
A Reference Architecture and
Score Representation for Popular Music

Human-Computer Music Performance Systems

Nicolas E. Gold
University College London

Department of Computer Science
Gower St, London, WC1E 6BT, UK

n.gold@ucl.ac.uk

Roger B. Dannenberg
Carnegie Mellon University

School of Computer Science and School of Art
5000, Forbes Ave, Pittsburgh, PA, 15213

roger.dannenberg@cs.cmu.edu

ABSTRACT
Popular music (characterized by improvised instrumental parts,
beat and measure-level organization, and steady tempo) poses
challenges for human-computer music performance (HCMP).
Pieces of music are typically rearrangeable on-the-fly and
involve a high degree of variation from ensemble to ensemble,
and even between rehearsal and performance. Computer
systems aiming to participate in such ensembles must therefore
cope with a dynamic high-level structure in addition to the
more traditional problems of beat-tracking, score-following,
and machine improvisation. There are many approaches to
integrating the components required to implement dynamic
human-computer music performance systems. This paper
presents a reference architecture designed to allow the typical
sub-components (e.g. beat-tracking, tempo prediction,
improvisation) to be integrated in a consistent way, allowing
them to be combined and/or compared systematically. In
addition, the paper presents a dynamic score representation
particularly suited to the demands of popular music
performance by computer.

Keywords
Live Performance, Software Design, Popular Music

1. INTRODUCTION
Popular music (here regarded as music organized around a
steady beat, performed live, and with sectional structure
determined during performance after [1]) is an important
category of music with specific characteristics that provide new
challenges to computer participation in performance. Such
music includes much (but not all) rock, folk, musical theatre,
some jazz [1] , country and contemporary (pop) church music,
typically (but not always) in 3/4 or 4/4 time. The computer’s
role is thus no longer about providing expressive
accompaniment according to a written score, or freely
improvising in response to a stimulus, but instead needs to
provide a more dynamic, improvised, and heterogeneous
contribution to the music, that accounts for and reacts to the
music played by all members of an ensemble. The nature of
this genre has been previously characterized [1, 2] thus:

1. Music with steady tempo (not rigidly fixed-tempo but
not as expressive in tempo as, for example, romantic
period music).

2. Highly complex rhythmic patterns in place of expressive
tempo variation.

3. Elaborate improvisation of individual parts leading to
changes in rhythm and voicing between rehearsal and
performance, and from performance to performance.

4. Tight synchronization including the possibility of
playing slightly ahead of or behind the beat for
expressive effect and rhythmic “feel.”

5. Lack of notation detail as opposed to a full score.
6. Allowance of large structural changes during

performance.

 Popular music typically uses simple common practice
notation, chord lists, or even memorized sections. The
structure of a given piece is flexible, determined (and possibly
changed) by the performers during planning, rehearsal, and
performance. The music is commonly strongly sectionalized
and thus can be rearranged, extended through section repetition,
reordered, or cut at section boundaries. Ensembles often have
mixed ability meaning that computer systems participating in
an ensemble must be more tolerant of mistakes, planned
substitutions of musical elements (e.g. chords), and ensemble
members’ absence from rehearsals.
 Computer systems designed to participate in popular music
ensembles (hereafter termed PM-HCMP systems) must address
a range of problems including beat-tracking, tempo-prediction,
score-following, ensemble listening, machine improvisation,
score-management, and media synchronization. To facilitate
the construction of such systems, allow easier integration of
both new and existing components, and ultimately compare
proposed solutions to problems and sub-problems in PM-
HCMP, this paper presents a reference architecture for such
systems and proposes an abstract score representation to
support the kind of operations required during popular music
performance. The primary contributions of this paper are
therefore:

1. A reference architecture for human-computer music
performance (HCMP) systems.

2. Score representations for managing the highly-structured
and dynamic nature of arrangements in popular music.

The rest of this paper is organized as follows: Section 2
introduces requirements for PM-HCMP systems, describing
two scenarios from different genres of popular music to
illustrate the key points. Section 3 introduces the score
representation proposed to support the architecture
subsequently presented in Section 4. Section 5 concludes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
NIME’11, 30 May–1 June 2011, Oslo, Norway.
Copyright remains with the author(s).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/16235459?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. REQUIREMENTS FOR PM-HCMP
PM-HCMP systems share a range of common requirements that
need to be met. These are presented below, introducing terms
for the various components used later in the reference
architecture and representations. Such systems need:

1. A way of representing the structure of the written score
(or lead sheet or other source material) in a manner
appropriate to the goal of performance (for example,
elaborated measures, repeats and other notational
constructs); in other words, a static score.

2. A simple way of representing the ordering of sections of
the score without needing to recreate the static score
representation in full. A simple representation is
required because there is typically insufficient time to
fully rewrite scores in performance scenarios, the
ensembles concerned may not have the expertise to
rearrange music at a fine-grained level, or indeed, some
of the music may exist only as memorized blocks. This
is termed the arrangement.

3. A way in which to transform, combine, and represent the
static score and arrangement together to provide
lookahead and anticipation for human and computer
performers: a dynamic score. While the internal
structure of the static score sections may remain
unchanged during a performance, the dynamic score can
be rewritten to account for impromptu performance
decisions (e.g. repeating the chorus an additional time).
The dynamic score thus begins as a representation of the
future unfolding of the static score and gradually
becomes a history of how that score was played. The
dynamic score is analogous to the execution trace of a
computer program.

4. A way in which to communicate the need for changes to
the dynamic score to the performers: cues.

5. A way in which these representations can be
communicated to a range of systems involved in
supporting PM-HCMP: a reference architecture.

2.1 Performance Scenarios
One of the fundamental problems of PM-HCMP is in
reconciling the static structure of a score with the dynamic
structure of its performance. Assuming that the possibly many
representations of the score have been reconciled (a non-trivial
task but outside the scope of this paper to solve), the ensemble
has the task of planning an arrangement for performance. This
would typically involve arranging the sections of the score,
determining the number of repetitions of each and so forth.
The arrangement will then be rehearsed, perhaps modified, and
is then ready for performance. During the performance it may
be that additional repetitions are included or sections are cut at
the discretion of the leader.
 Much contemporary Christian music falls within the notion of
popular music as defined here. One example, a commonly used
song in many churches, is Beth and Matt Redman’s “Blessed
Be Your Name” written in 2001. There are many versions of
the sheet music available for this song (for example, see [4]).
A typical notated form (static score) would contain
Intro|Verse|Link|Chorus|Bridge|Coda with repeats to indicate
the sequential structure. A typical expanded pre-service
arrangement (dynamic score) of the piece (as written by a band
member following rehearsal) would be

Intro|V1|V2|Link|Chorus|V3|V4|Link|
Chorus|Bridge|Bridge|Chorus|Chorus|Coda

In preparing for rehearsal, the music leader creates (or
retrieves) a static score labeling the sections as they see fit.

They then produce an arrangement with the support of software
that subsequently creates a dynamic score in readiness for
rehearsal. During rehearsal, cueing systems prepare the
computer to play and the beat acquisition systems ensure that
computer parts remain in time with the other members of the
band. At performance-time, the same systems operate to keep
the dynamic score in time with the ensemble. If the leader
decides to repeat the bridge twice more, a cue would be issued
to modify the dynamic score.
 As a second example, jazz performance is often based on
“standards,” or well-known songs specified by a melody and
chord progression. A typical performance consists of an
introduction, a statement of the melody, solos, and a repetition
of the melody. Each soloist plays one or more “choruses.”
Sometimes, the last few measures are repeated (a “tag”) or a
special ending is played. At a gig, the band decides to play
“Airegin” and adds it to a set list. In rehearsal, it was decided to
have the HCMP system play guitar chords during both the
melody and the piano solo and play some pre-composed string
backgrounds behind the other soloists. When it comes time for
the tune, the HCMP system is ready to play, listens for the
count-off, and starts to play as planned. A cue is given when
new soloists enter and a separate cue enables the HCMP guitar
accompaniment when the piano solo starts. During the last
solo, the leader decides to extend the performance by trading
fours (a common structure where a musician plays four bars,
the drummer plays four bars, a second musician plays four bars,
etc.). Someone cues the HCMP system to “play fours,” which
alters the dynamic score to continue with the chord progression
but to disable any music output.
 Both of these examples illustrate key aspects of the HCMP
problem. At performance time, it is not enough to know the
static location in the score; a performer has to know the state of
the current performance. For example, is this the first or
second time through a repeat? The performer also needs to
have a sense of intention in order to improvise successfully
(e.g. building towards a final chorus). While the computer's
musical material (e.g. a MIDI sequence or audio clip) can be
specified statically and attached to a nominal measure, those
static elements may actually map to many locations in the full-
length audio of the piece (or variations in a long midi
sequence). In addition, many media must be coordinated (e.g.
midi, audio, electronic music display). The benefits of HCMP
in both jazz and church music are the possibility of filling in for
missing musicians or to augment the instrumentation of small
groups.

3. Score Representation
Since the score representation is fundamental to the operation
of the proposed architecture, this is presented first. The static
score representation is intended to be easy to encode from a
printed score or lead-sheet whilst also being amenable to
arrangement and re-arrangement during performance. Since
popular music arrangement typically works at the measure-
level, the representations presented here operate on measures
and groups of measures.

3.1 Static Score
The static score language consists of block declarations
(Decl(a)) and terminations (End(a)), numbered measures (Mx),
repeat declarations (numbered, un-numbered, dal segno), repeat
terminations, and alternative ending declarations and
terminations. This language allows the abstract structure of a
score to be encoded without being concerned with the lower-
level specification of the music material. This is beneficial for
the management of multiple media during performance and for
the ease of encoding and reconciliation in preparation. The

static score thus encodes the score as written at the measure
level and attaches sectional labels to groups of measures.
 Figure 1 shows a short score fragment that will be used to
illustrate the encodings proposed. The rehearsal letters indicate
the designation of sections of the piece. The fragment contains
a number of structural complexities including a vamp repeat
(section C) to be repeated as desired by the performers, a
traditional repeat and a D.S. repeat with coda. A static score
encoding for this fragment is shown in Figure 1. The score
encoding is relatively easy to construct quickly from reading
the musical score at preparation time.

Arrangement
The arrangement uses the sectional labels declared by the static
score to specify the order of the sections to be performed. This
is equivalent to the musicians noting the sectional structure of
the song described in Scenario 1. It allows for easy
rearrangement during rehearsal and performance, simply by
changing the letter ordering and regenerating the dynamic
score. An example arrangement is shown in Figure 1.

3.2 Dynamic Score
The dynamic score provides a measure-level unfolding of the
static score in accordance with the arrangement. Once an
arrangement has been created, the measures to be played can be
specified (as Mx where x is the measure number) in readiness
for the render systems to schedule their data. Since it is
important to be able to navigate through a piece during
rehearsal (e.g. to respond to directions such as “let’s go from
the second time through section E”), each measure is attached
to a state vector describing the sectional progress of the piece to
that point.

Figure 1: Encoding of Example Score Fragment

This captures the notion of the dynamic score being both a
prescription of what is to be played and subsequently a history
of what has been played. Figure 1 shows a possible dynamic
score for the example fragment and arrangement shown in the
figure. This is a post-performance dynamic score since pre-
performance, the number of iterations of section C (the vamp
section) cannot be known and it is only receipt of a cue (shown
in brackets in the dynamic score) that causes the remainder of
the score to be written as far as possible (until the next vamp is
encountered). Unbounded repeats like this are counted during

performance to support rehearsal direction (e.g. “twice through
the vamp and then on”). In works without non-deterministic
repeats, the entire dynamic score could be produced before
performance begins.

4. Reference Architecture
Having established a score representation to support the
dynamic nature of PM-HCMP, this section presents a reference
architecture to capture the necessary key aspects of PM-HCMP
systems. The aim of the architecture is to provide a standard
organization for the components of a PM-HCMP and to give
some expectations as to the type of data transmitted between
them without overly constraining the design of such systems in
the future. Figure 2 shows the full reference architecture that
supports the key aspects of the HCMP problem.

4.1 Real-Time Components
Real-time synchronization aspects are handled by the beat and
tempo tracking systems (the Beat Acquisition, Reconciliation
and Prediction Modules). These should export time-stamped
messages for detected pulses, meter, phase, and measures of
confidence. Since there may be many of these systems, a
reconciliation system is needed to filter noisy beats and decide
which beat tracking source to follow on the basis of confidence
and other information. This could adopt a similar approach to
that outlined in [3] but accounting for the improvised nature of
the music. The output of the reconciled beat data is passed to a
tempo prediction system. This exports a beat-time curve to a
virtual scheduler.

4.2 Abstract-Time Components
The virtual scheduler and its associated systems are concerned
with the abstract time aspects of the system. The virtual
scheduler retimes events scheduled on a nominal time curve by
warping the curve according to the incoming tempo data from
the tempo prediction system. Events are then passed to the
actual scheduler for real-time scheduling. This allows the
unification of all media and handles the variation of latency
between the various media sources in the render system
components.
 The dynamic beat information (dbeat) is provided by the
virtual scheduler to a structural position tracker that maintains
the current score state information, mapping the dynamic score
and static score and keeping the current measure count. The
dbeat is a monotonically increasing beat counter and is thus
inappropriate as a direct index to the static score position.
 Score management is handled as described in Section 3 by
the functional components in the centre of the diagram. These
respond to user input (Make Static Score, Make Arrangement),
and to input received from cueing systems ((Re)Make Dynamic
Score).

4.2.1 Cueing Systems
Cueing systems are required to allow the computer system to
react to high-level structural and synchronization changes
during performance (e.g. additional repetitions of a chorus).
Three types of cues are necessary:

1. Static Score Position Cue. This cue is necessary when
synchronization with the static score is lost. Issuing it
will cause the dynamic score to be re-made accordingly.

2. Intention Cue. This cue is needed to inform the
computer of the intended direction of the current
performance (e.g. exiting a vamp section or adding an
additional chorus). Issuing it (e.g. using a MIDI trigger,
gesture recognition or other method) will cause the
future dynamic score to be remade.

3. Voicing/Arrangement Cue. This cue is needed to allow
control over the voicing of a section (e.g. it may be
desirable to prevent a particular instrumental group from
playing on the first time through a repeat but allow them
to play on the second). Issuing this type of cue affects
only the render system to which it is issued.

4.3 Render Systems
Render systems are responsible for providing multi-media
output at the appropriate time. In order to keep the detail of the
specific types of media and their output separate from the
abstract architecture, each render system is responsible for the
management of its own data (e.g. MIDI, audio, score images).
In order to link these data elements to their appropriate static
score position (and thus to their appropriate scheduling as the
dynamic score is played), metadata is required. A standardized
format is proposed for this to relate static-score measure-
numbers (and where necessary, the repeat-count, in order that
the appropriate version to the dynamic score position is used) to
the properties of the format concerned. This leaves render
systems free to determine whether they need beat-level
information or simply use the measure-level data, for example,
a score display system might map a measure to image
information thus: M1 → x, y, width, height, page, beat. An
audio render system might represent audio at the beat level: M1
→ b1:0s, b2:05s, b3…
 Abstract beat-time information can thus be linked to real-time
source material (to allow the correct scheduling of real-time
data) while allowing the overall system to remain oblivious to
the specific source formats being used. Render systems use a
callback interface whereby they schedule events with the
scheduling systems. These call the appropriate renderer at the
scheduled time, causing synchronized real-time output of media
in accordance with the dynamic score and beat tracking
information. The proposed metadata representation is defined
as:
 metadata entry ::= measure || multi-measure || end
 measure ::= (measure number, repeat-count, renderer-specific
 string)
 multi-measure ::= (start measure number, repeat-count, count,
 renderer-specific string)
 end ::= renderer-specific string

This generic approach allows all render systems to use the same
metadata format but preserve such data as they need within the
renderer-specific strings. An “end” element is required to
enable renderers to terminate activities (e.g. audio playback).

5. CONCLUSIONS AND FUTURE WORK
This paper has presented a reference architecture and associated
score representation for popular music human-computer music
performance. The aim is to provide a standardized approach
permitting easy integration of sub-systems and comparison
between them. Future work will include refinements to the
architecture and representations in the light of practical
experience of implementing systems based on the architecture.
Alternative approaches to modelling the dynamic score will be
explored, for example, modelling it as a finite state machine
where cue events cause state transitions. We believe that a
flexible system based on this architecture will enable us to
rapidly explore many variations of sensors, renderers, and
interfaces as well as to integrate and share independently
developed components.

6. ACKNOWLEDGMENTS
The support for this work by the EPSRC SLIM project
(EP/F059442/2) and NSF Grant 0955958 is gratefully
acknowledged.

7. REFERENCES
[1] Dannenberg, R.B. New interfaces for popular music

performance. Proceedings of the 7th International
Conference on New Interfaces for Musical Expression -
NIME '07, ACM Press (2007), 130-135.

[2] Dannenberg, R. Computer Coordination With Popular
Music: A New Research Agenda. Proceedings of the
Eleventh Biennial Arts and Technology Symposium at
Connecticut College, (2008).

[3] Grubb, L. and Dannenberg, R.B. Automating Ensemble
Performance. Proceedings of International Computer
Music Conference (ICMC-94), (1994), 63-69.

[4] Redman, B., Redman, M, Blessed Be Your Name, in Here
I Am to Worship, Hal Leonard Corp, (2004), ISBN
0634079778.

Beat Acquisition Modules

detectorpedal

audio analysis

Beat Data
Reconciliation/

Resolution

Tempo
Prediction

Scheduler

Virtual Scheduler

Render Systems

Score
Position
Display

Notation
Display

Audio File
Player

MIDI Player

Make
Static Score

Static Score
(abstract)

Dynamic
Score

Cue Systems

Gestural

Beat
Resolution

MIDI
Triggers

Probabilistic

(Re)Make
Dynamic Score

Structural Position Tracker
Dynamic to Static Score
Mapping and Measure

Counting

Type 3 and Type 1 Cues

Type 1 and 2 Cues

Score Position InfoScore Position Info
(sbeat, dbeat, measure, state)

events

dbeat

tempo curve

tim
es

tam
pe

d m
sg

s/m
ete

r

Arrangement
Model

Make
Arrangement

Key
Functional
Component

Instance of
Component

Type

Specific
System

Data
Structure

Data and
Metadata

Stores

Figure 2: PM-HCMP Reference Architecture

