4,719 research outputs found

    Semi-automatic Liver Tumor Segmentation in Dynamic Contrast-Enhanced CT Scans Using Random Forests and Supervoxels

    Get PDF
    International audiencePre-operative locoregional treatments (PLT) delay the tumor progression by necrosis for patients with hepato-cellular carcinoma (HCC). Toward an efficient evaluation of PLT response, we address the estimation of liver tumor necrosis (TN) from CT scans. The TN rate could shortly supplant standard criteria (RECIST, mRECIST, EASL or WHO) since it has recently shown higher correlation to survival rates. To overcome the inter-expert variability induced by visual qualitative assessment, we propose a semi-automatic method that requires weak interaction efforts to segment parenchyma, tumoral active and necrotic tissues. By combining SLIC supervoxels and random decision forest, it involves discriminative multi-phase cluster-wise features extracted from registered dynamic contrast-enhanced CT scans. Quantitative assessment on expert groundtruth annotations confirms the benefits of exploiting multi-phase information from semantic regions to accurately segment HCC liver tumors

    Keypoint Transfer for Fast Whole-Body Segmentation

    Full text link
    We introduce an approach for image segmentation based on sparse correspondences between keypoints in testing and training images. Keypoints represent automatically identified distinctive image locations, where each keypoint correspondence suggests a transformation between images. We use these correspondences to transfer label maps of entire organs from the training images to the test image. The keypoint transfer algorithm includes three steps: (i) keypoint matching, (ii) voting-based keypoint labeling, and (iii) keypoint-based probabilistic transfer of organ segmentations. We report segmentation results for abdominal organs in whole-body CT and MRI, as well as in contrast-enhanced CT and MRI. Our method offers a speed-up of about three orders of magnitude in comparison to common multi-atlas segmentation, while achieving an accuracy that compares favorably. Moreover, keypoint transfer does not require the registration to an atlas or a training phase. Finally, the method allows for the segmentation of scans with highly variable field-of-view.Comment: Accepted for publication at IEEE Transactions on Medical Imagin
    • …
    corecore