Reasoning in the Bernays-Schönfinkel-Ramsey Fragment of Separation Logic

Abstract

International audienceSeparation Logic (SL) is a well-known assertion language used in Hoare-style modular proof systems for programs with dynamically allocated data structures. In this paper we investigate the fragment of first-order SL restricted to the Bernays-Schönfinkel-Ramsey quantifier prefix ∃ * ∀ * , where the quantified variables range over the set of memory locations. When this set is uninterpreted (has no associated theory) the fragment is PSPACE-complete, which matches the complexity of the quantifier-free fragment [7]. However, SL becomes undecid-able when the quantifier prefix belongs to ∃ * ∀ * ∃ * instead, or when the memory locations are interpreted as integers with linear arithmetic constraints, thus setting a sharp boundary for decidability within SL. We have implemented a decision procedure for the decidable fragment of ∃ * ∀ * SL as a specialized solver inside a DPLL(T) architecture, within the CVC4 SMT solver. The evaluation of our implementation was carried out using two sets of verification conditions, produced by (i) unfolding inductive predicates, and (ii) a weakest precondition-based verification condition generator. Experimental data shows that automated quantifier instantiation has little overhead, compared to manual model-based instantiation

    Similar works