15 research outputs found

    On Deciding Local Theory Extensions via E-matching

    Full text link
    Satisfiability Modulo Theories (SMT) solvers incorporate decision procedures for theories of data types that commonly occur in software. This makes them important tools for automating verification problems. A limitation frequently encountered is that verification problems are often not fully expressible in the theories supported natively by the solvers. Many solvers allow the specification of application-specific theories as quantified axioms, but their handling is incomplete outside of narrow special cases. In this work, we show how SMT solvers can be used to obtain complete decision procedures for local theory extensions, an important class of theories that are decidable using finite instantiation of axioms. We present an algorithm that uses E-matching to generate instances incrementally during the search, significantly reducing the number of generated instances compared to eager instantiation strategies. We have used two SMT solvers to implement this algorithm and conducted an extensive experimental evaluation on benchmarks derived from verification conditions for heap-manipulating programs. We believe that our results are of interest to both the users of SMT solvers as well as their developers

    On Automated Lemma Generation for Separation Logic with Inductive Definitions

    Get PDF
    Separation Logic with inductive definitions is a well-known approach for deductive verification of programs that manipulate dynamic data structures. Deciding verification conditions in this context is usually based on user-provided lemmas relating the inductive definitions. We propose a novel approach for generating these lemmas automatically which is based on simple syntactic criteria and deterministic strategies for applying them. Our approach focuses on iterative programs, although it can be applied to recursive programs as well, and specifications that describe not only the shape of the data structures, but also their content or their size. Empirically, we find that our approach is powerful enough to deal with sophisticated benchmarks, e.g., iterative procedures for searching, inserting, or deleting elements in sorted lists, binary search tress, red-black trees, and AVL trees, in a very efficient way

    Reasoning in the Bernays-Schönfinkel-Ramsey Fragment of Separation Logic

    Get PDF
    International audienceSeparation Logic (SL) is a well-known assertion language used in Hoare-style modular proof systems for programs with dynamically allocated data structures. In this paper we investigate the fragment of first-order SL restricted to the Bernays-Schönfinkel-Ramsey quantifier prefix ∃ * ∀ * , where the quantified variables range over the set of memory locations. When this set is uninterpreted (has no associated theory) the fragment is PSPACE-complete, which matches the complexity of the quantifier-free fragment [7]. However, SL becomes undecid-able when the quantifier prefix belongs to ∃ * ∀ * ∃ * instead, or when the memory locations are interpreted as integers with linear arithmetic constraints, thus setting a sharp boundary for decidability within SL. We have implemented a decision procedure for the decidable fragment of ∃ * ∀ * SL as a specialized solver inside a DPLL(T) architecture, within the CVC4 SMT solver. The evaluation of our implementation was carried out using two sets of verification conditions, produced by (i) unfolding inductive predicates, and (ii) a weakest precondition-based verification condition generator. Experimental data shows that automated quantifier instantiation has little overhead, compared to manual model-based instantiation

    Compositional Verification of Heap-Manipulating Programs through Property-Guided Learning

    Get PDF
    Analyzing and verifying heap-manipulating programs automatically is challenging. A key for fighting the complexity is to develop compositional methods. For instance, many existing verifiers for heap-manipulating programs require user-provided specification for each function in the program in order to decompose the verification problem. The requirement, however, often hinders the users from applying such tools. To overcome the issue, we propose to automatically learn heap-related program invariants in a property-guided way for each function call. The invariants are learned based on the memory graphs observed during test execution and improved through memory graph mutation. We implemented a prototype of our approach and integrated it with two existing program verifiers. The experimental results show that our approach enhances existing verifiers effectively in automatically verifying complex heap-manipulating programs with multiple function calls
    corecore