374 research outputs found

    Acoustic source separation based on target equalization-cancellation

    Full text link
    Normal-hearing listeners are good at focusing on the target talker while ignoring the interferers in a multi-talker environment. Therefore, efforts have been devoted to build psychoacoustic models to understand binaural processing in multi-talker environments and to develop bio-inspired source separation algorithms for hearing-assistive devices. This thesis presents a target-Equalization-Cancellation (target-EC) approach to the source separation problem. The idea of the target-EC approach is to use the energy change before and after cancelling the target to estimate a time-frequency (T-F) mask in which each entry estimates the strength of target signal in the original mixture. Once the mask is calculated, it is applied to the original mixture to preserve the target-dominant T-F units and to suppress the interferer-dominant T-F units. On the psychoacoustic modeling side, when the output of the target-EC approach is evaluated with the Coherence-based Speech Intelligibility Index (CSII), the predicted binaural advantage closely matches the pattern of the measured data. On the application side, the performance of the target-EC source separation algorithm was evaluated by psychoacoustic measurements using both a closed-set speech corpus and an open-set speech corpus, and it was shown that the target-EC cue is a better cue for source separation than the interaural difference cues

    Application of sound source separation methods to advanced spatial audio systems

    Full text link
    This thesis is related to the field of Sound Source Separation (SSS). It addresses the development and evaluation of these techniques for their application in the resynthesis of high-realism sound scenes by means of Wave Field Synthesis (WFS). Because the vast majority of audio recordings are preserved in twochannel stereo format, special up-converters are required to use advanced spatial audio reproduction formats, such as WFS. This is due to the fact that WFS needs the original source signals to be available, in order to accurately synthesize the acoustic field inside an extended listening area. Thus, an object-based mixing is required. Source separation problems in digital signal processing are those in which several signals have been mixed together and the objective is to find out what the original signals were. Therefore, SSS algorithms can be applied to existing two-channel mixtures to extract the different objects that compose the stereo scene. Unfortunately, most stereo mixtures are underdetermined, i.e., there are more sound sources than audio channels. This condition makes the SSS problem especially difficult and stronger assumptions have to be taken, often related to the sparsity of the sources under some signal transformation. This thesis is focused on the application of SSS techniques to the spatial sound reproduction field. As a result, its contributions can be categorized within these two areas. First, two underdetermined SSS methods are proposed to deal efficiently with the separation of stereo sound mixtures. These techniques are based on a multi-level thresholding segmentation approach, which enables to perform a fast and unsupervised separation of sound sources in the time-frequency domain. Although both techniques rely on the same clustering type, the features considered by each of them are related to different localization cues that enable to perform separation of either instantaneous or real mixtures.Additionally, two post-processing techniques aimed at improving the isolation of the separated sources are proposed. The performance achieved by several SSS methods in the resynthesis of WFS sound scenes is afterwards evaluated by means of listening tests, paying special attention to the change observed in the perceived spatial attributes. Although the estimated sources are distorted versions of the original ones, the masking effects involved in their spatial remixing make artifacts less perceptible, which improves the overall assessed quality. Finally, some novel developments related to the application of time-frequency processing to source localization and enhanced sound reproduction are presented.Cobos Serrano, M. (2009). Application of sound source separation methods to advanced spatial audio systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8969Palanci

    Adaptive time-frequency analysis for cognitive source separation

    Get PDF
    This thesis introduces a framework for separating two speech sources in non-ideal, reverberant environments. The source separation architecture tries to mimic the extraordinary abilities of the human auditory system when performing source separation. A movable human dummy head residing in a normal office room is used to model the conditions humans experience when listening to complex auditory scenes. This thesis first investigates how the orthogonality of speech sources in the time-frequency domain drops with different reverberation times of the environment and shows that separation schemes based on ideal binary time-frequency-masks are suitable to perform source separation also under humanoid reverberant conditions. Prior to separating the sources, the movable human dummy head analyzes the auditory scene and estimates the positions of the sources and the fundamental frequency tracks. The source localization is implemented using an iterative approach based on the interaural time differences between the two ears and achieves a localization blur of less than three degrees in the azimuth plane. The source separation architecture implemented in this thesis extracts the orthogonal timefrequency points of the speech mixtures. It combines the positive features of the STFT with the positive features of the cochleagram representation. The overall goal of the source separation is to find the ideal STFT-mask. The core source separation process however is based on the analysis of the corresponding region in an additionally computed cochleagram, which shows more reliable Interaural Time Difference (ITD) estimations that are used for separation. Several algorithms based on the ITD and the fundamental frequency of the target source are evaluated for their source separation capabilities. To enhance the separation capabilities of the single algorithms, the results of the different algorithms are combined to compute a final estimate. In this way SIR gains of approximately 30 dB for two source scenarios are achieved. For three source scenarios SIR gains of up to 16 dB are attained. Compared to the standard binaural signal processing approaches like DUET and Fixed Beamforming the presented approach achieves up to 29 dB SIR gain.Diese Dissertation beschreibt ein Framework zur Separation zweier Quellen in nicht-idealen, echobehafteten Umgebungen. Die Architektur zur Quellenseparation orientiert sich dabei an den außergewöhnlichen Separationsfähigkeiten des menschlichen Gehörs. Um die Bedingungen eines Menschen in einer komplexen auditiven Szene zu imitieren, wird ein beweglicher, menschlicher Kunstkopf genutzt, der sich in einem üblichen Büroraum befindet. In einem ersten Schritt analysiert diese Dissertation, inwiefern die Orthogonalität von Sprachsignalen im Zeit-Frequenz-Bereich mit unterschiedlichen Nachhallzeiten abnimmt. Trotz der Orthogonalitätsabnahme sind Separationsansätze basierend auf idealen binären Masken geeignet um eine Trennung von Sprachsignalen auch unter menschlichen, echobehafteten Bedingungen zu realisieren. Bevor die Quellen getrennt werden, analysiert der bewegliche Kunstkopf die auditive Szene und schätzt die Positionen der einzelnen Quellen und den Verlauf der Grundfrequenz der Sprecher ab. Die Quellenlokalisation wird durch einen iterativen Ansatz basierend auf den Zeitunterschieden zwischen beiden Ohren verwirklicht und erreicht eine Lokalisierungsgenauigkeit von weniger als drei Grad in der Azimuth-Ebene. Die Quellenseparationsarchitektur die in dieser Arbeit implementiert wird, extrahiert die orthogonalen Zeit-Frequenz-Punkte der Sprachmixturen. Dazu werden die positiven Eigenschaften der STFT mit den positiven Eigenschaften des Cochleagrams kombiniert. Ziel ist es, die ideale STFT-Maske zu finden. Die eigentliche Quellentrennung basiert jedoch auf der Analyse der entsprechenden Region eines zusätzlich berechneten Cochleagrams. Auf diese Weise wird eine weitaus verlässlichere Auswertung der Zeitunterschiede zwischen den beiden Ohren verwirklicht. Mehrere Algorithmen basierend auf den interauralen Zeitunterschieden und der Grundfrequenz der Zielquelle werden bezüglich ihrer Separationsfähigkeiten evaluiert. Um die Trennungsmöglichkeiten der einzelnen Algorithmen zu erhöhen, werden die einzelnen Ergebnisse miteinander verknüpft um eine finale Abschätzung zu gewinnen. Auf diese Weise können SIR Gewinne von ungefähr 30 dB für Szenarien mit zwei Quellen erzielt werden. Für Szenarien mit drei Quellen werden Gewinne von bis zu 16 dB erzielt. Verglichen mit binauralen Standardverfahren zur Quellentrennung wie DUET oder Fixed Beamforming, gewinnt der vorgestellte Ansatz bis zu 29 dB SIR

    Binaural scene analysis : localization, detection and recognition of speakers in complex acoustic scenes

    Get PDF
    The human auditory system has the striking ability to robustly localize and recognize a specific target source in complex acoustic environments while ignoring interfering sources. Surprisingly, this remarkable capability, which is referred to as auditory scene analysis, is achieved by only analyzing the waveforms reaching the two ears. Computers, however, are presently not able to compete with the performance achieved by the human auditory system, even in the restricted paradigm of confronting a computer algorithm based on binaural signals with a highly constrained version of auditory scene analysis, such as localizing a sound source in a reverberant environment or recognizing a speaker in the presence of interfering noise. In particular, the problem of focusing on an individual speech source in the presence of competing speakers, termed the cocktail party problem, has been proven to be extremely challenging for computer algorithms. The primary objective of this thesis is the development of a binaural scene analyzer that is able to jointly localize, detect and recognize multiple speech sources in the presence of reverberation and interfering noise. The processing of the proposed system is divided into three main stages: localization stage, detection of speech sources, and recognition of speaker identities. The only information that is assumed to be known a priori is the number of target speech sources that are present in the acoustic mixture. Furthermore, the aim of this work is to reduce the performance gap between humans and machines by improving the performance of the individual building blocks of the binaural scene analyzer. First, a binaural front-end inspired by auditory processing is designed to robustly determine the azimuth of multiple, simultaneously active sound sources in the presence of reverberation. The localization model builds on the supervised learning of azimuthdependent binaural cues, namely interaural time and level differences. Multi-conditional training is performed to incorporate the uncertainty of these binaural cues resulting from reverberation and the presence of competing sound sources. Second, a speech detection module that exploits the distinct spectral characteristics of speech and noise signals is developed to automatically select azimuthal positions that are likely to correspond to speech sources. Due to the established link between the localization stage and the recognition stage, which is realized by the speech detection module, the proposed binaural scene analyzer is able to selectively focus on a predefined number of speech sources that are positioned at unknown spatial locations, while ignoring interfering noise sources emerging from other spatial directions. Third, the speaker identities of all detected speech sources are recognized in the final stage of the model. To reduce the impact of environmental noise on the speaker recognition performance, a missing data classifier is combined with the adaptation of speaker models using a universal background model. This combination is particularly beneficial in nonstationary background noise

    Resynthesis of Acoustic Scenes Combining Sound Source Separation and WaveField Synthesis Techniques

    Full text link
    [ES] La Separacón de Fuentes ha sido un tema de intensa investigación en muchas aplicaciones de tratamiento de señaal, cubriendo desde el procesado de voz al análisis de im'agenes biomédicas. Aplicando estas técnicas a los sistemas de reproducci'on espacial de audio, se puede solucionar una limitaci ón importante en la resíntesis de escenas sonoras 3D: la necesidad de disponer de las se ñales individuales correspondientes a cada fuente. El sistema Wave-field Synthesis (WFS) puede sintetizar un campo acústico mediante arrays de altavoces, posicionando varias fuentes en el espacio. Sin embargo, conseguir las señales de cada fuente de forma independiente es normalmente un problema. En este trabajo se propone la utilización de distintas técnicas de separaci'on de fuentes sonoras para obtener distintas pistas a partir de grabaciones mono o estéreo. Varios métodos de separación han sido implementados y comprobados, siendo uno de ellos desarrollado por el autor. Aunque los algoritmos existentes están lejos de conseguir una alta calidad, se han realizado tests subjetivos que demuestran cómo no es necesario obtener una separación óptima para conseguir resultados aceptables en la reproducción de escenas 3D[EN] Source Separation has been a subject of intense research in many signal processing applications, ranging from speech processing to medical image analysis. Applied to spatial audio systems, it can be used to overcome one fundamental limitation in 3D scene resynthesis: the need of having the independent signals for each source available. Wave-field Synthesis is a spatial sound reproduction system that can synthesize an acoustic field by means of loudspeaker arrays and it is also capable of positioning several sources in space. However, the individual signals corresponding to these sources must be available and this is often a difficult problem. In this work, we propose to use Sound Source Separation techniques in order to obtain different tracks from stereo and mono mixtures. Some separation methods have been implemented and tested, having been one of them developed by the author. Although existing algorithms are far from getting hi-fi quality, subjective tests show how it is not necessary an optimum separation for getting acceptable results in 3D scene reproductionCobos Serrano, M. (2007). Resynthesis of Acoustic Scenes Combining Sound Source Separation and WaveField Synthesis Techniques. http://hdl.handle.net/10251/12515Archivo delegad

    A psychoacoustic engineering approach to machine sound source separation in reverberant environments

    Get PDF
    Reverberation continues to present a major problem for sound source separation algorithms, due to its corruption of many of the acoustical cues on which these algorithms rely. However, humans demonstrate a remarkable robustness to reverberation and many psychophysical and perceptual mechanisms are well documented. This thesis therefore considers the research question: can the reverberation–performance of existing psychoacoustic engineering approaches to machine source separation be improved? The precedence effect is a perceptual mechanism that aids our ability to localise sounds in reverberant environments. Despite this, relatively little work has been done on incorporating the precedence effect into automated sound source separation. Consequently, a study was conducted that compared several computational precedence models and their impact on the performance of a baseline separation algorithm. The algorithm included a precedence model, which was replaced with the other precedence models during the investigation. The models were tested using a novel metric in a range of reverberant rooms and with a range of other mixture parameters. The metric, termed Ideal Binary Mask Ratio, is shown to be robust to the effects of reverberation and facilitates meaningful and direct comparison between algorithms across different acoustic conditions. Large differences between the performances of the models were observed. The results showed that a separation algorithm incorporating a model based on interaural coherence produces the greatest performance gain over the baseline algorithm. The results from the study also indicated that it may be necessary to adapt the precedence model to the acoustic conditions in which the model is utilised. This effect is analogous to the perceptual Clifton effect, which is a dynamic component of the precedence effect that appears to adapt precedence to a given acoustic environment in order to maximise its effectiveness. However, no work has been carried out on adapting a precedence model to the acoustic conditions under test. Specifically, although the necessity for such a component has been suggested in the literature, neither its necessity nor benefit has been formally validated. Consequently, a further study was conducted in which parameters of each of the previously compared precedence models were varied in each room in order to identify if, and to what extent, the separation performance varied with these parameters. The results showed that the reverberation–performance of existing psychoacoustic engineering approaches to machine source separation can be improved and can yield significant gains in separation performance.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Communications Biophysics

    Get PDF
    Contains research objectives and reports on eight research projects split into three sections.National Institutes of Health (Grant 2 PO1 NS13126)National Institutes of Health (Grant 5 RO1 NS18682)National Institutes of Health (Grant 5 RO1 NS20322)National Institutes of Health (Grant 1 RO1 NS 20269)National Institutes of Health (Grant 5 T32 NS 07047)Symbion, Inc.National Institutes of Health (Grant 5 R01 NS10916)National Institutes of Health (Grant 1 RO NS 16917)National Science Foundation (Grant BNS83-19874)National Science Foundation (Grant BNS83-19887)National Institutes of Health (Grant 5 RO1 NS12846)National Institutes of Health (Grant 1 RO1 NS21322-01)National Institutes of Health (Grant 5 T32-NS07099-07)National Institutes of Health (Grant 1 RO1 NS14092-06)National Science Foundation (Grant BNS77-21751)National Institutes of Health (Grant 5 RO1 NS11080
    corecore