1,422 research outputs found

    Using ACL2 to Verify Loop Pipelining in Behavioral Synthesis

    Get PDF
    Behavioral synthesis involves compiling an Electronic System-Level (ESL) design into its Register-Transfer Level (RTL) implementation. Loop pipelining is one of the most critical and complex transformations employed in behavioral synthesis. Certifying the loop pipelining algorithm is challenging because there is a huge semantic gap between the input sequential design and the output pipelined implementation making it infeasible to verify their equivalence with automated sequential equivalence checking techniques. We discuss our ongoing effort using ACL2 to certify loop pipelining transformation. The completion of the proof is work in progress. However, some of the insights developed so far may already be of value to the ACL2 community. In particular, we discuss the key invariant we formalized, which is very different from that used in most pipeline proofs. We discuss the needs for this invariant, its formalization in ACL2, and our envisioned proof using the invariant. We also discuss some trade-offs, challenges, and insights developed in course of the project.Comment: In Proceedings ACL2 2014, arXiv:1406.123

    Putting Instruction Sequences into Effect

    Get PDF
    An attempt is made to define the concept of execution of an instruction sequence. It is found to be a special case of directly putting into effect of an instruction sequence. Directly putting into effect of an instruction sequences comprises interpretation as well as execution. Directly putting into effect is a special case of putting into effect with other special cases classified as indirectly putting into effect

    Synthesizing Multiple Boolean Functions using Interpolation on a Single Proof

    Full text link
    It is often difficult to correctly implement a Boolean controller for a complex system, especially when concurrency is involved. Yet, it may be easy to formally specify a controller. For instance, for a pipelined processor it suffices to state that the visible behavior of the pipelined system should be identical to a non-pipelined reference system (Burch-Dill paradigm). We present a novel procedure to efficiently synthesize multiple Boolean control signals from a specification given as a quantified first-order formula (with a specific quantifier structure). Our approach uses uninterpreted functions to abstract details of the design. We construct an unsatisfiable SMT formula from the given specification. Then, from just one proof of unsatisfiability, we use a variant of Craig interpolation to compute multiple coordinated interpolants that implement the Boolean control signals. Our method avoids iterative learning and back-substitution of the control functions. We applied our approach to synthesize a controller for a simple two-stage pipelined processor, and present first experimental results.Comment: This paper originally appeared in FMCAD 2013, http://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD13/index.shtml. This version includes an appendix that is missing in the conference versio

    Evolution of Test Programs Exploiting a FSM Processor Model

    Get PDF
    Microprocessor testing is becoming a challenging task, due to the increasing complexity of modern architectures. Nowadays, most architectures are tackled with a combination of scan chains and Software-Based Self-Test (SBST) methodologies. Among SBST techniques, evolutionary feedback-based ones prove effective in microprocessor testing: their main disadvantage, however, is the considerable time required to generate suitable test programs. A novel evolutionary-based approach, able to appreciably reduce the generation time, is presented. The proposed method exploits a high-level representation of the architecture under test and a dynamically built Finite State Machine (FSM) model to assess fault coverage without resorting to time-expensive simulations on low-level models. Experimental results, performed on an OpenRISC processor, show that the resulting test obtains a nearly complete fault coverage against the targeted fault mode

    A Systematic Methodology for Verifying Superscalar Microprocessors

    Get PDF
    We present a systematic approach to decompose and incrementally build the proof of correctness of pipelined microprocessors. The central idea is to construct the abstraction function by using completion functions, one per unfinished instruction, each of which specifies the effect (on the observables) of completing the instruction. In addition to avoiding the term size and case explosion problem that limits the pure flushing approach, our method helps localize errors, and also handles stages with interactive loops. The technique is illustrated on pipelined and superscalar pipelined implementations of a subset of the DLX architecture. It has also been applied to a processor with out-of-order execution

    Generic Pipelined Processor Modeling and High Performance Cycle-Accurate Simulator Generation

    Full text link
    Detailed modeling of processors and high performance cycle-accurate simulators are essential for today's hardware and software design. These problems are challenging enough by themselves and have seen many previous research efforts. Addressing both simultaneously is even more challenging, with many existing approaches focusing on one over another. In this paper, we propose the Reduced Colored Petri Net (RCPN) model that has two advantages: first, it offers a very simple and intuitive way of modeling pipelined processors; second, it can generate high performance cycle-accurate simulators. RCPN benefits from all the useful features of Colored Petri Nets without suffering from their exponential growth in complexity. RCPN processor models are very intuitive since they are a mirror image of the processor pipeline block diagram. Furthermore, in our experiments on the generated cycle-accurate simulators for XScale and StrongArm processor models, we achieved an order of magnitude (~15 times) speedup over the popular SimpleScalar ARM simulator.Comment: Submitted on behalf of EDAA (http://www.edaa.com/

    Model-Checking Speculation-Dependent Security Properties: Abstracting and Reducing Processor Models for Sound and Complete Verification

    Get PDF
    Spectre and Meltdown attacks in modern microprocessors represent a new class of attacks that have been difficult to deal with. They underline vulnerabilities in hardware design that have been going unnoticed for years. This shows the weakness of the state-of-the-art verification process and design practices. These attacks are OS-independent, and they do not exploit any software vulnerabilities. Moreover, they violate all security assumptions ensured by standard security procedures, (e.g., address space isolation), and, as a result, every security mechanism built upon these guarantees. These vulnerabilities allow the attacker to retrieve leaked data without accessing the secret directly. Indeed, they make use of covert channels, which are mechanisms of hidden communication that convey sensitive information without any visible information flow between the malicious party and the victim. The root cause of this type of side-channel attacks lies within the speculative and out-of-order execution of modern high-performance microarchitectures. Since modern processors are hard to verify with standard formal verification techniques, we present a methodology that shows how to transform a realistic model of a speculative and out-of-order processor into an abstract one. Following related formal verification approaches, we simplify the model under consideration by abstraction and refinement steps. We also present an approach to formally verify the abstract model using a standard model checker. The theoretical flow, reliant on established formal verification results, is introduced and a sketch of proof is provided for soundness and correctness. Finally, we demonstrate the feasibility of our approach, by applying it on a pipelined DLX RISC-inspired processor architecture. We show preliminary experimental results to support our claim, performing Bounded Model-Checking with a state-of-the-art model checker

    An Integrated Environment for Efficient Formal Design and Verification

    Get PDF
    The general goal of this project was to improve the practicality of formal methods by combining techniques from model checking and theorem proving. At the time the project was proposed, the model checking and theorem proving communities were applying different tools to similar problems, but there was not much cross-fertilization. This project involved a group from SRI that had substantial experience in the development and application of theorem-proving technology, and a group at Stanford that specialized in model checking techniques. Now, over five years after the proposal was submitted, there are many research groups working on combining theorem-proving and model checking techniques, and much more communication between the model checking and theorem proving research communities. This project contributed significantly to this research trend. The research work under this project covered a variety of topics: new theory and algorithms; prototype tools; verification methodology; and applications to problems in particular domains
    • …
    corecore