9 research outputs found

    Fairing wireframes in industrial surface design

    Full text link
    Wireframe is a modeling tool widely used in industrial geometric design. The term wireframe refers to two sets of curves, with the property that each curve from one set intersects with each curve from the other set. Akin to the mu-, v-isocurves in a tensor-product surface, the two sets of curves in a wireframe span an underlying surface. In many industrial design activities, wireframes are usually set up and adjusted by the designers before the whole surfaces are reconstructed. For adjustment, the fairness of wireframe has a direct influence on the quality of the underlying surface. Wireframe fairing is significantly different from fairing individual curves in that intersections should be preserved and kept in the same order. In this paper, we first present a technique for wireframe fairing by fixing the parameters during fairing. The limitation of fixed parameters is further released by an iterative gradient descent optimization method with step-size control. Experimental results show that our solution is efficient, and produces reasonably fairing results of the wireframes

    Error estimation and adaptive mesh refinement for parallel analysis of shell structures

    Get PDF
    The formulation and application of element-level, element-independent error indicators is investigated. This research culminates in the development of an error indicator formulation which is derived based on the projection of element deformation onto the intrinsic element displacement modes. The qualifier 'element-level' means that no information from adjacent elements is used for error estimation. This property is ideally suited for obtaining error values and driving adaptive mesh refinements on parallel computers where access to neighboring elements residing on different processors may incur significant overhead. In addition such estimators are insensitive to the presence of physical interfaces and junctures. An error indicator qualifies as 'element-independent' when only visible quantities such as element stiffness and nodal displacements are used to quantify error. Error evaluation at the element level and element independence for the error indicator are highly desired properties for computing error in production-level finite element codes. Four element-level error indicators have been constructed. Two of the indicators are based on variational formulation of the element stiffness and are element-dependent. Their derivations are retained for developmental purposes. The second two indicators mimic and exceed the first two in performance but require no special formulation of the element stiffness mesh refinement which we demonstrate for two dimensional plane stress problems. The parallelizing of substructures and adaptive mesh refinement is discussed and the final error indicator using two-dimensional plane-stress and three-dimensional shell problems is demonstrated

    A Universal Parametrization in B-Spline Curve and Surface Interpolation and Its Performance Evaluation.

    Get PDF
    The choice of a proper parametrization method is critical in curve and surface fitting using parametric B-splines. Conventional parametrization methods do not work well partly because they are based only on the geometric properties of given data points such as the distances between consecutive data points and the angles between consecutive line segments. The resulting interpolation curves don\u27t look natural and they are often not affine invariant. The conventional parametrization methods don\u27t work well for odd orders k. If a data point is altered, the effect is not limited locally at all with these methods. The localness property with respect to data points is critical in interactive modeling. We present a new parametrization based on the nature of the basis functions called B-splines. It assigns to each data point the parameter value at which the corresponding B-spline N\sb{ik}(t) is maximum. The new method overcomes all four problems mentioned above; (1) It works well for all orders k, (2) it generates affine invariant curves, (3) the resulting curves look more natural, in general, and (4) it has the semi-localness property with respect to data points. The new method is also computationally more efficient and the resulting curve has more regular behavior of the curvature. Fairness evaluation and knot removal are performed on curves obtained from various parametrizations. The results also show that the new parametrization is superior. Fairness is evaluated in terms of total curvature, total length, and curvature plot. The curvature plots are looking natural for the curves obtained from the new parametrization. For the curves obtained from the new method, knot removal is able to provide with the curves which are very close to the original curves. A more efficient and effective method is also presented for knot removal in B-spline curve. A global norm is utilized for approximation unlike other methods which are using some local norms. A geometrical view makes the computation more efficient

    Visualization methods for sustainable planning

    Get PDF
    In urban planning, both measuring and communicating sustainability are among the most recent concerns. Therefore, the primary emphasis of this thesis concerns establishing metrics and visualization techniques in order to deal with indicators of sustainability. First, this thesis provides a novel approach for measuring and monitoring two indicators of sustainability - urban sprawl and carbon footprints – at the urban neighborhood scale. By designating different sectors of relevant carbon emissions as well as different household categories, this thesis provides detailed information about carbon emissions in order to estimate impacts of daily consumption decisions and travel behavior by household type. Regarding urban sprawl, a novel gridcell-based indicator model is established, based on different dimensions of urban sprawl. Second, this thesis presents a three-step-based visualization method, addressing predefined requirements for geovisualizations and visualizing those indicator results, introduced above. This surface-visualization combines advantages from both common GIS representation and three-dimensional representation techniques within the field of urban planning, and is assisted by a web-based graphical user interface which allows for accessing the results by the public. In addition, by focusing on local neighborhoods, this thesis provides an alternative approach in measuring and visualizing both indicators by utilizing a Neighborhood Relation Diagram (NRD), based on weighted Voronoi diagrams. Thus, the user is able to a) utilize original census data, b) compare direct impacts of indicator results on the neighboring cells, and c) compare both indicators of sustainability visually

    Controlling the interpolation of NURBS curves and surfaces

    Get PDF
    The primary focus of this thesis is to determine the best methods for controlling the interpolation of NURBS curves and surfaces. The various factors that affect the quality of the interpolant are described, and existing methods for controlling them are reviewed. Improved methods are presented for calculating the parameter values, derivative magnitudes, data point spacing and twist vectors, with the aim of producing high quality interpolants with minimal data requirements. A new technique for obtaining the parameter values and derivative magnitudes is evaluated, which constructs a C1^1 cubic spline with orthogonal first and second derivatives at specified parametric locations. When this data is used to create a C2^2 spline, the resulting interpolant is superior to those constructed using existing parameterisation and derivative magnitude estimation methods. Consideration is given to the spacing of data points, which has a significant impact on the quality of the interpolant. Existing methods are shown to produce poor results with curves that are not circles. Three new methods are proposed that significantly reduce the positional error between the interpolant and original geometry. For constrained surface interpolation, twist vectors must be estimated. A method is proposed that builds on the Adini method, and is shown to have improved error characteristics. In numerical tests, the new method consistently outperforms Adini. Interpolated surfaces are often required to join together smoothly along their boundaries. The constraints for joining surfaces with parametric and geometric continuity are discussed, and the problem of joining NN patches to form an NN-sided region is considered. It is shown that regions with odd NN can be joined with G1^1 continuity, but those with even NN or requiring G2^2 continuity can only be obtained for specific geometries

    Designing aesthetically pleasing freeform surfaces in a computer environment

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Architecture, February 2001.Includes bibliographical references (p. 151-160).Statement: If computational tools are to be employed in the aesthetic design of freeform surfaces, these tools must better reflect the ways in which creative designers conceive of and develop such shapes. In this thesis, I studied the design of aesthetically constrained freeform surfaces in architecture and industrial design, formulated a requirements list for a computational system that would aid in the creative design of such surfaces, and implemented a subset of the tools that would comprise such a system. This work documents the clay modeling process at BMW AG., Munich. The study of that process has led to a list of tools that would make freeform surface modeling possible in a computer environment. And finally, three tools from this system specification have been developed into a proof-of-concept system. Two of these tools are sweep modification tools and the third allows a user to modify a surface by sketching a shading pattern desired for the surface. The proof-of-concept tools were necessary in order to test the validity of the tools being presented and they have been used to create a number of example objects. The underlying surface representation is a variational expression which is minimized using the finite element method over an irregular triangulated mesh.by Evan P. Smyth.Ph.D

    ShapeWright--finite element based free-form shape design

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1990.Includes bibliographical references (p. 179-192).by George Celniker.Ph.D
    corecore