7 research outputs found

    Mass Segmentation Techniques For Lung Cancer CT Images

    Get PDF
    Mass segmentation methods are commonly used nowadays in modern diagnostic centers and research centers working in the field of lung cancer detection and diagnosis. We have implemented k-means and fuzzy cluster means (FCM) techniques for mass segmentation of lung CT images. The methods were compared in terms of area, perimeter and diameter. FCM outperforms K-means in terms of better detection of lung cancer area and effective values of dimensional features of lung cancer as compared to K-means method

    Research on a Pulmonary Nodule Segmentation Method Combining Fast Self-Adaptive FCM and Classification

    Get PDF
    The key problem of computer-aided diagnosis (CAD) of lung cancer is to segment pathologically changed tissues fast and accurately. As pulmonary nodules are potential manifestation of lung cancer, we propose a fast and self-adaptive pulmonary nodules segmentation method based on a combination of FCM clustering and classification learning. The enhanced spatial function considers contributions to fuzzy membership from both the grayscale similarity between central pixels and single neighboring pixels and the spatial similarity between central pixels and neighborhood and improves effectively the convergence rate and self-adaptivity of the algorithm. Experimental results show that the proposed method can achieve more accurate segmentation of vascular adhesion, pleural adhesion, and ground glass opacity (GGO) pulmonary nodules than other typical algorithms

    Segmentation of 3D medical images based on region growing method

    Get PDF
    Táto bakalárska práca sa zaoberá segmentáciou medicínskych objemových dát pomocou metódy narastania oblastí. Cieľom je popísať hlavné metódy 3D segmentácie obrazových dát a zamerať sa najmä na metódu narastania oblastí. Vstupnými dátami sú snímky rezov mozgu z magnetickej rezonancie, ktoré je možné pomocou navrhnutého prehliadača zobrazovať v troch základných rovinách. Prehliadač je realizovaný v programovom prostredí Matlab. Segmentácia obrazových dát je realizovaná metódou semienkového narastania oblastí.This bachalor thesis deals with a region growing approach for segmentation of volumetric medical images. The aim is to present basic methods of segmentation of image data and to focus in particular on the approach of region growing. The input data are brain slices of magnetic resonance imaging which can be visualized using the browser into the three basic planes. The viewer is implemented in MATLAB programming environment. Image segmentation is realized by seeded region growing.

    Detection and description of pulmonary nodules through 2D and 3D clustering

    Get PDF
    Precise 3D automated detection, description and classification of pulmonary nodules offer the potential for early diagnosis of cancer and greater efficiency in the reading of computerised tomography (CT) images. CT scan centres are currently experiencing high loads and experts shortage, especially in developing countries such as Iraq where the results of the current research will be used. This motivates the researchers to address these problems and challenges by developing automated processes for the early detection and efficient description of cancer cases. This research attempts to reduce workloads, enhance the patient throughput and improve the diagnosis performance. To achieve this goal, the study selects techniques for segmentation, classification, detection and implements the best candidates alongside a novel automated approach. Techniques for each stage in the process are quantitatively evaluated to select the best performance against standard data for lung cancer. In addition, the ideal approach is identified by comparing them against other works in detecting and describing pulmonary nodules. This work detects and describes the nodules and their characteristics in several stages: automated lung segmentation from the background, automated 2D and 3D clustering of vessels and nodules, applying shape and textures features, classification and automatic measurement of nodule characteristics. This work is tested on standard CT lung image data and shows promising results, matching or close to experts’ diagnosis in the nodules number and their features (size/volume, location) and in terms the accuracy and automation. It also achieved a classification accuracy of 98% and efficient results in measuring the nodules’ volume automatically
    corecore