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Introduction

The general goal of this project was to improve the practicality of formal methods by combining

techniques from model checking and theorem proving. At the time the project was proposed,

the model checking and theorem proving communities were applying different tools to similar

problems, but there was not much cross-fertilization. This project involved a group from SRI that

had substantial experience in the development and application of theorem-proving technology, and

a group at Stanford that specialized in model checking techniques•

Now, over five years after the proposal was submitted, there are many research groups working

on combining theorem-proving and model checking techniques, and much more communication

between the model checking and theorem proving research communities. This project contributed
significantly to this research trend•

The research work under this project covered a variety of topics: new theory and algorithms;

prototype tools; verification methodology; and applications to problems in particular domains.
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New theory and algorithms

Research in model checking has emphasized highly automatic verification methods. Theorem

provers have partially automated the proof process, but still rely heavily on user interaction to

complete proofs. The need for more automation in theorem proving and more generality in model

checking became clear early in the project.

In response to this need, a decision procedure for a theory of bit-vectors encompassing bit-

field extraction, bit-vector concatenation, and equality was invented at SRI. Based on this, a more

procedure using a somewhat different approach was then developed at Stanford, which dealt with

arithmetic on bitvectors as well as concatenation and extraction. These developments were)_spired
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by the need to reason about bitvectors in the verification of microprocessor designs (including

AAMP-FV and the FLASH protocol processor, discussed below).

There were also other improvements to decision procedures, including an improved understand-

ing of several previous approaches to cooperating decision procedures, and a more general treatment

of arrays. The Stanford group did the initial development of an efficient decision procedure, called

SVC, for quantifier-free first-order logic formulas, with linear arithmetic, uninterpreted functions,

arrays, and bitvectors, for general use, while the SRI group revised the decision procedures in PVS.

In response to the need to generalize model checking, an automatic abstraction mechanism

for systems with an variable number of similar processes. The abstraction method keeps track of

whether zero, one, or several processes is in a particular state (e.g., at a particular location in their

programs), abstracting away from the exact number of processes in a particular state, as well as the

order of the processes. This abstraction retains enough information to verify important properties

of several types of protocols, while reducing potentially infinite state spaces to finite spaces.

Verification Methodology

It became clear during the project that a lot of research needed to be done on how to use verification

tools, not just on the development of the tools themselves. The simplest idea for combining model

checking and theorem proving was quite successful: debug the description and specification with a

model checker before verifying the general case with a theorem prover. Theorem provers are better

at proving the correctness of correct systems than at finding bugs in incorrect systems, while model

checkers are good at finding bugs and providing useful debugging information, but not good at

proving correctness in the general case (which often requires reasoning about infinite numbers of

states). This approach was applied successfully to several cache coherence protocols and distributed

algorithms. To make this approach simpler, we developed a translator from our Murphi language

to a representation of the same behavior in PVS.

Another, more integrated, approach was to use PVS to prove the soundness of abstractions

that reduced an infinite state problem to a finite state problem. A mu-calculus model checker

was embedded in PVS, which was used to check the abstracted protocol. This approach was

used quite successfully to verify the Phillips bounded retransmission protocol and inspired much

subsequent work, both in this project and at other institutions, to further automate the construction
of abstractions.

One very general and influential idea was a method for defining abstraction functions. We first
observed in microprocessor verification that the main difficulty in defining an abstraction function

was dealing with partially completed operations; for example, a simple pipelined processor might

have 4 or 5 instructions at any given time that have been started but not completed. We found

that it was often possible to define a completion function relatively, which simulated the effect of

finishing the uncompleted actions, which was the hard part of defining an abstraction function.

For processor verification, the completion function could sometimes be defined semi-automatically,

by symbolically executing the processor description in a mode that completes pending instructions

without starting new ones. In other cases, it was simple to define the function manually. We also

found that the same idea could be applied more generally to certain types of protocols, when the

protocols were intended to simulate atomic transactions while implementing them as a series of

smaller steps. For protocols, the idea was also to define a aggregation function that completed all

pending transactions (but, unlike a pipelined microprocessor, protocol transactions are not neces-

sarily ordered). Using the aggregation approach, we were able to verify the FLASH cache coherence

protocol using PVS, something that was not previously possible.



The aggregationapproachcouldalsobe usedwith modelchecking.The userdefinesan ag-
gregationfunction, and checksthat it has the desiredpropertiesautomaticallyusingthe model
checker.This capability provideda way to debuga protocoland aggregationfunction usinga
modelchecker,then usethe sameaggregationfunction to verify the protocol for an unbounded
numberof processesusinga theoremprover.

Workat SRIandtheUniversityofUtah ledto developmentof a method that shares some of the

motivation and insight of this approach, but differs in its technology and application. This method

was applied successfully to several advanced pipeline architectures (with out of order execution and

reorder buffers), yielding much simpler and more automated proofs than previous approaches.

In the latter stages of the project, we investigated several approaches to predicate abstraction.

Predicate abstraction was originally proposed by French researchers (who used the decision proce-

dures in our PVS prover). We prototyped several improved schemes for predicate abstraction using

PVS, and also built a more efficient prototype tool using SVC and Boolean decision diagrams (or

BDDs, a widely-used data structure for boolean functions). This preliminary work was the basis

for the DARPA-funded SAL project, which is currently underway.

Finally, we received some additional funding from NASA in the last few months to investigate

the possibility of model checking concurrent software. We adapted a Java translator from NASA to

generate input for our Murphi model checker, and then did a case study of a multi-threaded game

server written in Java. After a series of manual abstractions, we were able to discover a deadlock

in the game server using the Spin model checker as a back-end verifier. One conclusion of this work

was that Murphi had some shortcomings as a Java verification tool, particularly its limitation to
static data structures and a fixed number of threads.

Tool Development

The efforts to integrate our existing methods, and apply them to challenging problems, inspired

improvements to old tools and the development of new tools. In addition to the enhancements to

Murphi mentioned above, we implemented a parallel version of Murphi, which exhibited almost

linear speedup even on a system with 64 processors, and a probabilistic verification method that

saved memory by storing small signatures of states instead of full states in a table. PVS was

enhanced in many ways, including speeding up the rewriting (which turned out to be a bottleneck

in processor verification efforts), and various improvements to the internal decision procedures.

The most effective enhancements to PVS were the incorporation of algorithms and datastruc-

tures from the model checking world. An efficient BDD package was embedded in PVS, resulting in

multiple orders-of-magnitude speedups on problems involving significant combinational logic. The
embedded mu-calculus model checker mentioned earlier was based on the embedded BDDs. PVS

is freely distributed and is now in use at hundreds of industriM and academic sites worldwide.

We also began implementation of a more efficient library for deciding formulas in quantifier-

free first-order logic, called SVC (eventually, development of SVC was continued under another

contract). SVC was written in C++, and was based on the method of integrating cooperating

decision procedures devised by Shostak (whose procedures were used in PVS). SVC emphasizes

efficiency in its algorithms and data structures. One important optimization was using a DAG

representation for expressions, which shares common sub-expressions. SVC was used for much

of our processor verification work, and was also used to construct a tool for analyzing RSML

specifications of safety critical systems (the RSML work was funded under another contract). SVC

is now being freely distributed in source form, and is being used at several other sites in the U.S.

and Europe.

3



Applications

As planned, a significant amount of the effort in the project went into studying specific examples.

Experience with examples inspired new directions in decision procedures, verification tools, and

verification methodology.

Many of the examples were cache coherence problems of various types. We started working on

these problems in response to comments from the DASH multiprocessor project at Stanford. Over

time, Murphi was modified incrementally to make verification of cache coherence protocols more

convenient. Our work also got the attention of other people who were working on cache coherence.

Specifically, "counting abstraction" was incorporated into Murphi because similar techniques had

been shown to be effective on cache coherence protocols.

We also were able to use our knowledge of cache coherence to drive research in other verification

techniques. The aggregation methodology mentioned above was developed as part of our effort to

verify the FLASH cache coherence protocol using PVS.

Over the course of the project, our ability to verify cache coherence protocols went from small

protocols with three processors, one address, and one bit of data, to unbounded numbers of proces-

sors, addresses and data. Furthermore, Murphi was used by several other groups for verifying cache

coherence protocols. Murphi was incorporated into the Tempest/Teapot system at the University

of Wisconsin for verifying cache coherence protocols that could be customized by users (who could

also introduce bugs). It not only found bugs in custom protocols, it found a bug in one of the

pre-defined protocols. We were asked to develop an executable specification using Murphi of the

RMO memory model for the widely-used SPARC V.9 architecture; we ended up participating in

the design, and using Murphi to verify most of the illustrative examples that were published in the

architecture definition. Murphi was also used at IBM Research in the development of the cache

coherence protocols in ASCI blue, one of the fastest computers currently being designed.

Murphi was also useful for other verification applications. One of the most interesting (done in

conjunction with a security project at Stanford) was automated analysis of cryptographic protocols

(e.g. authentication protocols). The protocol rules are modeled in Murphi, along with a model of

a hostile intruder that can see the contents of messages, kill messages, and insert new messages

into the communications medium. The actual encryption is modeled abstractly (the intruder can

learn the contents of a message if it has seen the decryption key in the clear). The "secure sockets

layer" (SSL) protocol, which is widely used in internet commerce, was modeled and verified using

this approach. All known problems in the protocol were discovered, along with several previously

unpublished anomalies.

Microprocessor design verification was another area where this project was quite successful.

Both research groups worked on this problem, using several different approaches. At SRI, work

on the AAMP-5 and AAMP-FV processors stimulated several performance improvements in PVS,

as well as the development of an extensive theory of bit-vectors. Researchers at Rockwell-Collins

used the technology developed in the AAMP work as the basis for a novel approach to microcode

validation that was employed in development of their JEM1 processor (the world's first direct-

execution Java processor).

A formal derivation and proof of the SRT division algorithm was also developed using PVS (a

bug in the SRT division algorithm was responsible for the infamous Pentium division bug). This

work was further developed by researchers at NASA to give a general treatment to a wide class of

subtractive division algorithms.

The first effort to verify a simple microprocessor design by the Stanford group yielded results

which have been widely influential. The basic technique involved symbolically simulating a two



high-leveldescriptionsof the design,andthencomparingtheresultsusingSVC.Severalimportant
andfundamentalideascameout of thisproject: theuseofuninterpretedfunctionsto abstractaway
the detailsof a data path, definingabstractionfunctionsby symbolicallyflushingout temporary
state, and the useof decisionproceduresfor quantifier-freefirst order logic. Other researchers
haveusedtheseideasdirectly or adaptedthemto other techniques(suchasBDD basedsymbolic
simulation). A commercialmicroprocessorfor digital signalprocessingat Motorolawasformally
verifiedby anothergroupusingthis basicapproach.

SVChasprovento beusefulforcheckspecificationsofsafety-criticalsystemsonanotherproject.
Specificationlanguagesfor safetycritical systemsoften insist that the specificationsbe determin-

istic, meaning that only one transition can be enabled at a time. However, the enabling conditions

for transitions can be complex, so checking determinism can be difficult. We prototyped a tool

based on SVC to check for determinism of selected transitions in RSML specifications, and ap-

plied to tool to parts of an existing RSML specification for the TCAS collision avoidance system

(which is required in all commercial aircraft carrying over 30 passengers). Using the tool, we dis-

covered a serious problem in the specification (it turned out that the problem had been discovered

independently by a validation group, and fixed in a later revision of the specification).
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