25,927 research outputs found

    FACT -- The G-APD revolution in Cherenkov astronomy

    Full text link
    Since two years, the FACT telescope is operating on the Canary Island of La Palma. Apart from its purpose to serve as a monitoring facility for the brightest TeV blazars, it was built as a major step to establish solid state photon counters as detectors in Cherenkov astronomy. The camera of the First G-APD Cherenkov Telesope comprises 1440 Geiger-mode avalanche photo diodes (G-APD), equipped with solid light guides to increase the effective light collection area of each sensor. Since no sense-line is available, a special challenge is to keep the applied voltage stable although the current drawn by the G-APD depends on the flux of night-sky background photons significantly varying with ambient light conditions. Methods have been developed to keep the temperature and voltage dependent response of the G-APDs stable during operation. As a cross-check, dark count spectra with high statistics have been taken under different environmental conditions. In this presentation, the project, the developed methods and the experience from two years of operation of the first G-APD based camera in Cherenkov astronomy under changing environmental conditions will be presented.Comment: Proceedings of the Nuclear Science Symposium and Medical Imaging Conference (IEEE-NSS/MIC), 201

    Determination of creatinine and creatine by capillary electrophoresis : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Chemistry at Massey University

    Get PDF
    The assessment of creatinine and creatine in biological fluids is important in the evaluation of renal and muscular functions. For routine creatinine determinations in the clinical laboratory, the most frequently used method is the spectrophotometric one based on the Jaffé reaction. However, this reaction is not specific for creatinine. For this reason, several methods have been proposed, but the elimination of interferences in the determination of creatinine has still not been achieved in some of these methods; others solved this problem either with expensive equipment that does not suit routine analysis or necessitates time-waste procedures. In this thesis capillary electrophoresis was the new tool investigated. It was applied in an attempt to achieve both the separation of creatinine from the non-creatinine 'Jaffé- reacting' chromogens and the determination of creatine in serum. Capillary zone electrophoresis was performed with detection at wavelength 480 nm to separate creatinine from the non-creatinine 'Jaffé-reacting' chromogens in urine. The principle was based upon the different migration times due to the different molecule weights, molecular sizes and charges under the applied high voltage. The picric acid was employed as part of the running buffer to allow reaction of creatinine and picrate to take place after the sample injection. This procedure eliminated the negative influence of the reaction time that is controlled manually in the common Jaffé reaction method. Therefore, compared to the Jaffé reaction method, the new method achieved more accuracy and precision in the determination of creatinine. Determination of creatinine in serum and urine were studied at a new wavelength 417 nm, which gave a higher sensitivity of detection than at 480 nm. This wavelength shift made the determination of creatinine in serum possible by capillary zone electrophoresis without the non-creatinine 'Jaffé-reacting' chromogens interfering. In this method, serum only needed a simple filtration before the analysis. Creatine was discovered to have absorption at 417 nm in alkaline medium. Moreover, specific sample stacking was introduced in this method. The sample was dissolved in a mixture of two-volumes acetonitrile and one-volume 3 % ammonium chloride to give a 10-fold enhancement of detection sensitivity

    Alternative conducted immunity tests

    Get PDF
    Conducted immunity tests are always performed by the use of CDNs in laboratories in accordance with the standard EN61000-4-6. However, it is not always possible to use CDNs because of some limitations. If the EUT (Equipment Under Test) has large dimensions or high currents, it is not, most of the time, possible to send it to an EMC laboratory or to use CDNs during the test. As a consequence, usage of BCI probes is inevitable in industry. In this paper, we compared the laboratory setup installed with CDNs and alternative setups installed directly on mains without any CDNs in terms of loop impedances and injected loop currents. We also established a link based on the loop impedances and the injected currents on the test loops between the two setups. Finally, a first serious step was taken to establish the fundamentals of alternative conducted immunity tests based on the impedance measurements of test loops for industry.Postprint (published version

    Methodology and calibration for continuous measurements of biogeochemical trace gas and O2 concentrations from a 300-m tall tower in central Siberia

    Get PDF
    We present an integrated system for measuring atmospheric concentrations of CO2, O2, CH4, CO, and N2O in central Siberia. Our project aims to demonstrate the feasibility of establishing long-term, continuous, high precision atmospheric measurements to elucidate greenhouse gas processes from a very remote, mid-continental boreal environment. Air is sampled from five heights on a custom-built 300-m tower. Common features to all species' measurements include air intakes, an air drying system, flushing procedures, and data processing methods. Calibration standards are shared among all five measured species by extending and optimising a proven methodology for long-term O2 calibration. Our system achieves the precision and accuracy requirements specified by the European Union's "CarboEurope" and "ICOS" (Integrated Carbon Observing System) programmes in the case of CO2, O2, and CH4, while CO and N2O require some further improvements. It was found that it is not possible to achieve these high precision measurements without skilled technical assistance on-site, primarily because of 2–3 month delays in access to data and diagnostic information. We present results on the stability of reference standards in high pressure cylinders. It was also found that some previous methods do not mitigate fractionation of O2 in a sample airstream to a satisfactory level

    A compact ultra-clean system for deploying radioactive sources inside the KamLAND detector

    Full text link
    We describe a compact, ultra-clean device used to deploy radioactive sources along the vertical axis of the KamLAND liquid-scintillator neutrino detector for purposes of calibration. The device worked by paying out and reeling in precise lengths of a hanging, small-gauge wire rope (cable); an assortment of interchangeable radioactive sources could be attached to a weight at the end of the cable. All components exposed to the radiopure liquid scintillator were made of chemically compatible UHV-cleaned materials, primarily stainless steel, in order to avoid contaminating or degrading the scintillator. To prevent radon intrusion, the apparatus was enclosed in a hermetically sealed housing inside a glove box, and both volumes were regularly flushed with purified nitrogen gas. An infrared camera attached to the side of the housing permitted real-time visual monitoring of the cable's motion, and the system was controlled via a graphical user interface.Comment: Revised author affiliations, corrected typos, made minor improvements to text, and revised reference

    Absolute flux density calibrations of radio sources: 2.3 GHz

    Get PDF
    A detailed description of a NASA/JPL Deep Space Network program to improve S-band gain calibrations of large aperture antennas is reported. The program is considered unique in at least three ways; first, absolute gain calibrations of high quality suppressed-sidelobe dual mode horns first provide a high accuracy foundation to the foundation to the program. Second, a very careful transfer calibration technique using an artificial far-field coherent-wave source was used to accurately obtain the gain of one large (26 m) aperture. Third, using the calibrated large aperture directly, the absolute flux density of five selected galactic and extragalactic natural radio sources was determined with an absolute accuracy better than 2 percent, now quoted at the familiar 1 sigma confidence level. The follow-on considerations to apply these results to an operational network of ground antennas are discussed. It is concluded that absolute gain accuracies within + or - 0.30 to 0.40 db are possible, depending primarily on the repeatability (scatter) in the field data from Deep Space Network user stations
    • …
    corecore