53 research outputs found

    Automatic string generation for estimating in vivo length changes of the medial patellofemoral ligament during knee flexion

    Get PDF
    Modeling ligaments as three-dimensional strings is a popular method for in vivo estimation of ligament length. The purpose of this study was to develop an algorithm for automated generation of non-penetrating strings between insertion points and to evaluate its feasibility for estimating length changes of the medial patellofemoral ligament during normal knee flexion. Three-dimensional knee models were generated from computed tomography (CT) scans of 10 healthy subjects. The knee joint under weight-bearing was acquired in four flexion positions (0°-120°). The path between insertion points was computed in each position to quantify string length and isometry. The average string length was maximal in 0° of flexion (64.5±3.9mm between femoral and proximal patellar point; 62.8±4.0mm between femoral and distal patellar point). It was minimal in 30° (60.0±2.6mm) for the proximal patellar string and in 120° (58.7±4.3mm) for the distal patellar string. The insertion points were considered to be isometric in 4 of the 10 subjects. The proposed algorithm appears to be feasible for estimating string lengths between insertion points in an automatic fashion. The length measurements based on CT images acquired under physiological loading conditions may give further insights into knee kinematics

    Elongation Patterns of the Superficial Medial Collateral Ligament and the Posterior Oblique Ligament: A 3-Dimensional, Weightbearing Computed Tomography Simulation

    Full text link
    Background Although length change patterns of the medial knee structures have been reported, either the weightbearing state was not considered or quantitative radiographic landmarks that allow the identification of the insertion sites were not reported. Purpose To (1) analyze the length changes of the superficial medial collateral ligament (sMCL) and posterior oblique ligament (POL) under weightbearing conditions and (2) to identify the femoral sMCL insertion site that demonstrates the smallest length changes during knee flexion and report quantitative radiographic landmarks. Study Design Descriptive laboratory study. Methods The authors performed a 3-dimensional (3D) analysis of 10 healthy knees from 0° to 120° of knee flexion using weightbearing computed tomography (CT) scans. Ligament length changes of the sMCL and POL during knee flexion were analyzed using an automatic string generation algorithm. The most isometric femoral insertion of the sMCL that demonstrated the smallest length changes throughout the full range of motion (ROM) was identified. Radiographic landmarks were reported on an isometric grid defined by a true lateral view of the 3D CT model and transferred to a digitally reconstructed radiograph. Results The sMCL demonstrated small ligament length changes, and the POL demonstrated substantial shortening during knee flexion (P = .005). Shortening of the POL started from 30° of flexion. The most isometric femoral sMCL insertion was located 0.6 ± 1.7 mm posterior and 0.8 ± 1.2 mm inferior to the center of the sMCL insertion and prevented ligament length changes >5% during knee flexion in all participants. The insertion was located 47.8% ± 2.7% from the anterior femoral cortex and 46.3% ± 1.9% from the joint line on a true lateral 3D CT view. Conclusion The POL demonstrated substantial shortening starting from 30° of knee flexion and requires tightening near full extension to avoid overconstraint. Femoral sMCL graft placement directly posteroinferior to the center of the anatomical insertion of the sMCL demonstrated the most isometric behavior during knee flexion. Clinical Relevance The described elongation patterns of the sMCL and POL aid in guiding surgical medial knee reconstruction and preventing graft lengthening and overconstraint of the medial compartment. Repetitive graft lengthening is associated with graft failure, and overconstraint leads to increased compartment pressure, cartilage degeneration, and restricted ROM

    Elongation Patterns of Posterolateral Corner Reconstruction Techniques: Results Using 3-Dimensional Weightbearing Computed Tomography Simulation

    Full text link
    Background The isometric characteristics of nonanatomic and anatomic posterolateral corner (PLC) reconstruction techniques under weightbearing conditions remain unclear. Purpose To (1) simulate graft elongation patterns during knee flexion for 3 different PLC reconstruction techniques (Larson, Arciero, and LaPrade) and (2) compute the most isometric insertion points of the fibular collateral ligament (FCL) graft strands for each technique and report quantitative radiographic landmarks. Study Design Descriptive laboratory study. Methods The authors performed a 3-dimensional simulation of 10 healthy knees from 0° to 120° of flexion using weightbearing computed tomography (CT) scans. The simulation was used to calculate ligament length changes during knee flexion for the PLC reconstruction techniques of Larson (nonanatomic single-bundle fibular sling reconstruction), Arciero (anatomic reconstruction with additional popliteofibular ligament graft strand), and LaPrade (anatomic reconstruction with popliteofibular ligament graft strand and popliteus tendon graft strand). The most isometric femoral insertion points for the FCL graft strands were computed within a 10-mm radius around the lateral epicondyle (LE), using an automatic string generation algorithm (0 indicating perfect isometry). Radiographic landmarks for the most isometric points were reported. Results Median graft lengthening during knee flexion was similar for the anterior graft strands of all 3 techniques. The posterior graft strands demonstrated significant differences, from lengthening for the Arciero (9.9 mm [range, 6.7 to 15.9 mm]) and LaPrade (10.2 mm [range, 4.1 to 19.7 mm]) techniques to shortening for the Larson technique (-17.1 mm [range, -9.3 to -22.3 mm]; P < .0010). The most isometric point for the FCL graft strands of all techniques was located at a median of 2.2 mm (range, -2.2 to 4.5 mm) posterior and 0.3 mm (range, -1.8 to 3.7 mm) distal to the LE. Conclusion Overconstraint can be avoided by tensioning the posterior graft strands in the Larson technique in extension, and in the Arciero and LaPrade techniques at a minimum of 60° of knee flexion. The most isometric point was located posterodistal to the LE. Clinical Relevance The described isometric behavior of nonanatomic and anatomic PLC reconstruction techniques can guide optimal surgical reconstruction and prevent graft lengthening and overconstraint of the lateral compartment in knee flexion. Repetitive graft lengthening has been found to be associated with graft failure, and overconstraint favors lateral compartment pressure and cartilage degeneration

    Origin and insertion of the medial patellofemoral ligament: a systematic review of anatomy.

    Get PDF
    PURPOSE: The medial patellofemoral ligament (MPFL) is the major medial soft-tissue stabiliser of the patella, originating from the medial femoral condyle and inserting onto the medial patella. The exact position reported in the literature varies. Understanding the true anatomical origin and insertion of the MPFL is critical to successful reconstruction. The purpose of this systematic review was to determine these locations. METHODS: A systematic search of published (AMED, CINAHL, MEDLINE, EMBASE, PubMed and Cochrane Library) and unpublished literature databases was conducted from their inception to the 3 February 2016. All papers investigating the anatomy of the MPFL were eligible. Methodological quality was assessed using a modified CASP tool. A narrative analysis approach was adopted to synthesise the findings. RESULTS: After screening and review of 2045 papers, a total of 67 studies investigating the relevant anatomy were included. From this, the origin appears to be from an area rather than (as previously reported) a single point on the medial femoral condyle. The weighted average length was 56 mm with an 'hourglass' shape, fanning out at both ligament ends. CONCLUSION: The MPFL is an hourglass-shaped structure running from a triangular space between the adductor tubercle, medial femoral epicondyle and gastrocnemius tubercle and inserts onto the superomedial aspect of the patella. Awareness of anatomy is critical for assessment, anatomical repair and successful surgical patellar stabilisation. LEVEL OF EVIDENCE: Systematic review of anatomical dissections and imaging studies, Level IV

    Advancement of a Forward Solution Mathematical Model of the Human Knee Joint

    Get PDF
    Sometimes called degenerative joint disease, osteoarthritis most often affects the knee, which is a leading cause of pain and reduced mobility. While early treatment is ideal, it is not always successful in combating osteoarthritis and improving joint function, therefore creating the need for total knee arthroplasty (TKA), which is a late-stage treatment where damaged bone and cartilage are replaced by artificial cartilage. Joint arthroplasty is a common and successful procedure for end-stage osteoarthritis. Unfortunately, TKA patient satisfaction rates lag behind those of total hip arthroplasty [1,2], which remains an impetus to create new designs. Due to ethical issues, time requirements, and prohibitive expenses of testing new designs in vivo, mathematical modeling may be an alternative tool to efficiently assess the kinetics and kinematics of new TKA designs. In general, the knee is one of the most complicated joints in the human body, including multiple articulating surfaces and the complexity of soft tissues encompassing the knee joint. Therefore, mathematically modeling the knee is a challenging and complex process. With increasing computational power and advanced knowledge and techniques, advanced mathematical models of the knee joint can be created utilizing various modeling techniques [3]. Furthermore, mathematical modeling can advance our knowledge related to knee biomechanics, especially those parameters that are otherwise challenging to obtain, such as soft tissue properties and effects pertaining to knee mechanics. Mathematical modeling allows the user to evaluate multiple designs and surgical approaches quickly and cost-efficiently without having to conduct lengthy clinical studies. Mathematical models can also provide insight into topics of clinical significance and can efficiently analyze outcome contributions that cannot be controlled in fluoroscopic studies, such as anatomical, mechanical, and kinematic alignment comparisons for the same subject. Furthermore, mathematical models can evaluate the effect of TKA design concerns such as changing conformity of the polyethylene or using femoral components with single or multi radius designs [3]. The objectives of this dissertation are to advance a forward solution model to create a more sophisticated and physiological representation of the knee joint.This is achieved by developing a muscle wrapping algorithm, integrating a validated inverse dynamics model, adding more muscles, incorporating several different TKA types including revision TKA designs, and expanding the model to include other daily activities. All these modifications are incorporated in a graphical user interface. These advancements increase both functionality and accuracy of the model. Several validation methods have been implemented to investigate the accuracy of the predicted kinetics and kinematics of this mathematical model

    Enhanced pre-clinical assessment of total knee replacement using computational modelling with experimental corroboration &amp; probabilistic applications

    No full text
    Demand for Total Knee Replacement (TKR) surgery is high and rising; not just in numbers of procedures, but in the diversity of patient demographics and increase of expectations. Accordingly, greater efforts are being invested into the pre-clinical analysis of TKR designs, to improve their performance in-vivo. A wide range of experimental and computational methods are used to analyse TKR performance pre-clinically. However, direct validation of these methods and models is invariably limited by the restrictions and challenges of clinical assessment, and confounded by the high variability of results seen in-vivo.Consequently, the need exists to achieve greater synergy between different pre-clinical analysis methods. By demonstrating robust corroboration between in-silico and in-vitro testing, and both identifying &amp; quantifying the key sources of uncertainty, greater confidence can be placed in these assessment tools. This thesis charts the development of a new generation of fast computational models for TKR test platforms, with closer collaboration with in-vitro test experts (and consequently more rigorous corroboration with experimental methods) than previously.Beginning with basic tibiofemoral simulations, the complexity of the models was progressively increased, to include in-silico wear prediction, patellofemoral &amp; full lower limb models, rig controller-emulation, and accurate system dynamics. At each stage, the models were compared extensively with data from the literature and experimental tests results generated specifically for corroboration purposes.It is demonstrated that when used in conjunction with, and complementary to, the corresponding experimental work, these higher-integrity in-silico platforms can greatly enrich the range and quality of pre-clinical data available for decision-making in the design process, as well as understanding of the experimental platform dynamics. Further, these models are employed within a probabilistic framework to provide a statistically-quantified assessment of the input factors most influential to variability in the mechanical outcomes of TKR testing. This gives designers a much richer holistic visibility of the true system behaviour than extant 'deterministic' simulation approaches (both computational and experimental).By demonstrating the value of better corroboration and the benefit of stochastic approaches, the methods used here lay the groundwork for future advances in pre-clinical assessment of TKR. These fast, inexpensive models can complement existing approaches, and augment the information available for making better design decisions prior to clinical trials, accelerating the design process, and ultimately leading to improved TKR delivery in-vivo to meet future demands

    Subject-specific Finite Element Models of the Human Knee for Transtibial Amputees to Analyze Tibial Cartilage Pressure for Gait, Cycling, and Elliptical Training

    Get PDF
    It is estimated that approximately 10-12% of the adult population suffers from osteoarthritis (OA), with long reaching burdens personally and socioeconomically. OA also causes mild discomfort to severe pain in those suffering from the disease. The incidence rate of OA for individuals with transtibial amputations is much than average in the tibiofemoral joint (TF). It is well understood that abnormal articular cartilage stress, whether that be magnitude or location, increases the risk of developing OA. Finite element (FE) simulations can predict stress in the TF joint, many studies throughout the years have validated the technology used for this purpose. This thesis is the first to successfully validate a procedure for creating subject-specific FE models for transtibial amputees to simulate the TF joint in gait, cycling and elliptical exercises. Maximum tibial cartilage pressure was extracted post-simulation and compared to historical data. The body weight normalized contact pressure on the tibial articular cartilage for the two amputee participants was larger in magnitude than the control participant in all but the medial compartment in cycling. Additionally, cycling exercise produced the smallest values of contact pressure with elliptical and gait producing similar max values but different areas of effect. The results from this thesis align with the body of work preceding it and further the goal of a FE model that predicts in-vivo articular cartilage stress in the TF joint. Future studies can further refine this methodology and create additional subject-specific models to allow for a statistical analysis of the observed differences to find if the results are significantly different. Refining the methodology could include investigating the full effect of the damping factor on contact pressure and exploring alternative methods of mesh generation

    The soft-tissue restraints of the knee and its balancing capacity in total knee arthroplasty procedures

    Get PDF
    Total knee arthroplasty is a successful surgical treatment for patients with severe knee joint arthrosis. However, restoring soft-tissue function is a major challenge. Depending on the positioning of the prosthesis, the implantation procedure and the pathology of the patient, it is necessary to adjust the soft-tissue structures of the joint in order to restore the function of the knee. The assessment and adaptation of the soft-tissue envelope is a subjective process that is strongly dependent on the surgeon. This dissertation addresses these challenges and seeks quantitative guidelines for softtissue management based on a meta-analysis of the laxity of the natural knee joint. A further aim of the present study was to clarify in the scope of in-vitro investigations to what extent the loosening and removal of individual structures alters joint laxity and how far the joint can be balanced by targeted resection of soft-tissue structures. In addition, in-silico investigations within the scope of this thesis form the basis for a numerical tool to better understand the function of the ligaments and to better plan soft-tissue balancing preoperatively in the future. The investigations of the natural laxity of the knee jointin different flexion angles and loading directions by utilizing a meta-analysis show a strong dependency of the joint laxity on the flexion angle. Furthermore, the results show a distinct asymmetry of joint laxity when comparing translations in opposite directions within a certain degree of freedom. The data collected provide the surgeon with quantitative target parameters for natural soft-tissue balancing in knee arthroplasty procedures. The in-vitro investigations on 19 human knee specimens show that the restoration of soft-tissue function of the knee after arthroplasty cannot be achieved by kinematic alignment alone. The use of a bicruciate-retaining knee arthroplasty is the only way to keep the anterior and posterior stability of the joint in balance. To correct varus deformities, balancing of the medial collateral ligament appears to be a safe method. Correction of valgus laxity can be achieved by partially or completely resecting the lateral collateral ligament, however this increases the risk of instability in joint flexion. Within the scope of this work, subject-specific multi-body simulation models could be developed with which the laxity of the knee joint can be predicted, especially for low flexion angles. The presented procedure for the approximation of the ligament attachment sites represents a time-saving alternative to the segmentation of the attachments in MRI images.Deutsche Forschungsgemeinschaft/Sachbeihilfe/HU 873/7-1/E

    On the biomechanics of ligaments and muscles throughout the range of hip motion

    Get PDF
    At the limits of the range of hip motion, impingement, subluxation and edge loading can cause osteoarthritis in natural hips or early failure hip replacements. The aim of this PhD was to investigate the role of hip joint soft tissues throughout the range of hip motion to better understand their role in preventing (or perhaps even causing) these problematic load cases. A musculoskeletal model was used to investigate the muscular contribution to edge loading and found that in the mid-range of hip motion, the lines of action of hip muscles pointed inward from the acetabular rim and thus would stabilise the hip. However, in deep hip flexion with adduction, nearly half the muscles had unfavourable lines of action which could encourage edge loading. Conversely, in-vitro tests on nine cadaveric hips found that the hip capsular ligaments were slack in the mid-range of hip motion but tightened to restrain excessive hip rotation in positions close to the limits of hip motion. This passive restraint prevented the hip from moving into positions where the muscle lines of action were found to be unfavourable and thus could help protect the hip from edge loading. The ligaments were also found to protect the hip against impingement and dislocation. Out of the labrum, the ligamentum teres and the three capsular ligaments, it was found that the iliofemoral and ischiofemoral ligaments were primary restraints to hip rotation. These two capsular ligaments should be prioritised for protection/repair during hip surgery to maintain normal hip passive restraint. Whilst this can be technically demanding, failing to preserve/restore their function may increase the risk of osteoarthritic degeneration or hip replacement failure.Open Acces
    • …
    corecore