2 research outputs found

    A Reference Architecture and Score Representation for Popular Music Human-Computer Music Performance Systems

    Get PDF
    Popular music (characterized by improvised instrumental parts, beat and measure-level organization, and steady tempo) poses challenges for human-computer music performance (HCMP). Pieces of music are typically rearrangeable on-the-fly and involve a high degree of variation from ensemble to ensemble, and even between rehearsal and performance. Computer systems aiming to participate in such ensembles must therefore cope with a dynamic high-level structure in addition to the more traditional problems of beat-tracking, score-following, and machine improvisation. There are many approaches to integrating the components required to implement dynamic human-computer music performance systems. This paper presents a reference architecture designed to allow the typical sub-components (e.g. beat-tracking, tempo prediction, improvisation) to be integrated in a consistent way, allowing them to be combined and/or compared systematically. In addition, the paper presents a dynamic score representation particularly suited to the demands of popular music performance by computer

    Analysis and resynthesis of polyphonic music

    Get PDF
    This thesis examines applications of Digital Signal Processing to the analysis, transformation, and resynthesis of musical audio. First I give an overview of the human perception of music. I then examine in detail the requirements for a system that can analyse, transcribe, process, and resynthesise monaural polyphonic music. I then describe and compare the possible hardware and software platforms. After this I describe a prototype hybrid system that attempts to carry out these tasks using a method based on additive synthesis. Next I present results from its application to a variety of musical examples, and critically assess its performance and limitations. I then address these issues in the design of a second system based on Gabor wavelets. I conclude by summarising the research and outlining suggestions for future developments
    corecore