and only if AB is
a general matrix representation of M . The latter is ensured by Lemma 7.6. �

The following lemma argues that linear representability of a matroid over
a field can be expressed by a system of polynomial equations.

Lemma 7.8. Let K be an algebraically closed field. Let M be a matroid of
rank r on E. Suppose A(x1, . . . , xN ) is a general matrix representation of M
over K. Then M is linear over K if and only if there exist a1, . . . , aN ∈ K
and tB ∈ K for each basis B of M such that:

(1) for each nonbasis S of M , detA(a1, . . . , aN )S = 0;
(2) for each basis B of M , tB detA(a1, . . . , aN )B = 1.

Proof. We have detA(a1, . . . , aN )B = 0 if and only if A(a1, . . . , aN )B is
not invertible. On the other hand, there exists tB ∈ K such that

tB detA(a1, . . . , aN )B = 1

if and only if

detA(a1, . . . , aN )B 6= 0.

�

For α ∈ C(M) and a general matrix representation A(x1, . . . , xN ) of Mα,
let the ideal in K[x1, . . . , xN , (tB)B∈B(M)]

Iα(A)
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be generated by

detA(x1, . . . , xN )S = 0

for each nonbasis S, and

tB detA(x1, . . . , xN )B = 1

for each basis B. Then due to Hilbert’s Nullstellensatz, a Gröbner basis of
Iα(A) contains 1 if and only if Mα is linear over K.

4.2. The neighbors condition. The following is straightforward.

Lemma 7.9. Let B = [Ir, A] be a r × n matrix representing a matroid M .
Then B∗ := [−AT , In−r] represents M∗.

Proof. The row space of B∗ is the orthogonal complement of the row
space of B. �

Thus we may model conditions (8,9) as follows.

Lemma 7.10. Let M be a matroid flock. Let V be a skeleton representation of
M. Let α and α+ keI + l1 be two neighboring central points of V. Suppose A
is a matrix representing Vα, and B is a matrix representing Vα+keI+l1. Then

Vα/I = −l1Vα+keI+l1\I ⇔ (F l[B]\I)(A∗\I)T = 0;

−(k + l)1Vα+keI+l1/I = Vα\I ⇔ (A\I)(F k+l[B∗]\I)T = 0

Proof. The matrix of Vα+keI+l1\I is B\I; the matrix of Vα/I is (A∗\I)∗, as
deletion is the dual operation of contraction. Thus Vα+keI\I = −l1Vα+keI+l1\I
and Vα/I are the same if and only if they have the same dimension and the
kernel of (A∗\I)∗ is contained in the kernel of −l1B\I = F l[B]\I. The kernel
of (A∗\I)∗ is the column space of (A∗\I)T , so (F l[B]\I)(A∗\I)T = 0 if and only
if the kernel of (A∗\I)∗ is contained in the kernel of F l[B]\I. The dimensions
of Vα+keI\I and Vα/I are equal because α and α+ keI are neighboring central
points. So the first statement follows. The proof of the second statement is
analogous. �

Hence the neighbors condition for an edge {α, β} of the skeleton graph of
M is as follows. Pick general matrix representations A(x1, . . . , xN ) ofMα and
B(y1, . . . , yN ) of Mβ . Then each entry of the matrices

(F l[B]\I)(A∗\I)T

and

(A\I)(F k+l[B∗]\I)T
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as in Lemma 7.10 should be 0. We may apply an appropriate Frobenius power
to each of the entries to make sure the entries are elements of

K[x1, . . . , xN , y1, . . . , yN ].

Let
Iα,β(A,B)

be the ideal generated by the polynomials in the entries of the matrices.
Now we have explained how to obtain a list of equations to check the

existence of a skeleton representation. The algorithm that brings it all together
is Algorithm 2.

Algorithm 2 FFlockRepresentable(ν, p)

input: a valuation ν of a connected matroid M , and a prime number p
output: a boolean stating whether Mν is Frobenius-flock representable
C ← C(Mν)
for α ∈ C do

Aα ← a general matrix representation of Mν
α.

if Mν
α not linear over K then

return False (linearity)
end if

end for

I ←
⋂

α

Iα(Aα) ∩
⋂

{α,β}
Iα,β(Aα, Aβ)

g ← GrobnerBasis(I)
return ¬(1 ∈ g) (Gröbner)

Theorem 7.11. Let ν be a matroid valuation of a connected matroid, and
let p be prime. Then FFlockRepresentable(ν, p) (Algorithm 2) returns ‘True
(Gröbner)’ if and only if Mν is Frobenius-flock representable.

Proof. If Mν
α is not linear over K, then the linearity condition fails and

hence Mν is not linear-flock representable over K. Otherwise, I is the ideal
containing all polynomials that describe the linearity and neighbors conditions
on Vα for α ∈ C(Mν). Hence 1 6∈ I if and only if Mν admits a skeleton
representation V. By Theorem 4.30, V then extends to a Frobenius flock of
Mν . �

It is computationally beneficial to reduce the number of variables for
Gröbner basis computations. Therefore it helps to choose the general matrix
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representations Aα in row-reduced form, with respect to a basis with as few
as possible adjacent bases. One of the matrices Aα only needs to be a general
matrix representation up to scaling, since V : α 7→ Vα is a linear flock if and
only if V ′ : α 7→ Vα · (αD) is a linear flock for some invertible E × E diagonal
matrix D. This allows us to eliminate another |E| − 1 variables.

5. Deciding Frobenius-flock representability of matroids

A matroid M is linear-flock representable over a field (K, f) if there exists
a valuation ν of M such that Mν is linear-flock representable over (K, f).
Ideally, we wish to enumerate the valuations ν of M and then either find
one that is linear-flock representable over (K, f), or find a reason for all of
them to be not linear-flock representable. This is not always possible, but in
many cases it is. We start by enumerating the cells of D(M), and we check
Frobenius-flock representability of one valuation for each cell. If a valuation ν
is not Frobenius-flock representable due to nonlinearity of one of the matroids
Mν

α, then we will see that no valuation of the same combinatorial type as ν is
Frobenius-flock representable. If ν is not Frobenius-flock representable for a
different reason, then we do not know in general whether any other valuation
of the same combinatorial type is Frobenius-flock representable.

We first prove an invariant of valuations of the same combinatorial type,
for which we need the following lemma.

Lemma 7.12. Let ν be a matroid valuation of a matroid on E. Let O be an
octahedron of Mν . Then there exists α ∈ ZE such that O is an octahedron of
Mν

α, if and only if κν(O) = 0.

Proof. Let B11, . . . , B32 be the bases of Mν
α corresponding to O as

described above. Then by definition of Mν
α, we have

α · eB11
− ν(B11) = . . . = α · eB32

− ν(B32).

In particular, when we add the terms for the pairs (Bi1, Bi2), we get that

α · (eBi1 + eBi2)− ν(Bi1)− ν(Bi2)

is equal for each i. Since

eBi1 + eBi2 = 2eS + ea + eb + ec + ed

for each i, it follows that κν(O) = 0.
Conversely, translating ν by the trivial valuation

−ν(B11)eb − ν(B21)ec − ν(B31)ed −
1

2
ν(B12)(ebcd − ea),
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we obtain a valuation ν′ such that ν′(B11) = ν′(B21) = ν′(B31) = ν′(B12) = 0.
As κν′(U) = κν(U) = 0, we also get ν′(B22) = ν′(B32) = 0. Then B11, . . . , B32

are all present as bases of Mν′

keS+a+b+c+d
for k large enough, which can be

translated back to a point α of Mν . �

The following theorem relates the images of Mν and Mτ if ν and τ
are valuations of the same combinatorial type, which is useful for analyzing
linear-flock representability of all valuations of a combinatorial type.

Theorem 7.13. Let M be a matroid. Let ν, ν′ be rational valued valuations
of M of the same combinatorial type. Then

{Mν
α : α ∈ RE} = {Mν′

α : α ∈ RE}.
Proof. For t ∈ [0, 1], consider

τt := tν + (1− t)ν′.
It is straightforward to show that τt is a valuation of M with the same combi-
natorial type as ν and ν′. The polyhedral complex Dτt changes continuously
with t, since the defining equations of the polyhedra are continuous in ν: for
any C ∈ Dτt and an interior point β of C, we have

C = Cβ = {α ∈ RE : B ∈ arg max
B′∈Bτt

{α · eB′ − τt(B)} for all B ∈ Bτtβ }.

As t changes, cells may split apart or be joined together, resulting in a difference
in the set of matroids {Mν

α : α ∈ RE} and {Mτt
α : α ∈ RE}. We need to show

that this splitting or joining together does not happen.
Let Cα ∈ Dν be given, and suppose by contradiction that Cα splits at

τt for some t < 1. Let 0 < ε < 1 − t be given such that Cα splits into two
neighboring cells Cβ and Cβ+keI in Dτt+ε for some β ∈ RE , k ≥ 0 and I ⊂ E.
We show that then the combinatorial types of ν and τt+ε are different. To that
end, we construct an octahedron of M on which κν and κτt+ε are different,
contradicting the assumption that κν = κν′ . We use results from Chapter
3 in this construction, so we use scaling to obtain integral valuations, which
correspond with matroid flocks.

As ν, ν′ are rational valuations, we may assume by scaling (Lemma 2.33)
that ν, τt+ε and ν′ are integral. Then M := Mτt+ε is a matroid flock due
to Theorem 3.3. Moreover, by scaling we may assume that k > 1 so that
γ := β + eI is an interior point of the cell between Cβ and Cβ+keI .

So now, we have integral points β, β + keI and γ in a matroid flock for
each of the three cells Cβ , Cβ+keI and Cγ respectively. Denote M :=Mτt+ε .
Due to Lemma 3.46,

Mβ � I =Mγ =Mβ+keI � I.
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Using Lemma 3.33, we find that since Mγ =Mβ+eI �Mβ , we have rβ(I) >

rγ(I). Similarly, rβ+keI (I) > rγ(I). Now consider any basis B of Mγ . Since

λγ(I) = 0, we have |B ∩ I| = rγ(I) and |B ∩ I| = rγ(I). So there exist a ∈ I
and c ∈ I such that rβ((B+a+c)∩I) = rγ(I)+1 and rβ+keI ((B+a+c)∩I) =

rγ(I) + 1. Now there is a circuit CI of Mγ contained in (B + a+ c) ∩ I and

similarly there is a circuit CI ofMγ contained in (B+a+c)∩I. Pick b ∈ CI−a
and d ∈ CI−c. Then B−b−d+a+c is a basis ofMγ . Denoting S = B−b−c,
we find that the bases

S + a+ b, S + a+ c, S + a+ d, S + b+ c, S + b+ d, S + c+ d

describe an octahedron O of M , and in particular all of the bases are contained
in Bβ ∪ Bβ+keI = Bνα. By Lemma 7.12, we find that κν(O) = 0, while
κτt+ε(O) 6= 0; contradiction. �

The theorem is also valid for real-valued valuations, but in order to prove
it using our available matroid flock results, we needed to be able to scale the
valuations up to integral valuations.

When checking linear-flock representability of a given Mν over (K, f),
there are three possible outcomes:

(1) Mν is linear-flock representable;
(2) Mν is not linear-flock representable and there exists α ∈ ZE such

that Mν
α is not linear over K;

(3) Mν is not linear-flock representable and for all α ∈ ZE , Mν
α is linear

over K.

In case (2), due to Theorem 7.13 each valuation of the same combinatorial type
as ν is not linear-flock representable either. In case (3), there might be another
valuation of the same combinatorial type that is linear-flock representable over
(K, f). We do not know yet whether checking a finite number of valuations
of this combinatorial type could, in general, lead to the conclusion that all of
the valuations of this combinatorial type are not linear-flock representable over
(K, f).

If case (3) does not occur, and each combinatorial type has a valuation of
case (2), we may hence conclude that M is not linear-flock representable.

Theorem 7.14. Let M be a matroid and K a field. Suppose M has t combi-
natorial types of valuations, represented by (ν1, . . . , νt) respectively. If for all
i there exists α(i) ∈ ZE such that Mνi

α(i) is not linear over K, then M is not

linear-flock representable over (K, f) for any automorphism f .

This theorem yields a necessary (but not sufficient) condition for algebraic-
ity of a matroid as follows:
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Definition 7.15. A matroid M satisfies the flock condition in characteristic p
if and only if there exists a valuation ν of M such that all matroids in Im(Mν)
are linearly representable in characteristic p.

5.1. The quaternary butterfly matroid. In this section we present
the quaternary butterfly matroid, which is linear-flock representable only over
fields of characteristic 2. The quaternary butterfly is the matroid represented
geometrically in Figure 1. We denote this matroid by Q. We show that in
characteristic > 2, Q is not linear-flock representable, despite satisfying the
flock condition in all of these characteristics. The proof is computer-assisted,
as enumeration of the combinatorial types of Q was not done manually.

0

1

2

3

4

5

6 78

Figure 1. The quaternary butterfly, a rank 3 matroid on 9
elements. A triple is a non-basis if and only if it is connected
by a line.

In this section we prove the following theorem.

Theorem 7.16. The matroid Q is only algebraic in characteristic 2.

A matroid is quaternary if it is linearly representable over GF (4).

Lemma 7.17. Q is a quaternary matroid, and Q is only linear in characteristic
2.
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Proof. Let K be a field. Up to row reduction and scaling, the matrix of
a linear representation of Q over K is




0 1 2 3 4 5 6 7 8

1 1 0 1 0 1 0 1 1
0 1 1 x0 0 x2 1 0 x6

0 1 0 x1 1 x3 x4 x5 0


,

where x0, . . . , x6 ∈ K \ {0}. As {0, 1, 6} is dependent, x4 = 1. Due to
dependence of {2, 3, 7}, we obtain x5 = x1. Since {4, 5, 8} is dependent, we get
x6 = x2. By dependency of {6, 7, 8}, now x4x6 + x5 = 0, and hence x6 = −x5.




0 1 2 3 4 5 6 7 8

1 1 0 1 0 1 0 1 1
0 1 1 x0 0 −x1 1 0 −x1

0 1 0 x1 1 x3 1 x1 0


.

As {1, 5, 7} is dependent, we obtain x3 + x1 − x2
1 − x1 = 0, so x3 = x2

1. By
dependence of {1, 3, 8}, we have x1 − x0 + x2

1 − x1 = 0 and hence x0 = x2
1.




0 1 2 3 4 5 6 7 8

1 1 0 1 0 1 0 1 1
0 1 1 x2

1 0 −x1 1 0 −x1

0 1 0 x1 1 x2
1 1 x1 0


.

Finally, due to dependence of {3, 5, 6}, we find −x1 − x2
1 − x2

1 − x1 = 0, and
thus 2x1(x1 + 1) = 0. We cannot take x1 = −1, as that would make {1, 5} a
dependent set. Moreover x1 is nonzero, so we must have 2 = 0 in K. Hence
char(K) = 2.

On the other hand, if K = GF(4) and ζ ∈ K satisfies ζ2 + ζ = 1, then
taking x1 = ζ yields a linear representation of Q:




0 1 2 3 4 5 6 7 8

1 1 0 1 0 1 0 1 1
0 1 1 ζ2 0 ζ 1 0 ζ
0 1 0 ζ 1 ζ2 1 ζ 0


.

In particular, Q is quaternary. �

To show that Q is non-algebraic over K if the characteristic of K is nonzero,
we enumerate the combinatorial types of valuations of Q and investigate them
separately. These valuations are given in Table 1.

Clearly 0Q is not Frobenius-flock representable over fields of characteristic
other than 2. For ρQ and τQ, there exists α ∈ ZE such that the simplification
of Mα is the Fano matroid. Thus valuations of these combinatorial types
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B 0Q ρQ τQ νQ B 0Q ρQ τQ νQ
{0, 1, 2} 0 0 0 1 {1, 4, 7} 0 0 0 1
{0, 1, 3} 0 0 0 1 {1, 4, 8} 0 0 1 0
{0, 1, 4} 0 0 0 1 {1, 5, 6} 0 1 0 0
{0, 1, 5} 0 0 0 1 {1, 5, 8} 0 1 0 0
{0, 1, 7} 0 0 0 1 {1, 6, 7} 0 1 0 0
{0, 1, 8} 0 0 0 1 {1, 6, 8} 0 1 0 0
{0, 2, 3} 0 0 0 1 {1, 7, 8} 0 1 0 0
{0, 2, 4} 0 0 1 0 {2, 3, 4} 0 0 0 1
{0, 2, 5} 0 1 0 0 {2, 3, 5} 0 0 0 1
{0, 2, 6} 0 0 1 0 {2, 3, 6} 0 0 0 1
{0, 2, 7} 0 0 1 0 {2, 3, 8} 0 0 0 1
{0, 3, 4} 0 1 0 0 {2, 4, 5} 0 0 0 1
{0, 3, 5} 0 0 1 0 {2, 4, 7} 0 0 1 0
{0, 3, 6} 0 0 1 0 {2, 4, 8} 0 0 1 0
{0, 3, 7} 0 1 0 0 {2, 5, 6} 0 0 0 1
{0, 3, 8} 0 0 0 1 {2, 5, 7} 0 0 1 0
{0, 4, 5} 0 0 0 1 {2, 5, 8} 0 1 0 0
{0, 4, 6} 0 0 1 0 {2, 6, 7} 0 0 1 0
{0, 4, 8} 0 0 1 0 {2, 6, 8} 0 0 1 0
{0, 5, 6} 0 0 1 0 {2, 7, 8} 0 0 1 0
{0, 5, 7} 0 0 0 1 {3, 4, 5} 0 0 0 1
{0, 5, 8} 0 1 0 0 {3, 4, 6} 0 0 0 1
{0, 6, 7} 0 0 1 0 {3, 4, 7} 0 1 0 0
{0, 6, 8} 0 0 1 0 {3, 4, 8} 0 0 1 0
{0, 7, 8} 0 0 1 0 {3, 5, 7} 0 1 0 0
{1, 2, 3} 0 0 0 1 {3, 5, 8} 0 1 0 0
{1, 2, 4} 0 1 0 0 {3, 6, 7} 0 1 0 0
{1, 2, 5} 0 0 1 0 {3, 6, 8} 0 1 0 0
{1, 2, 6} 0 1 0 0 {3, 7, 8} 0 1 0 0
{1, 2, 7} 0 0 1 0 {4, 5, 6} 0 0 0 1
{1, 2, 8} 0 0 0 1 {4, 5, 7} 0 0 0 1
{1, 3, 4} 0 0 1 0 {4, 6, 7} 0 0 1 0
{1, 3, 5} 0 1 0 0 {4, 6, 8} 0 0 1 0
{1, 3, 6} 0 1 0 0 {4, 7, 8} 0 0 1 0
{1, 3, 7} 0 1 0 0 {5, 6, 7} 0 1 0 0
{1, 4, 5} 0 0 0 1 {5, 6, 8} 0 1 0 0
{1, 4, 6} 0 1 0 0 {5, 7, 8} 0 1 0 0

Table 1. A representative valuation for each combinatorial
type of of Q
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Figure 2. The central points of MνQ .

are not Frobenius-flock representable over fields of characteristic other than 2
either.

The combinatorial type of νQ remains. See Figure 2.

Each of the central matroids is linearly representable over any field, and
even uniquely so, up to column scaling. However, in order for a Frobenius-
flock representation to exist, the column scalars must be fixed for all of these
representations in such a way that the flock axioms hold between neighbors.
As it turns out, this is infeasible.
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(0, 0, 0, 0, 0, 0, 0, 0, 0)

(1, 1, 0, 0, 0, 0, 0, 0, 0) = e01

(1, 1, 1, 1, 0, 0, 0, 0, 1) = e01238

(1, 1, 0, 0, 1, 1, 0, 1, 0) = e01457

(0, 0, 1, 1, 0, 0, 0, 0, 0) = e23

(0, 0, 0, 0, 1, 1, 0, 0, 0) = e45

(0, 0, 1, 1, 1, 1, 1, 0, 0) = e23456




0 1 2 3 4 5 6 7 8

1 1 0 0 0 0 0 0 1
0 0 1 1 0 0 0 0 −1
0 1 0 1 1 1 1 1 0







0 1 2 3 4 5 6 7 8

1 1 0 1 0 0 0 1 1
0 0 1 1 0 0 0 0 0
0 0 0 1 1 1 1 1 0







0 1 2 3 4 5 6 7 8

1 1 0 1 0 −1 0 1 1
0 0 1 1 0 0 1 0 0
0 0 0 0 1 1 1 0 0







0 1 2 3 4 5 6 7 8

1 1 0 0 0 1 0 1 1
0 0 1 1 0 −1 1 0 −1
0 0 0 0 1 1 0 0 0







0 1 2 3 4 5 6 7 8

1 1 0 0 0 0 0 1 0
0 1 1 1 0 −1 1 0 −1
0 0 0 0 1 1 0 1 0







0 1 2 3 4 5 6 7 8

1 1 0 0 0 0 0 0 0
0 1 1 1 0 0 1 0 −1
0 1 0 0 1 1 1 1 0







0 1 2 3 4 5 6 7 8

1 1 0 0 0 0 0 1 1
0 0 1 1 0 0 1 0 −1
0 0 0 0 1 1 1 1 0




Figure 3. Linear representations of the matroids in Figure 2.

Theorem 7.18. Suppose K is a field of characteristic not 2. Then MνQ

admits no linear-flock representation over K.

Proof. We have to show there exist no nonzero column scalars for each
column of each matrix in Figure 3, in such a way that for each neighboring
pair α, β ∈ {0, e01, e23, e45, e01238, e01457, e23456}, we have Vα/I = Vβ \I and
Vβ/(E − I) = Vα\(E − I), where β = α + eI . Since MνQ is a matroid flock
and all of the matrices are reduced with respect to the same basis {0, 2, 4},
these conditions hold if and only if for each neighboring pair of matrices all
entries that are nonzero in both matrices agree up to row scaling.

It is straightforward to check that these conditions are all satisfied in Figure
3, except between e45 and e23456.

By scaling the columns of all matrices simultaneously, we may assume all
column scalars at the point 0 are equal to 1. This has the effect that the scalars
for the matrix at eI are split into two parts, namely I and E − I, in which the
scalars must be equal. Furthermore, one can easily verify that scaling one of
the parts by a has the same effect as scaling the other part by a−1. Hence we
may also assume the scalars of E − I at eI are 1. The freedom of choosing the
scalars λI of I remains at each point eI .
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Now suppose λ23456 = a. This fixes the scalars of the remainder of the
points, which we address in counter-clockwise direction in Figure 3. It follows
that λ23 = a, implying λ01238 = a. Hence λ01 = a and moreover λ01457 = a,
implying λ45 = a. Closing the cycle, we find that λ23456 = −a, and since a is
nonzero and K has characteristic not 2, this yields a contradiction. �

The proof does not use the automorphism f at all; it only uses the structure
ofMνQ . This structure is the same for any valuation of the same combinatorial
type as νQ. Therefore we obtain the following result.

Theorem 7.19. Suppose K is a field of characteristic not 2. Then Mν admits
no linear-flock representation over K for any ν of the same combinatorial type
as νQ.

So no valuation of Q can be Frobenius-flock representable. Theorem 7.16
follows.

Aart Blokhuis recognised Q as a hyperoval on the points {0, 1, 2, 3, 4, 5}
together with a line {6, 7, 8} embedded in the projective plane PG(2, 4) [4].
To ‘complete’ the matroid, there should be two more elements on the line such
that each pair of points on the hyperoval is collinear with a point on the line.

6. Computing the Lindström valuation of an algebraic
representation

Let K be a field of characteristic p > 0. As mentioned below Corollary
5.15, Cartwright [9] found a direct construction of the Lindström valuation of
an algebraic representation of a matroid over K:

ν(B) = logp[L : K(φ(B))sep(L)].

Algebraic matroids can be represented in several different ways [26]: as a
set of elements in a field extension like in Definition 2.8, as a closed, irreducible
algebraic variety like in Chapter 5, and as the (prime) ideal of this variety.
To compute the Lindström valuation of an algebraic representation, we follow
Cartwright in using the ideal representation. Thus, an algebraic representation
of a matroid M on E is a prime ideal I in the polynomial ring K[xe : e ∈ E].
The circuits of M are the C ⊆ E such that I ∩K[xe : e ∈ C] is a principal
ideal with support {xe : e ∈ C}. The (monic) generating polynomial fC of this
principal ideal is called the circuit polynomial of C.

For a circuit C, let k = k(C) ∈ (Z∪{∞})E be such that fC is a polynomial

in (xp
ke

e )e∈C where each ke is maximal, and kf = ∞ for all f ∈ C. Then
Cartwright shows that the set of vectors

C = {k(C) + λ1 : C circuit, λ ∈ Z} ⊆ (Z ∪ {∞})E
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is a circuit valuation of M . I will not give the definition of circuit valuations
here, but I will note that due to Murota and Tamura [40, Theorem 3.3], circuit
valuations are in one-to-one correspondence with basis valuations (up to a
constant) via a simple formula. Let ν be the basis valuation corresponding to
C.
Theorem 7.20 (Cartwright [9]). The Lindström valuation of the ideal I is
ν.

Thus we know how to compute the Lindström valuation from the set of
circuit polynomials of I. What remains is finding all of the circuit polynomials.
For small matroids it suffices to naively compute the elimination ideal I∩K[xe :
e ∈ S] for each S of the appropriate size, and check if this ideal is principal
with full support. This can be done with a Gröbner basis computation and we
implemented it in Sage.

7. Computing the Frobenius flock from an algebraic representation

Let K be an algebraically closed field of characteristic p > 0. Let X ⊆ KE

be an irreducible closed subvariety. Due to Theorem 5.17, V : α 7→ TαvαX is a
Frobenius flock over K for some general point v ∈ X. The goal of this section
is to find such a general point v, and to compute TαvαX for given α.

Algorithm 3 computes the Jacobi matrix A of αX. This is a matrix with
entries in K[y1, . . . , yn] which can be seen as representing the dual of the
matroid of the tangent space of αX at the generic point y1, . . . , yn. If v is
given, then TαvαX = A(v)⊥. Otherwise, A yields conditions on the point v.
Let M =M(X) and let Bα be the basis set of Mα. Then for a general v it
must hold that for all B ∈ Bα, we have detA(v)B 6= 0. In other words, in
terminology used by Rosen [45], v avoids the NM-locus of A, where A(v) does
not representMα. Due to Theorem 4.30, it suffices for v to avoid the NM-locus
of the Jacobi matrices of αX at the central points α of M. By Lemma 4.31, it
suffices to avoid it for one point per central cell of M.

Algorithm 4 finds the ideal I that a general point v ∈ X needs to avoid. If
K = GF (p), v has coordinates in a finite subfield of K, and it can be found
by simply enumerating the points on X of which the coordinates lie in a large
enough finite subfield of K, and checking whether v lies in I. For other fields
K I have not implemented a method to find a general point.
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Algorithm 3 FlockJacobian(α,X)

input: An irreducible closed subvariety X ⊆ KE and α ∈ ZE
output: The Jacobi matrix of αX
output:
I ← Ideal(X)

. I is an ideal in the polynomial ring K[x1, . . . , xn]
twists← ∅
for i ∈ {1, . . . , n} do

k ← αi
if k ≥ 0 then

twists← twists ∪ {xi − yp
k

i }
else

twists← twists ∪ {yi − xp
−k

i }
end if

end for
J ← I + 〈twists〉

. J is an ideal in the polynomial ring K[x1, . . . , xn, y1, . . . , yn]
I ′ ← the elimination ideal of J by {x1, . . . , xn}

. I ′ is an ideal in the polynomial ring K[y1, . . . , yn]
Y ← an irreducible component of the variety of I ′

A← the Jacobian matrix of Y
. Sage has built-in functions for all of the above

return A
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Algorithm 4 NMloci(X)

input: An irreducible closed subvariety X ⊆ KE

output: The intersection of the NM-loci of the Jacobi-matrices for all central
points of M(X)
L← LindstromValuation(X)
M ←M(L)
B ← the bases of M
cp← CentralPoints(M,L)
I ← K[y1, . . . , yn]
for α ∈ cp do

Aα ← FlockJacobian(α,X)
for B ∈ B do

I ← I + 〈detAB〉
end for

end for
return I



CHAPTER 8

Small matroids

1. Introduction

In this chapter, I provide an account of the algebraicity of matroids on
at most 9 elements in characteristic 2. The complete set of matroids (up to
isomorphism) on at most 9 elements was generated by Mayhew and Royle [38],
and later by Matsumoto, Moriyama, Imai and Bremner [37]. The number of
matroids for each combination of rank and size is listed in Table 1.

Earlier in the thesis, some conditions were discussed under which a matroid
is algebraic or non-algebraic. Linear matroids are algebraic. Matroids that are
linear over the endomorphism ring of a one-dimensional algebraic group are
algebraic (section 6.3). Specifically for characteristic 2, this means that that
we are looking for matroids representable over Q, skew fields in characteristic 2,
imaginary quadratic number fields arising from elliptic curves in characteristic
2, and quaternion algebras arising from elliptic curves in characteristic 2.

r, n 0 1 2 3 4 5 6 7 8 9
0 1 1 1 1 1 1 1 1 1 1
1 1 2 3 4 5 6 7 8 9
2 1 3 7 13 23 37 58 87
3 1 4 13 38 108 325 1275
4 1 5 23 108 940 190214
5 1 6 37 325 190214
6 1 7 58 1275
7 1 8 87
8 1 9
9 1

Table 1. Total numbers of matroids of rank r on n elements.

121
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x y z

Figure 1. A non-algebraic matroid on 10 elements; y does
not have a unique harmonic conjugate with respect to x and
z.

Conversely, algebraic matroids in general must satisfy the Dress-Lovász
condition, which will be discussed in this chapter. Moreover, algebraic matroids
in characteristic 2 must be Frobenius-flock representable in characteristic 2.

Lindström’s criterion that harmonic points must have a unique harmonic
conjugate hardly applies to such small matroids. Suppose x, y, z are three
collinear points in a rank 3 matroid M . Then y is harmonic with respect
to x and z if there is a Fano or non-Fano minor of M containing x, y, z. As
Lindström showed [32], if M is algebraic, then y then has a unique harmonic
conjugate with respect to x and z.

So in order to disprove algebraicity of a matroid using this argument, a
(non-)Fano minor must be present, or somehow forced to be present in an
extension (such as the harmonic closure of M [17]), in order to have a harmonic
point in a matroid. Then a different (non-)Fano minor should be present to
make the harmonic conjugate ambiguous. The smallest known matroid where
this phenomenon occurs is shown in Figure 1, and has 10 elements.

In this chapter I list the results of testing the above-mentioned conditions
on the set of matroids on at most 9 elements. The results are compiled in a
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‘Matroid Encyclopedia’ in the shape of a Sage dictionary, which can be found
at www.github.com/gpbollen/Algebraicity-of-Matroids-and-Frobenius-Flocks.
For each tuple (rank,size), the matroids are numbered from 0 to the number of
matroids of that type minus 1. Then M[rank,size][i] contains a dictionary
of properties of matroid i of type (rank,size). Using various data, which can
also be found in the GitHub project, the encyclopedia is filled from scratch in
the file ‘Matroid Encyclopedia.ipynb’.

2. Linear matroids

Linear matroids over a field K are algebraic over K. It is relatively
straightforward to check whether a matroid M is linear over the algebraic
closure K of K. Let r be the rank of M and let E be the ground set of M .
Take a general matrix representation A of M .

Theorem 8.1. Let M be a matroid and let K be an algebraically closed field.
Then it is decidable whether a M is linear over K.

Proof. Due to Lemma 7.8, linear representability of M can be described
by a system of polynomial equations. Due to Hilbert’s Nullstellensatz, there is
a solution over K = K if and only if 1 is not in the Gröbner basis generated
by these equations. Hence we have an algorithm that determines whether M
is linear over K. �

Gröbner basis computations are generally slow. Even for the ideals from
matroids on 9 elements, despite the reduction of variables that can be obtained
due to Lemmas 7.6 and 7.7. So in order to classify which matroids are linear
in characteristic 2, I used faster techniques for the majority of matroids on
at most 9 elements. To prove a matroid is linear, it suffices to find a linear
representation of the matroid. Most of the linear matroids in characteristic
2 were found by generating random matrices. For the few remaining linear
matroids, I extracted a representation from the Gröbner basis computation.
Nonlinearity for most matroids can be proven by means of the Dress-Wenzel
condition in characteristic 2 from the next subsection.

2.1. The Dress-Wenzel condition. Let M be a matroid. Theorem 2.14
yields a necessary condition for linearity of M as follows:

Definition 8.2. A matroid M is said to satisfy the Dress-Wenzel condition if
for every non-degenerate pure quadrangle {S+a+b, S+c+d, S+a+d, S+b+c},
we have

[b1, . . . , br−2, a, b][b1, . . . , br−2, c, d]

[b1, . . . , br−2, a, d][b1, . . . , br−2, c, b]
6= 1 in TM ,

https://github.com/gpbollen/Algebraicity-of-Matroids-and-Frobenius-Flocks
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where S = {b1, . . . , br−2}.
By Theorem 2.14, if M does not satisfy the Dress-Wenzel condition, then

M is not linear over any field.
If K has characteristic 2, then for each r × E matrix A over K linearly

representing M , we have ϕ̃A(ε) = −1 = 1. Let T(2)
M := TM/〈ε〉. Then if K has

characteristic 2, ϕ̃A induces a homomorphism ϕ̃
(2)
A : T(2)

M → K∗. Theorem 2.14
specializes to the following theorem.

Theorem 8.3. Let K be a field of characteristic 2. Let M be a matroid on
E that is linear over K. Let S = {b1, . . . , br−2} be given. Suppose Q =
{S+a+ b, S+ c+d, S+a+d, S+ b+ c} is a pure quadrangle of M and suppose
S + a+ c ∈ B. The following are equivalent:

(1) for all r × E matrices A over K linearly representing M we have

ϕ̃
(2)
A

(
[b1, . . . , br−2, a, b][b1, . . . , br−2, c, d]

[b1, . . . , br−2, a, d][b1, . . . , br−2, c, b]

)
6= 1;

(2)

[b1, . . . , br−2, a, b][b1, . . . , br−2, c, d]

[b1, . . . , br−2, a, d][b1, . . . , br−2, c, b]
6= 1 in T(2)

M ;

(3) Q is non-degenerate.

Proof. Denote Theorem 2.14(1) by (1’), and define (2’) and (3’) similarly.
Clearly (2) ⇒ (2’), as (2) is stronger. By Theorem 2.14, we have (2’) ⇒ (1’).

As K has characteristic 2, for each A we have ϕ̃
(2)
A = ϕ̃A, so that (1’) ⇔

(1). The implication (1) ⇒ (2) follows by applying ϕ̃
(2)
A on both sides of (2).

We conclude that (1) ⇔ (2). The equivalence (1) ⇔ (3’) ⇔ (3) follows from
Theorem 2.14. �

This theorem allows us to formulate a condition similar to the Dress-Wenzel
condition that is necessary for linearity in characteristic 2.

Definition 8.4. A matroid M is said to satisfy the Dress-Wenzel condition in
characteristic 2 if for every non-degenerate pure quadrangle {S + a+ b, S + c+
d, S + a+ d, S + b+ c}, we have

[b1, . . . , br−2, a, b][b1, . . . , br−2, c, d]

[b1, . . . , br−2, a, d][b1, . . . , br−2, c, b]
6= 1 in T(2)

M ,

where S = {b1, . . . , br−2}.
By Theorem 8.3, if a matroid M does not satisfy the Dress-Wenzel condition

in characteristic 2, then M is not linear over any field of characteristic 2.
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r\n 9 8 7 6
3 4 0 0 0
4 37988 44

Table 2. Number of matroids failing the Dress-Wenzel condition.

r\n 9 8 7 6
3 67 7 1 0
4 64395 100

Table 3. Number of matroids failing the Dress-Wenzel condi-
tion in characteristic 2.

r\n 9 8 7
3 1208 318 107
4 125692 840 107
5 125692 318
6 1208

Table 4. Total numbers of linear matroids in characteristic 2
of rank r on n elements; entries are omitted if all matroids in
them are linear.

The numbers of matroids that satisfy both versions of the Dress-Wenzel
condition are depicted in Tables 2 and 3. Only the cases where r ≤ n are listed,
because satisfying the Dress-Wenzel condition is closed under duality.

Clearly, all matroids failing the regular Dress-Wenzel condition also fail
the regular Dress-Wenzel condition in characteristic 2.

2.2. The number of linear matroids. We have been able to determine
exactly how many matroids on at most 9 elements are linear in characteristic
2; see Table 4. Most non-linear matroids are excluded by the Dress-Wenzel
condition. For the remaining matroids we either found a representation, or a
Gröbner basis calculation ensured no representation exists.

3. Matroids from one-dimensional algebraic groups

3.1. Rational matroids. Since Q is not algebraically closed, Theorem
8.1 cannot be applied. So in order to find which matroids are rational, we have
fewer tools at our disposal than for algebraically closed fields.
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Theorem 2.14 applies to Q, so we can use the failing of the Dress-Wenzel
condition as a certificate of non-rationality of matroids. Conversely, a given
rational representation is a certificate for rationality. As with linearity in
characteristic 2, we can also generate random Q-matrices to find represented
matroids. I generated a r × n matrix A by picking Aij ∈ Q randomly for each
i, j for some finite set Q ⊂ Q. The choice of Q matters greatly for the diversity
of represented matroids that are generated. In particular, if Q is too large, then
a random set of columns is likely to be independent, and hence the resulting
represented matroids are likely close to uniform. A particularly fertile source
of diverse represented matroids turned out to be Q = {−1, 0, 1}.

3.2. Matroids linear over an imaginary quadratic number field.
Let K be the number field Q(

√
D) for some D < 0. As K is commutative,

Theorem 2.14 applies. On the other hand, K is not algebraically closed and
thus Theorem 8.1 cannot be applied.

However, there is still hope in gathering information on the extension K
of Q over which a matroid is representable. Take the ideal I from Theorem
8.1, and intersect it with Q[xij ] for each entry variable xij . Then the obtained
ideal is either zero or principal. If it is nonzero, then at least one of the roots
of the generating polynomial must lie in K. If there is no D < 0 and choice of
roots for each xij such that all of them lie in Q(

√
D), then the matroid is not

linear over an imaginary quadratic number field. Conversely, if I ∩ Q[xij ] is
nonzero for each entry variable xij , and the roots of the respective generating

polynomials lie in a common imaginary quadratic number field Q(
√
D), then

we may find a representation of the matroid over this number field. If moreover
D is the discriminant of an elliptic curve in characteristic 2, then the matroid
is algebraic due to Theorem 6.4.

In Table 5 we list one elliptic curve in characteristic 2 for each (square-free
part of) D we found among the matroids on up to 9 elements.

We now give an example of a matroid that is algebraic in characteristic
2 over an elliptic curve, but not over any other connected one-dimensional
algebraic group. Like the Non-Pappus matroid, it is nonlinear in characteristic
2.

Example 8.5. Consider the matroid M from Figure 2.

We construct a general matrix over a skew field S such that each dependent
set of M is a dependent column in the matrix.



3. MATROIDS FROM ONE-DIMENSIONAL ALGEBRAIC GROUPS 127

D Field Elliptic curve
−1 GF(2) y2 + y = x3 + x2 + 1
−2 GF(2) y2 + y = x3

−3 GF(4) y2 + ωy = x3 + x2

−7 GF(2) y2 + xy = x3 + 1
−15 GF(4) y2 + xy = x3 + ω

Table 5. Elliptic curves in characteristic 2 of which the square-
free part of the discriminant is D. Here ω satisfies ω2 +ω+1 =
0. Note that the first three curves are supersingular, and
hence their endomorphism rings are embedded in a quaternion
algebra containing Q(

√
D).

0

1

23

4

5 6

7

8

8

8

Figure 2. A matroid of rank 3 on 9 elements. A triple is
collinear if and only if it is dependent in the matroid. The
point 8 is the common intersection of the lines through {0, 3},
{1, 4} and {2, 5}.

NS =




0 1 2 3 4 5 6 7 8

1 0 0 1 1 1 0 1 1
0 1 0 1 0 a 1 1 a
0 0 1 a −1 a 1 0 −1


,

where a ∈ K satisfies a2 = −1. After choosing a basis and fixing row and
column scalars, the remaining entries were chosen as freely as possible given
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the dependent triples of M . As it turns out, the only freedom that is left is the
choice of a.

No assumptions on the characteristic or commutativity of S have been
made at this point. If S has characteristic 2, then (among others) the rows
corresponding to the basis {3, 4, 5} become dependent, so that N cannot be a
representation of M . So S must have characteristic 6= 2. Indeed, if S = Q(i)
and a = i, then a subset of rows of NS is dependent if and only if it is dependent
in M . Hence the column space of NS is a representation of M over Q(i).

Now suppose K is a field of characteristic 2, and G is a connected one-
dimensional algebraic group over K. Let X be a closed, connected subgroup of
Gn with M(X) = M . Then there is a linear representation of M over End(G).
Due to the above, M is not representable over Q, nor over K(F ). Hence G
cannot be the additive or multiplicative group. So G must be an elliptic curve.

Consider the elliptic curve G over GF (2) given by the equation y2 + y =
x3 + x2 + 1. As shown in Table 5, the curve embeds into Q(i). By Theorem
6.4, M is then algebraic over this curve.

We proceed to construct the Lindström valuation of the corresponding
algebraic representation, following Theorem 6.5. For bases B of M , define ν(B)
to be the 2-adic valuation of dd̄, where d̄ denotes the conjugate of d and where
d = DdetNSB = detNSB. Then it can be shown that ν is the corresponding
Lindström valuation of M . p

3.3. Matroids linear over skew fields. It is not as easy to find out
whether a matroid is linear over a skew field as it is over a field. One can try to
construct representations by filling a matrix with random elements of a skew
field, like over Q or GF (2). However, it is not as easy to find a suitable set
Q of skew field elements to pick from. Even for small Q, picking the matrix
entries Aij ∈ Q randomly is likely to yield represented matroids close to the
uniform matroid.

It is possible to describe linearity of a matroid over a skew field by a system
of polynomial equations over the skew field, in terms of the quasi-Plücker
coordinates [44]. However, such a system has many variables, and checking
whether a solution exists within the given skew field is much harder than in
the commutative case.

Despite these difficulties, Lindström managed to find all (or rather, both)
of the matroids of rank 4 on 8 elements that are linear over a skew field, but
not over any field [29, 33]. They appear several times in Figure 3, most of
which Lindström drew in his paper [33]. One of them is given by the points
{1, 4, 7, 8, 10, 11, 13, 14} and the other by the points {3, 4, 7, 8, 9, 10, 13, 14}. All
minors of the matroid in Figure 3 are representable over GF (4)(F ) and thus
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λ(x+ y) + z + u

x+ y

x+ z y + u

z + u

x y

x+ y + z + u

z u

λx+ z λy + u

zp + u

xp + y

(x+ z)p + y + u

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17

(λx+ z)p + λy + u

λ(xp + y) + zp + u

Figure 3. A skew-field representable matroid on 17 elements.

algebraic due to Theorem 6.4. Computations show that of the 1212 pairwise
non-isomorphic minors of rank 4 on 9 elements, 57 matroids are not linear
over any field. These matroids are nevertheless algebraic due to skew-field
representability.

In order to find more matroids representable over a skew field, I used a
heuristic method inspired by the following example.

Example 8.6. Consider the matroid M given by the points

E = {1, 4, 7, 8, 10, 11, 13, 14}
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in Figure 3. The nonbases of this matroid are:

{1, 4, 7, 11}
{4, 8, 10, 11}
{1, 7, 8, 13}
{1, 10, 11, 13}
{1, 4, 10, 14}
{7, 8, 10, 14}
{7, 11, 13, 14}.

Let H be the skew field over Q generated by 1, i, j, k with the relations
i2 = j2 = k2 = ijk = −1, the rational Hamilton quaternions. We try to
construct a linear representation of M over H as a left H-module. That is, we
construct an 4× E matrix A over H such that the columns of A corresponding
to a set B ∈

(
E
4

)
are independent if and only if B is a basis of M .

By row reduction, we may assume A has an identity submatrix at the basis
B = {1, 7, 10, 11} (compare Lemma 7.6 for the commutative case). We display
A as an augmented matrix, leaving out the columns corresponding to B and
instead labeling the rows by B. Independence of the columns of A corresponding
to S for some S ∈

(
E
4

)
is then equivalent to invertibility of the submatrix of the

augmented matrix obtained by deleting the rows B ∩ S and restricting to the
columns B ∩ S.

By row and column scaling we may assume some entries of A are 1 (compare
Lemma 7.7 for the commutative case). Now we have

A =




4 8 13 14

1 1 1 1
7 1 0 1
10 0 1
11 1


,

where the blank spaces still need to be filled, and where the zeroes follow from
the fact that {1, 4, 7, 11} and {1, 10, 11, 13} are nonbases respectively. Next, for
each non-basis containing 14, the augmented submatrix looks like

(
1 1

1

)
.

Hence it follows that each of these blank spots needs to be filled with 1, and we
obtain the following matrix:
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A =




4 8 13 14

1 1 1 1
7 1 0 1
10 0 1 1
11 1 1 1


.

Two nonbases remain. The corresponding augmented submatrices look like
(

1
1

)
.

Hence the two opposite elements must be each other’s inverse in both cases.
Thus any representation of M over H must be of the form

A =




4 8 13 14

1 a 1 1 1
7 1 a−1 0 1
10 0 b−1 1 1
11 1 1 b 1




for some a, b ∈ H \ {0}, up to row reduction and scaling.
Now all minors of A corresponding to the nonbases are zero, and it remains

to find values of a and b such that the remaining minors, which correspond
to bases, are all nonzero. Observe that if a and b commute, then the columns
corresponding to the basis {4, 8, 13, 14} are dependent. However, if we pick
a = i and b = j, then we find that A represents M . p

My method for finding a representation for a matroid M over a skew field
K is the following. First, pick a basis B and a feasible set of entries to be scaled
to 1. Now for each nonbasis S, we find a set of polynomial equations in the
entries of A that admits a solution if and only if the submatrix corresponding
to S is invertible. For 3× 3 or 4× 4 matrices, this might not be possible, but
we can overcome this problem by distinguishing several cases, as I will explain
later.

Once we have obtained a set of polynomials from all of the nonbases, we
try to find a common solution over K. Note that the variables are not assumed
to commute with each other, nor with K. As a consequence, it is hard to
determine whether there exists a common solution. We repeatedly apply the
following simple procedure until we have a common solution of all polynomials:

(1) For each polynomial in one variable, try to solve it algebraically.
Polynomials of the form axb− c for a, b, c ∈ K are solved by taking
x = a−1cb−1; more complicated polynomials, such as ax+ xb− c, we
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try to solve by trying randomly chosen x ∈ K. If we fail to find a
solution, we stop. We then substitute this solution for x into all other
polynomials. If this substitution yields a nonzero constant for one of
the polynomials, we also stop.

(2) If each remaining unsolved polynomial has more than one variable,
then we pick one of the remaining variables randomly in K.

If we manage to find a common solution, then we have found a matrix A over K
representing some matroid M ′ ≤M . Finally, we check whether M ′ = M . If M
admits a linear representation over K and if we can find a common solution to
the polynomials given by the nonbases of M , then it is likely that A represents
M over K.

We proceed to show how to obtain the polynomials asserting non-invertibility
of a matrix for sizes 2× 2, 3× 3 and 4× 4.

Lemma 8.7. Let K be a skew field and let

A =

(
a b
c d

)

be a matrix over K. Then A is not invertible if and only if

(1) a = 0 and bc = 0; or
(2) a 6= 0 and d = ca−1b.

Proof. In the first case, since K has no zero divisors, there is a zero row
or column, and hence A is not invertible.

In the second case, suppose (x, y) is a nonzero vector such that ax+ by = 0.
Then y 6= 0, so we may assume y = 1. Due to the first row of A, we find
x = −a−1b. Now A is not invertible if and only if (x, y) is in the right-kernel
of A, which is the case if and only if cx+ dy = d− ca−1b = 0. �

For 3 × 3 and 4 × 4 matrices, the zero pattern plays an important role.
Fortunately we precisely know the zero pattern of a linear representation of M ,
as every entry corresponds to a basis (nonzero) or nonbasis (zero) at distance 1
from B.

If any row or column of a 3 × 3 matrix contains 2 or more zeroes, then
invertibility can be derived from a smaller submatrix. Two cases remain.

Lemma 8.8. Let K be a skew field and let

A =




0 a1 a2

b0 b1 b2
c0 c1 c2



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be a matrix over K such that a1 and b0 are nonzero. Then A is not invertible
if and only if

c0b
−1
0 (b2 − b1a−1

1 a2) + c1a
−1
1 a2 − c2 = 0.

Proof. The first two rows force that any nonzero vector that is right-
perpendicular to the first two rows is a scalar multiple of

v = (b−1
0 (b2 − b1a−1

1 a2), a−1
1 a2,−1).

Hence A is not invertible if and only if v is also right-perpendicular to the third
row. �

Lemma 8.9. Let K be a skew field and let

A =




a0 a1 a2

b0 b1 b2
c0 c1 c2




be a matrix over K such that b0 is nonzero. Consider the matrix

A′ =




0 a′1 a′2
b0 b1 b2
c0 c1 c2




where a′1 = a1 − a0b
−1
0 b1 and a′2 = a2 − a0b

−1
0 b2. Then A is not invertible if

and only if

(1) a′1 = a′2 = 0; or
(2) a′1 = 0, a′2 6= 0 and

(
b0 b1
c0 c1

)

is not invertible; or
(3) a′1 6= 0 and

c0b
−1
0 (b2 − b1(a′1)−1a′2) + c1(a′1)−1a′2 − c2 = 0.

Proof. Since A differs from A′ by only an elementary row operation, A
is invertible if and only if A′ is.

If a′1 = a′2 = 0, then A′ has a zero row and is hence not invertible.
If a′1 = 0 and a′2 6= 0, then any vector in the right-kernel of A′ has a zero

in its third entry. Hence then A′ is invertible if and only if the given submatrix
is invertible.

If a′1 6= 0, then apply Lemma 8.8. �
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For 4× 4 matrices, we use essentially the same ideas. If a row or column
contains 3 or more zeroes, then invertibility can again be derived from a smaller
submatrix. Similarly, if the matrix contains a 2 × 2 zero submatrix, then
invertibility can be derived from two 2× 2 submatrices. Next, a matrix

A =




0 0 + ∗
0 + ∗ ∗
+ ∗ ∗ ∗
∗ ∗ ∗ ∗


 ,

where ‘+’ indicates a nonzero entry and ‘∗’ indicates any entry, gives rise to a
polynomial that is zero if and only if A is not invertible analogously to Lemma
8.8.

If A does not have any of the above-mentioned zero patterns up to row and
column permutations, then by row reduction and case distinction in a similar
way to Lemma 8.9, such a zero pattern can be achieved. These are tedious but
straightforward computations, and are omitted.

We see that the choice of basis B matters greatly for the simplicity of this
method of finding a linear representation over a skew field. In Example 8.6,
we chose a basis such that all nonbases correspond to 2× 2-submatrices. As
a consequence, no case distinction is required, and all polynomials obtained
from the nonbases are relatively simple. As we apply the method to matroids
of rank 4 on 9 elements, we will often be unable to choose a B that has no
nonbases at distance 4. In order to still get a computationally pleasant basis,
we pick a basis B minimizing

∑

S∈(Er)\B

|B\S|2.

The choice of entries to scale as in Lemma 7.7 also matters. It is beneficial
to have many ones in the submatrices corresponding to nonbases. Therefore we
define a weight function on the entries, assigning to an entry (e, f) the number
of nonbasis submatrices containing (e, f). Then the entries we will scale are
those in a maximum weight spanning tree of the bipartite graph from Lemma
7.7.

In conclusion, we have developed a method to check linear representability
of a rank at most 4 matroid over a skew field. If there is a basis B for which
the number of submatrices requiring case distinction is small, then the method
is generally very fast. The method would be less effective on larger rank 4
matroids, since it is then impossible to avoid having several nonbases at distance
4 of B, which generally leads to a lot of case distinctions. Moreover, the success
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chance of the method would be greatly enhanced with a better way of solving
equations in one variable.

4. The Ingleton-Main and Dress-Lovász conditions

Ingleton and Main discovered an extension property of algebraic matroids
[25].

Definition 8.10. Let M be a matroid. Suppose l1, l2, l3 are three lines of M
that are pairwise coplanar, but do not all lie in the same plane. Then an
extension of M by a non-loop element e such that e ∈ l1 ∩ l2 ∩ l3 is called an
Ingleton-Main extension of M with respect to l1, l2, l3.

Theorem 8.11. Let M be an algebraic matroid. Then for each triple of lines
l1, l2, l3 of M that are pairwise coplanar, but do not all lie in the same plane,
there exists an Ingleton-Main extension of M with respect to l1, l2, l3 that is
algebraic.

The above theorem yields a necessary condition for algebraicity of matroids
as follows.

Definition 8.12. A matroid M is said to satisfy the Ingleton-Main condition
if for each triple of lines l1, l2, l3 of M that are pairwise coplanar, but do not
all lie in the same plane, M admits an Ingleton-Main extension with respect to
l1, l2, l3.

The Vámos matroid does not satisfy the Ingleton-Main condition, and
hence the Vámos matroid is non-algebraic. There are more matroids that
are non-algebraic for this reason. Dress and Lovász found a generalisation of
Theorem 8.11 [13, Corollary 1.4].

Definition 8.13. Let M be a matroid on E with rank function r. A set
S ⊆ E is called a double circuit of M if r(S) = |S| − 2 and for each e ∈ S,
r(S − e) = |S| − 2.

Dress and Lovász characterized the structure of double circuits in the
following lemma.

Lemma 8.14. Let M be a matroid and let S be a double circuit of M . Then
S has a partition S = S1 ∪ . . .∪Sk such that the following holds: C is a circuit
of M contained in S if and only if C = S\Si for some i.

The number k from the above lemma is the degree of the double circuit S.
We now state the generalization of Theorem 8.11.

Definition 8.15. Let M be a matroid. Suppose S is a double circuit in M
of degree k ≥ 3. Then an extension N of M by a set of elements T with
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|T | = k − 2 such that rN (T ) = |T |, and T ⊆ clN(C) for each circuit C ⊂ S is
called a Dress-Lovász extension of M with respect to S.

Theorem 8.16. Let M be an algebraic matroid. Then for each double circuit
S in M of degree ≥ 3, there exists a Dress-Lovász extension of M with respect
to S that is algebraic.

This theorem is a corollary of a more general theorem by Dress and Lovász,
the series reduction theorem [13, Theorem 1.3], which makes use of more
general extensions than what we call a Dress-Lovász extension here. Theorem
8.16 gives a necessary condition on algebraicity of matroids as follows.

Definition 8.17. A matroid M is said to satisfy the Dress-Lovász condition
if for each double circuit S in M of degree ≥ 3, M admits a Dress-Lovász
extension with respect to S.

Note that the Dress-Lovász condition is stronger than the Ingleton-Main
condition in general. But in rank 4, the conditions are equivalent.

For some matroids it takes several extensions before the Dress-Lovász or
Ingleton-Main conditions fail. This is the case for the dual of the Tic-Tac-Toe
matroid [27, 22], in which after two Ingleton-Main extensions a Vámos-minor
arises, when the Ingleton-Main condition fails. There are recursive versions of
the Ingleton-Main and Dress-Lovász conditions as follows.

Definition 8.18. Let d be a natural number. A matroid M is said to satisfy the
Ingleton-Main condition at depth d if d > 1 and for each triple of lines l1, l2, l3
of M that are pairwise coplanar, but do not all lie in the same plane, there
exists an Ingleton-Main extension of M with respect to l1, l2, l3 that satisfies
the Ingleton-Main condition at depth d − 1, or if d = 1 and M satisfies the
Ingleton-Main condition.

Definition 8.19. Let d be a natural number. A matroid M is said to satisfy
the Dress-Lovász condition at depth d if d > 1 and for each double circuit S
in M of degree ≥ 3 there exists a Dress-Lovász extension of M with respect to
S that satisfies the Dress-Lovász condition at depth d− 1, or if d = 1 and M
satisfies the Dress-Lovász condition.

Due to Theorems 8.11 and 8.16, these conditions are both necessary for
algebraicity of M . I implemented checks of the Dress-Lovász and Ingleton-Main
conditions and their recursive versions in Sage. In rank 5, depth 3 already
seemed to be too much to handle for checking the Dress-Lovász condition.
Not only is number of double circuits that requires checking generally larger
than in rank 4, but there are also more Dress-Lovász extensions as the double
circuit degree increases. As a consequence, I was unable to check the recursive
Dress-Lovász condition for depth greater than 2 for a large number of matroids
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(r, n) (4,8) (4,9) (5,9)
DL 39 27137 27137
DL depth 2 39 27137 27137
IM depth 3 39 28418 27144
IM depth 4 39 30171 27442
IM depth 5 39 30658 27500
IM depth 6 39 30756∗ ?

Table 6. Number of matroids failing the Dress-Lovász and
Ingleton-Main conditions of the given depth. The computa-
tions at depth 6 are unfinished; the actual number is likely
higher.

FF-representable (4,8) (3,9) (4,9) (5,9) (6,9)
true 938 1274 185346 185348 1274
false 2 1 4551 4551 1

unknown 0 0 317 315 0
Table 7. Number of matroids that are Frobenius-flock repre-
sentable in characteristic 2. In all other types of matroids on
9 at most elements, all matroids are Frobenius-flock repre-
sentable.

of rank 5 on 9 elements. Therefore at depth > 2 I computed the recursive
Ingleton-Main condition instead.

Table 6 contains the numbers of non-algebraic matroids due to the (re-
cursive) Dress-Lovász and Ingleton-Main conditions. It is interesting to see
that the number of matroids failing the Dress-Lovász condition is the same for
rank 4 and 5 on 9 elements. In fact, the (5,9)-matroids are the duals of the
(4,9)-matroids. One would not expect the Dress-Lovász condition to be closed
under duality, as it is an extension property. However, in this case, the (4,9)-
and (5,9)-matroids are exactly the (co-)extensions of the (4,8)-matroids that
do not satisfy the Dress-Lovász condition. Indeed, satisfying the Dress-Lovász
condition is closed under taking minors. There are simply no other matroids
that fail the Dress-Lovász condition. At depth 3, this ‘closedness under duality’
vanishes, witnessed by (among others) the Tic-Tac-Toe matroid and its dual.
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Algebraic (4,8) (3,9) (4,9) (5,9) (6,9)
true 897 1271 148822 148822 1271
false 40 1 31820 29263 1

unknown 3 3 9572 12129 3
Table 8. Number of algebraic matroids in characteristic 2.

5. The flock condition

Table 7 contains the results of my computations with respect to Frobenius-
flock representability. I checked the flock condition (see Definition 7.15) for
all matroids. The matroids that satisfied the flock condition, I tried to find a
Frobenius-flock representable valuation. Of the matroids for which I did not
succeed in finding a Frobenius-flock representable valuation, we do not know
whether they are Frobenius-flock representable. The matroids that fail the
flock condition are not Frobenius-flock representable. Then neither are their
duals, because the flock condition is closed under duality.

There is a small difference between the numbers of matroids for which we
know they are Frobenius-flock representable in the cases (4,9) and (5,9). So
there exist matroids that are Frobenius-flock representable, but their duals
might not be. Indeed, these matroids all admit one or several valuations ν
such that Mν is Frobenius-flock representable, but Mν∗ is not Frobenius-flock
representable. So we get the following result.

Theorem 8.20. Frobenius-flock representability of matroid flocks is not closed
under duality.

Some caution is in order here, as the proof of this theorem depends
strongly on computer calculations. The cases for which Mν is Frobenius-flock
representable, but Mν∗ is not, are too large to check by hand.

I believe that this result extends to matroids.

Conjecture 8.21. Frobenius-flock representability of matroids is not closed
under duality.

The matroids for which the dual gave a different output will not settle
the question whether algebraic matroids are closed under duality. All of these
matroids and their duals are already non-algebraic due to the Dress-Lovász
condition.

6. Algebraic matroids in characteristic 2

Table 8 contains the numbers of matroids per type that are algebraic,
non-algebraic, or unknown to be algebraic. We elaborate on our findings.
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Figure 4. The Non-Pappus matroid.

6.1. Type (4,8). The non-algebraic matroids of rank 4 on 8 elements
contain the 39 matroids that are non-algebraic due to Dress-Lovász. The other
non-algebraic matroid is the matroid ’T8’ [43], which is the Lazarson matroid
representable in characteristic 3 with the element z from its representation in
equation 6 removed. It was shown to be non-algebraic in characteristic 2 by
Lindström [31], and it is also one of the 2 matroids of type (4,8) that is not
flock-representable in characteristic 2.

Furthermore, there are 5 matroids that satisfy the Dress-Lovász condition,
but not the Dress-Wenzel condition. Two of them are representable over a
skew field [33, 29] (Figure 3) and thus algebraic.

For the remaining three matroids, algebraicity is unknown. Two of them,
which are dual to each other, are obtained from the matroid in Figure 3
algebraically represented by the points {1, 4, 7, 8, 10, 11, 13, 14} by turning one
of the bases {1, 8, 11, 14} and {4, 7, 10, 13} into a circuit. To obtain the third
matroid, both of these bases are turned into circuits.

6.2. Types (3,9) and (6,9). Of the four matroids that do not satisfy
the Dress-Wenzel condition, one is representable over any skew field and thus
algebraic in characteristic 2. This matroid is the Non-Pappus matroid (Figure
4).

The 3 matroids for which algebraicity is unknown are obtained from the
Non-Pappus matroid by turning any nonempty subset of the set of bases

{{1, 4, 9}, {2, 5, 8}, {3, 6, 7}}
into circuits (the opposite operation of circuit hyperplane relaxation). The
duals of all of these matroids suffer the same fate.



140 8. SMALL MATROIDS

The single non-algebraic matroid in characteristic 2 of type (3,9) is a
ternary Reid geometry, and hence only algebraic in characteristic 3 (just like
its dual).

(4,9) (5,9)
algebraic 148822 148822
Linear in characteristic 2 125692 125692
Rational 20469 20469
GF(4)(F)-representable 98 98
Number field representable 284 284
Quaternion representable 2279 2279
non-algebraic 31820 29263
Ingleton-Main condition 30756 27500
Frobenius-flock representability 1064 1763
unknown 9572 12129

Table 9. Numbers of algebraic, non-algebraic and unknown
matroids, and their first found certificate (checked from top
to bottom).

6.3. Types (4,9) and (5,9). In Table 9 we show the certificates for
(non-)algebraicity. The algebraic matroids we found are all due to reasons
that are closed under duality, namely linearity or representability over the
endomorphism ring of a connected one-dimensional algebraic group. This
explains the equality of the numbers of algebraic matroids for (4,9) and (5,9).
The numbers for non-algebraicity are different, however. This is purely due
to the fact that the Ingleton-Main and Dress-Lovász conditions are not closed
under duality, and that checking the Dress-Lovász condition at depth 3 is
already much harder for matroids of type (5,9) than for matroids of type (4,9).

The matroids for which algebraicity is unknown can be divided into several
categories:

• (co)extensions of the 3 matroids of type (4,8) for which algebraicity
is unknown (1059 and 1825 matroids for (4,9) and (5,9) respectively);

• matroids linear over the endomorphism ring of a connected one-
dimensional algebraic group (not all of them have likely been found);

• matroids failing the Dress-Lovász condition at greater depth than
computed;

• the remainder.
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6.4. The impact of Frobenius-flock methods. Only for types (4,9)
and (5,9) Frobenius-flock methods provided new results on algebraicity. Of the
4551 matroids of type (4,9) that have been found to be non-Frobenius-flock
representable, 1064 matroids could not be proven to be non-algebraic by any
other means. The number of non-Frobenius-flock representable matroids of
type (5,9) that could not be shown to be non-algebraic by other means is 1763.
We conclude that Frobenius-flock methods constitute an effective new method
for matroids of rank 4 or 5 on 9 elements. The smaller matroids that fail the
flock condition had already been found by Lindström and others.





CHAPTER 9

Discussion and further work

In this chapter we revisit the main results of the thesis and indicate possible
directions for further research.

1. Results

1.1. Matroid flocks and valuations. A matroid flock consists of a
collection of matroids on the integer lattice ZE which are locally related by
the two simple axioms (MF1) and (MF2). A matroid valuation, too, is defined
by local structure: not in an integer lattice, but on the set of bases of the
matroid. Matroid valuations with integral values and matroid flocks were
united by a simple global function: for each matroid flock M there exists
an integral matroid valuation ν such that Mα = Mν

α for each α ∈ ZE , and
vice versa (Theorem 3.3). As a consequence, the well-known correspondence
between matroid valuations and polyhedral complexes extends to matroid flocks
(Theorem 3.17). These insights were then used to analyse the structure of
matroid flocks: taking minors, duality and circuit-hyperplane relaxation come
to mind, as well as the behaviour of matroid flocks along lines.

1.2. Linear flocks. Similarly to matroid flocks, a linear flock consists of
a collection of vector spaces over a field K of nonzero characteristic on the
integer lattice ZE . The vector spaces are locally related by two axioms (LF1)
and (LF2), of which the latter includes the action of an automorphism f of K
on a vector space. A linear flock can be seen as a representation of a matroid
flock, assigning a linear representation to each Mα. Similarly, a linear flock is
a representation of a matroid, namely the valuated matroid of the underlying
matroid flock. Due to Theorem 4.2, a linear flock is completely determined
by a finite number of vector spaces at its central points. While the class of
linear-flock representable matroids over (K, f) is probably not closed under
duality, we show that it is closed under circuit-hyperplane relaxation (Theorem
4.37). By considering spike matroids, we concluded that the class of linear-flock
representable matroids is asymptotically large (Theorem 4.3).
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1.3. Frobenius flocks and algebraic matroids. A special case of a
linear flock is one over (K,F ), where F is the Frobenius endomorphism of K,
and K is algebraically closed. Due to Theorem 5.13, each algebraic representa-
tion X of a matroid, together with a very general point v ∈ X, give rise to the
Frobenius flock V : α 7→ TαvαX. This Frobenius flock is then a Frobenius-flock
representation of M(X). Due to Theorem 5.17, a very general v always exists
in X, so that each algebraic representation induces a Frobenius flock. This
yields a criterion that algebraic matroids need to satisfy: they need to be
Frobenius-flock representable. However, Frobenius-flock representability is not
sufficient for a matroid to be algebraic: the Vámos matroid is Frobenius-flock
representable (Corollary 4.39), but not algebraic. An algorithm to compute the
Frobenius flock of an algebraic representation has been implemented (Chapter
7, Section 7).

1.4. Algebraic equivalence of algebraic representations. We de-
fined a notion of algebraic equivalence of algebraic representations in which two
algebraic representations of a matroid M are equivalent if they can be combined
into an algebraic representation of M2. All algebraic representations of the
uniform matroid U1,2 are algebraically equivalent (Theorem 5.29). However,
there are inequivalent algebraic representations of U2,3 (Theorem 5.31), and
we do not even know how many equivalence classes there are. Due to Theorem
5.30 equivalent algebraic representations have the same Lindström valuation
up to translation. Finally we showed that algebraically equivalent of linear
representations must be field-equivalent (Corollary 5.37).

1.5. Non-algebraicity of matroids due to non-Frobenius-flock rep-
resentability. Frobenius-flock methods for determining whether a matroid
is non-algebraic are generally most effective on matroids with few valuations.
An extreme case is when the matroid is both rigid and non-linear over K,
when due to Theorem 5.19 the matroid is non-algebraic over K. We show that
Lazarson matroids are only linear-flock representable in a single characteristic
(Theorem 6.8), implying results from Lindström [31]. Similarly, we show that
Reid geometries are only linear-flock representable in a single characteristic
(Theorem 6.11), generalising results from Gordon [18].

1.6. Computing algebraicity of matroids. Algorithms for checking
certain properties related to algebraicity of matroids were implemented. We
check the Ingleton-Main and Dress-Lovász conditions, and their versions at
greater depth, which are necessary for algebraicity. We also check Frobenius-
flock representability of a matroid, where possible. That requires enumerating



2. FURTHER WORK 145

the valuations of a matroid (Algorithm 1) and checking whether the matroid
flock of a valuation is Frobenius-flock representable (Algorithm 2).

The question whether the class of algebraic matroids is closed under duality
remains open. However due to Theorem 8.20, Frobenius-flock representability
of matroid flocks is not closed under duality. Frobenius-flock methods might
provide a new angle to try to solve this question, but I expect it could only be
successful for matroids on (much) more than 9 elements.

1.7. Matroids on at most 9 elements in characteristic 2. We ap-
plied our algorithms to all matroids on at most 9 elements in characteristic 2.
It turns out that Frobenius-flock methods provide no new results on matroids
on 8 elements or fewer, or on matroids on 9 elements of rank 3 and 6. How-
ever, much less was previously known about matroids on 9 elements of rank
4 and 5. In both cases, 4551 matroids were shown to be not Frobenius-flock
representable. Of these matroids, non-algebraicity of 1064 matroids could
not be determined by different methods in the (4, 9) case, and 1763 in the
(5, 9) case. For 317 matroids in the (4, 9) case, Frobenius-flock representability
remains unknown, and similarly for 315 matroids in the (5, 9) case. While these
numbers are different, the corresponding matroids are all non-algebraic due
to the recursive Dress-Lovász condition. So while they might show that the
class of Frobenius-flock representable matroids is not closed under duality, a
similar statement for algebraic matroids cannot be derived. The final tally is
that there are still 21710 matroids on at most 9 elements of which algebraicity
is unknown. Strategies to find out whether they are algebraic include

• computing the Dress-Lovász condition at greater depth;
• finding rational representations or representations over skew fields

coming from a connected one-dimensional algebraic group.

Frobenius-flock methods will not get us any further, since all of these matroids
are Frobenius-flock representable.

2. Further work

2.1. Flock-representability of all valuations of a combinatorial
type. We were unable to determine Frobenius-flock representability of all
matroids of rank 4 and 5 on 9 elements. Suppose all matroids in a matroid flock
are linear, but the matroid flock admits no Frobenius-flock representation. Then
this does not generally imply anything about Frobenius-flock representability of
other matroid flocks of the same combinatorial type. In some cases, there exists
another matroid flock of the same combinatorial type that is Frobenius-flock
representable. In other cases, such as the ‘quaternary butterfly’, there does
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not (Theorem 7.19). We do not know whether it is decidable if there exists a
valuation of such a combinatorial type that is Frobenius-flock representable.

Conjecture 9.1. Let K be an algebraically closed field. It is decidable whether
a matroid is Frobenius-flock representable over K.

2.2. Frobenius-flock methods for larger matroids. For matroids on
more than 9 elements, Frobenius-flock methods are still feasible, but I expect
the computations to become more time-consuming the more valuations a
matroid has. Already for some matroids of types (4,9) and (5,9) there were
some matroids for which the Frobenius-flock computations did not finish within
a reasonable time frame, and had to be aborted. However, due to Theorem
4.38, these matroids could still shown to be Frobenius-flock representable. I
expect the current implementation of Frobenius-flock methods to be too slow
to determine Frobenius-flock representability of all matroids of type (4,10).
On the other hand, if the number of valuations of a matroid is very small,
then checking the flock condition is generally fast, even for matroids up to 20
elements. Since matroids with few valuations are most prone to failing the
flock condition, it is still likely that Frobenius-flock methods are able to yield
meaningful results for larger matroids.

Frobenius-flock methods also work over fields of characteristic > 2, albeit
a little slower, since the degrees of the polynomials are higher.

2.3. Smallest matroids for which algebraicity is unknown. Six
matroids stand out as the smallest matroids (in terms of size and rank) for
which we still do not know whether they are algebraic or not. Three of them
are of rank 3 on 9 elements and are shown in Figure 1. They are obtained from
the Non-Pappus matroid by removing any subset of the three bases

{{1, 4, 9}, {2, 5, 8}, {3, 6, 7}}

from the basis set of the matroid. While the Non-Pappus matroid itself is linear
over a skew field, these three ‘circuit-hyperplane derelaxations’ are all nonlinear
over any skew field in any characteristic. Conversely, they are Frobenius-flock
representable, and the rank of these matroids is too low to fail the Dress-Lovász
condition.

The other three matroids are of rank 4 on 8 elements. Consider the matroid
M in Figure 2. Like the Non-Pappus matroid, it is linear over a skew field, but
not over any field. Removing any subset of the two bases

{{1, 4, 6, 8}, {2, 3, 5, 7}}
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Figure 1. The Non-Pappus matroid and the weaker matroids
for which algebraicity is unknown.
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Figure 2. A self-dual matroid with nonbases {1, 2, 3, 6},
{1, 2, 5, 8}, {1, 3, 4, 7}, {1, 5, 6, 7}, {2, 4, 5, 6}, {3, 4, 5, 8},
{3, 6, 7, 8}, discovered by Lindstrom [33] to be only linear
over a skew field, but algebraic in any characteristic.

from the basis set of M yields one of the three matroids for which algebraicity
is unknown. The two matroids obtained by ‘derelaxing’ precisely one of the
two bases are dual to each other.

2.4. The Tic-Tac-Toe matroid and its siblings. The Tic-Tac-Toe
matroid appeared in the paper of Alfter and Hochstättler [1] as a matroid
which is closed under Dress-Lovász extensions, but whose dual is non-algebraic
due to the Dress-Lovász condition at depth 3. In our computations we found



148 9. DISCUSSION AND FURTHER WORK

that there are 14 matroids of rank 5 on 9 elements with this property. The
Tic-Tac-Toe matroid is the one with the most bases among these 14.

Using the methods in this thesis, there is no hope of finding an algebraic
representation of any of these 14 matroids: our positive results rely on linearity
over some skew field, which is a property that is closed under duality. On
the other hand, the methods in this thesis are unable to rule out that these
matroids are algebraic. All of them are Frobenius-flock representable and
satisfy the Dress-Lovász condition at arbitrary depth.

The question whether algebraic representability is closed under duality
remains unanswered.
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Summary

Frobenius Flocks and Algebraicity of Matroids

Matroids are abstract objects consisting of a finite set of elements and
a collection of subsets of a fixed size. These subsets are called the bases of
the matroid, and must satisfy the condition that for each pair of bases, each
element of the first basis can be exchanged with an element of the second basis
in such a way that after the exchange, both subsets remain bases. Matroids
arise from graphs, where the edges constitute the set of elements, and the
spanning trees are the bases. These are the graphic matroids. Furthermore, a
finite set of vectors in a vector space forms the set of elements of a matroid,
where the bases of the matroid are the sets of vectors that are bases of the
vector space. This type of matroid is called a linear matroid. A third type of
matroids is the main subject of this thesis: algebraic matroids. The elements
of an algebraic matroid are elements of a field. A subset of elements is a basis
if it is maximal with the property that there is no polynomial relation between
the elements over a given subfield.

While graphic and linear matroids are relatively well understood, the class
of algebraic matroids is much more arduous to describe. All linear matroids
are algebraic, and over fields of characteristic zero the converse is also true.
But in prime characteristic, there is no known algorithm that decides whether
a general matroid is algebraic. Even among matroids with 9 elements, there
is a significant portion of the matroids for which the known methods fail to
determine algebraicity.

In this thesis, a new method for analyzing the class of algebraic matroids is
introduced. By twisting the elements of an algebraic matroid by the Frobenius
automorphism of the field, and then linearizing the result, a collection of
linearly represented matroids is obtained, which is a Frobenius flock. Each
Frobenius flock of a matroid gives rise to a matroid valuation of the matroid.
By enumerating the valuations of a matroid and checking which valuations
could emerge from a Frobenius flock, restrictions on algebraic representations
of the matroid are obtained. Sometimes none of the valuations of a matroid
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emerge from a Frobenius flock, and then the matroid is hence not algebraic.
This approach for determining whether a matroid is not algebraic generalizes
a method first used by Bernt Lindström on a small number of (classes of)
matroids. Frobenius-flock methods are applied to the classes of matroids
that were done with the method of Lindström. Moreover, some classes of
algebraic matroids are investigated, such as matroids over certain skew-fields
and matroids from elliptic curves.

This thesis also covers the computational aspects of algebraic matroids.
Among others, the following algorithms have been implemented in Sage and
are documented in this thesis:

• enumerating the valuations of a matroid;
• checking whether a given matroid valuation emerges from a Frobenius

flock in a given characteristic;
• computing the Frobenius flock and its corresponding valuation from

an algebraic representation of a matroid.

These algorithms, along with previously known methods, are then applied to
the set of all matroids on 9 elements in order to provide an as accurate as
possible status quo of which matroids are known to be (non-)algebraic over
some field of characteristic 2.
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