31,201 research outputs found

    Intelligent resources for satellite ground control operations

    Get PDF
    This paper describes a cooperative approach to the design of intelligent automation and describes the Mission Operations Cooperative Assistant for NASA Goddard flight operations. The cooperative problem solving approach is being explored currently in the context of providing support for human operator teams and also in the definition of future advanced automation in ground control systems

    Acquisition and production of skilled behavior in dynamic decision-making tasks: Modeling strategic behavior in human-automation interaction: Why and aid can (and should) go unused

    Get PDF
    Advances in computer and control technology offer the opportunity for task-offload aiding in human-machine systems. A task-offload aid (e.g., an autopilot, an intelligent assistant) can be selectively engaged by the human operator to dynamically delegate tasks to an automated system. Successful design and performance prediction in such systems requires knowledge of the factors influencing the strategy the operator develops and uses for managing interaction with the task-offload aid. A model is presented that shows how such strategies can be predicted as a function of three task context properties (frequency and duration of secondary tasks and costs of delaying secondary tasks) and three aid design properties (aid engagement and disengagement times, aid performance relative to human performance). Sensitivity analysis indicates how each of these contextual and design factors affect the optimal aid aid usage strategy and attainable system performance. The model is applied to understanding human-automation interaction in laboratory experiments on human supervisory control behavior. The laboratory task allowed subjects freedom to determine strategies for using an autopilot in a dynamic, multi-task environment. Modeling results suggested that many subjects may indeed have been acting appropriately by not using the autopilot in the way its designers intended. Although autopilot function was technically sound, this aid was not designed with due regard to the overall task context in which it was placed. These results demonstrate the need for additional research on how people may strategically manage their own resources, as well as those provided by automation, in an effort to keep workload and performance at acceptable levels

    Using Mach threads to control DSN operational sequences

    Get PDF
    The Link Monitor and Control Operator Assistant prototype (LMCOA) is a state-of-the-art, semiautomated monitor and control system based on an object-oriented design. The purpose of the LMCOA prototyping effort is to both investigate new technology (such as artificial intelligence) to support automation and to evaluate advances in information systems toward developing systems that take advantage of the technology. The emergence of object-oriented design methodology has enabled a major change in how software is designed and developed. This paper describes how the object-oriented approach was used to design and implement the LMCOA and the results of operational testing. The LMCOA is implemented on a NeXT workstation using the Mach operating system and the Objective-C programming language

    Operator assistant to support deep space network link monitor and control

    Get PDF
    Preparing the Deep Space Network (DSN) stations to support spacecraft missions (referred to as pre-cal, for pre-calibration) is currently an operator and time intensive activity. Operators are responsible for sending and monitoring several hundred operator directivities, messages, and warnings. Operator directives are used to configure and calibrate the various subsystems (antenna, receiver, etc.) necessary to establish a spacecraft link. Messages and warnings are issued by the subsystems upon completion of an operation, changes of status, or an anomalous condition. Some points of pre-cal are logically parallel. Significant time savings could be realized if the existing Link Monitor and Control system (LMC) could support the operator in exploiting the parallelism inherent in pre-cal activities. Currently, operators may work on the individual subsystems in parallel, however, the burden of monitoring these parallel operations resides solely with the operator. Messages, warnings, and directives are all presented as they are received; without being correlated to the event that triggered them. Pre-cal is essentially an overhead activity. During pre-cal, no mission is supported, and no other activity can be performed using the equipment in the link. Therefore, it is highly desirable to reduce pre-cal time as much as possible. One approach to do this, as well as to increase efficiency and reduce errors, is the LMC Operator Assistant (OA). The LMC OA prototype demonstrates an architecture which can be used in concert with the existing LMC to exploit parallelism in pre-cal operations while providing the operators with a true monitoring capability, situational awareness and positive control. This paper presents an overview of the LMC OA architecture and the results from initial prototyping and test activities

    Operations automation using temporal dependency networks

    Get PDF
    Precalibration activities for the Deep Space Network are time- and work force-intensive. Significant gains in availability and efficiency could be realized by intelligently incorporating automation techniques. An approach is presented to automation based on the use of Temporal Dependency Networks (TDNs). A TDN represents an activity by breaking it down into its component pieces and formalizing the precedence and other constraints associated with lower level activities. The representations are described which are used to implement a TDN and the underlying system architecture needed to support its use. The commercial applications of this technique are numerous. It has potential for application in any system which requires real-time, system-level control, and accurate monitoring of health, status, and configuration in an asynchronous environment

    Computer- and robot-assisted Medical Intervention

    Full text link
    Medical robotics includes assistive devices used by the physician in order to make his/her diagnostic or therapeutic practices easier and more efficient. This chapter focuses on such systems. It introduces the general field of Computer-Assisted Medical Interventions, its aims, its different components and describes the place of robots in that context. The evolutions in terms of general design and control paradigms in the development of medical robots are presented and issues specific to that application domain are discussed. A view of existing systems, on-going developments and future trends is given. A case-study is detailed. Other types of robotic help in the medical environment (such as for assisting a handicapped person, for rehabilitation of a patient or for replacement of some damaged/suppressed limbs or organs) are out of the scope of this chapter.Comment: Handbook of Automation, Shimon Nof (Ed.) (2009) 000-00

    Deployment of a Full-Scope Commercial Nuclear Power Plant Control Room Simulator at the Idaho National Laboratory

    Get PDF
    The INL operates the HSSL to conduct research in the design and evaluation of advanced reactor control rooms, integration of intelligent support systems to assist operators, development and assessment of advanced human performance models, and visualizations to assess advanced operational concepts across various infrastructures. This advanced facility consists of a reconfigurable simulator and a virtual reality capability (known as the Computer-Aided Virtual Environment (CAVE)) (Figure 2). It supports human factors research, including human-in-the-loop performance, HSI, and analog and digital hybrid control displays. It can be applied to the development and evaluation of control systems and displays for complex systems such as existing and advanced NPP control rooms, command and control systems, and advance emergency operations centers. The HSSL incorporates a reconfigurable control room simulator, which is currently housed in the Center for Advanced Energy Studies (CAES), a joint venture of the DOE and the Idaho University System. The simulator is a platform- and plant-neutral environment intended for full-scope and part-task testing of operator performance in various control room configurations. The simulator is not limited to a particular plant or even simulator architecture. It can support engineering simulator platforms from multiple vendors using digital interfaces. Due to its ability to be reconfigured, it is possible to switch the HSI - not just to digital panels but also to different control modalities such as those using greater plant automation or intelligent alarm filtering. The simulator currently includes three operator workstations, each capable of driving up to eight 30-inch monitors. The size and number of monitors varies depending on the particular front-end simulator deployed for a simulator study. These operator workstations would typically be used for the shift supervisor or senior reactor operator, reactor operator, and assistant reactor operator in current US NPPs. In addition to the three workstations, information can be shared between the workstations and further displayed on a large-screen overview display or a panel mimic. An 82-inch high-definition display is commonly used for the overview display

    On Improving Automation by Integrating RFID in the Traceability Management of the Agri-Food Sector

    Get PDF
    Traceability is a key factor for the agri-food sector. RFID technology, widely adopted for supply chain management, can be used effectively for the traceability management. In this paper, a framework for the evaluation of a traceability system for the agri-food industry is presented and the automation level in an RFID-based traceability system is analyzed and compared with respect to traditional ones. Internal and external traceability are both considered and formalized, in order to classify different environments, according to their automation level. Traceability systems used in a sample sector are experimentally analyzed, showing that by using RFID technology, agri-food enterprises increase their automation level and also their efficiency, in a sustainable wa

    Nonlinear quantum input-output analysis using Volterra series

    Full text link
    Quantum input-output theory plays a very important role for analyzing the dynamics of quantum systems, especially large-scale quantum networks. As an extension of the input-output formalism of Gardiner and Collet, we develop a new approach based on the quantum version of the Volterra series which can be used to analyze nonlinear quantum input-output dynamics. By this approach, we can ignore the internal dynamics of the quantum input-output system and represent the system dynamics by a series of kernel functions. This approach has the great advantage of modelling weak-nonlinear quantum networks. In our approach, the number of parameters, represented by the kernel functions, used to describe the input-output response of a weak-nonlinear quantum network, increases linearly with the scale of the quantum network, not exponentially as usual. Additionally, our approach can be used to formulate the quantum network with both nonlinear and nonconservative components, e.g., quantum amplifiers, which cannot be modelled by the existing methods, such as the Hudson-Parthasarathy model and the quantum transfer function model. We apply our general method to several examples, including Kerr cavities, optomechanical transducers, and a particular coherent feedback system with a nonlinear component and a quantum amplifier in the feedback loop. This approach provides a powerful way to the modelling and control of nonlinear quantum networks.Comment: 12 pages, 7 figure

    User-centered design of a dynamic-autonomy remote interaction concept for manipulation-capable robots to assist elderly people in the home

    Get PDF
    In this article, we describe the development of a human-robot interaction concept for service robots to assist elderly people in the home with physical tasks. Our approach is based on the insight that robots are not yet able to handle all tasks autonomously with sufficient reliability in the complex and heterogeneous environments of private homes. We therefore employ remote human operators to assist on tasks a robot cannot handle completely autonomously. Our development methodology was user-centric and iterative, with six user studies carried out at various stages involving a total of 241 participants. The concept is under implementation on the Care-O-bot 3 robotic platform. The main contributions of this article are (1) the results of a survey in form of a ranking of the demands of elderly people and informal caregivers for a range of 25 robot services, (2) the results of an ethnography investigating the suitability of emergency teleassistance and telemedical centers for incorporating robotic teleassistance, and (3) a user-validated human-robot interaction concept with three user roles and corresponding three user interfaces designed as a solution to the problem of engineering reliable service robots for home environments
    corecore