We introduce an approach for image segmentation based on sparse
correspondences between keypoints in testing and training images. Keypoints
represent automatically identified distinctive image locations, where each
keypoint correspondence suggests a transformation between images. We use these
correspondences to transfer label maps of entire organs from the training
images to the test image. The keypoint transfer algorithm includes three steps:
(i) keypoint matching, (ii) voting-based keypoint labeling, and (iii)
keypoint-based probabilistic transfer of organ segmentations. We report
segmentation results for abdominal organs in whole-body CT and MRI, as well as
in contrast-enhanced CT and MRI. Our method offers a speed-up of about three
orders of magnitude in comparison to common multi-atlas segmentation, while
achieving an accuracy that compares favorably. Moreover, keypoint transfer does
not require the registration to an atlas or a training phase. Finally, the
method allows for the segmentation of scans with highly variable field-of-view.Comment: Accepted for publication at IEEE Transactions on Medical Imagin