
DETECTION AND DESCRIPTION OF 

PULMONARY NODULES THROUGH 2D AND 

3D CLUSTERING 

 

AMERA ABDULWOHID FUNJAN AL-FUNJAN 

 

 

 

Thesis Submitted in Partial Fulfilment of the Requirements 

of the Degree of Doctor of Philosophy 

School of Computing, Science and Engineering 

University of Salford, Salford, UK 

 

 

 

 

 

2019 

 

 



 

I 

Contents 

1.1 Introduction ___________________________________________________ 1 

1.2 Research Motivation _____________________________________________ 3 

1.3 Aim and Objectives ______________________________________________ 4 

1.4 Research Questions ______________________________________________ 5 

1.5 Research Contributions ____________________________________________ 5 

1.6 Thesis Organization ______________________________________________ 6 

2.1 Introduction ___________________________________________________ 8 

2.2 The scope of the Research __________________________________________ 8 

2.3 Research Methodology ____________________________________________ 9 

2.4 Summary _____________________________________________________ 13 

3.1 Introduction ___________________________________________________ 14 

3.2 Introduction to Medical Imaging _____________________________________ 14 

3.3 Lung Anatomy on CT-Scan __________________________________________ 14 

3.4 CT and MRI-Scans of Lung __________________________________________ 15 

3.5 Pulmonary Nodule Types __________________________________________ 16 

3.6 Image Pre-Processing Techniques _____________________________________ 18 

3.7 Image Conversion________________________________________________ 19 

3.8 Image Enhancement ______________________________________________ 19 

3.9 Lung Segmentation Techniques ______________________________________ 20 

 Threshold-Based Lung Segmentation _______________________________________ 21 

 Deformable Models -Based Lung Segmentation _______________________________ 22 

 Edge Detection -Based Lung Segmentation ___________________________________ 23 

 Clustering -Based Lung Segmentation ______________________________________ 23 

3.10 Nodules Segmentation Techniques ___________________________________ 27 



 

II 

 Nodule Segmentation Based on Clustering __________________________________ 27 

 Nodule Segmentation Based on Active Models _______________________________ 28 

 Nodules Segmentation Based on Feature Extraction and Classification _______________ 29 

 Features Selection and Dimension Reduction Techniques ________________________ 32 

 Pattern Recognition Techniques _________________________________________ 33 

3.11 Computer-Aided Detection/Diagnosis Systems (CADs)______________________ 45 

3.12 Advantages and Disadvantages of Detection Techniques ____________________ 48 

3.13 Summary and Lessons learned from the Literature Review __________________ 49 

4.1 Introduction ___________________________________________________ 51 

4.2 Data Collection _________________________________________________ 53 

 Standard Data _______________________________________________________ 53 

 DICOM Standard _____________________________________________________ 54 

 Data Diagnosis Reports ________________________________________________ 56 

4.3 Pre-Processing __________________________________________________ 57 

 CT Image Enhancement ________________________________________________ 58 

 Lung Segmentation (Fully Automated) ______________________________________ 58 

4.4 Lung Segmentation Evaluation _______________________________________ 62 

4.5 Experiments and Discussion_________________________________________ 63 

 Denoising and Adjustment ______________________________________________ 64 

 Image Histogram _____________________________________________________ 65 

 Lung Segmentation ___________________________________________________ 66 

4.6 Lung Segmentation Evaluation _______________________________________ 68 

4.7 Post Processing _________________________________________________ 69 

 Vessels and Nodules Segmentation Together _________________________________ 69 

4.8 Vessels and Nodules Segmentation Results ______________________________ 74 

4.9 Summary _____________________________________________________ 76 

5.1 Introduction ___________________________________________________ 77 

5.2 Image Features _________________________________________________ 77 

 Features Analysis ____________________________________________________ 78 



 

III 

5.3 Classification phase ______________________________________________ 83 

5.4 Validation Phase ________________________________________________ 83 

5.5 The Evaluation Phase _____________________________________________ 85 

 Confusion Matrix_____________________________________________________ 85 

 Other Metrics _______________________________________________________ 86 

5.6 Results and Discussions ____________________________________________ 87 

5.7 Summary ____________________________________________________ 109 

6.1 Introduction __________________________________________________ 111 

6.2 3D Clustering Advantages _________________________________________ 112 

6.3 Research Materials ______________________________________________ 112 

6.4 3D Clustering __________________________________________________ 112 

6.5 Case Study ___________________________________________________ 115 

6.6 3D Clustering Evaluation __________________________________________ 119 

 DBSCAN Method ____________________________________________________ 120 

 Plot.ly Application ___________________________________________________ 122 

6.7 Measuring the Volume ___________________________________________ 125 

6.8 Nodule Volume Measuring Methods__________________________________ 126 

 Manually Nodule Volume Calculation______________________________________ 127 

 Converting the Area Unit from Pixel to MM _________________________________ 128 

 Automated Nodule Volume Measurement __________________________________ 130 

 3D-DBSCAN Performance in Automated Volume Measuring and Evaluation of 3D Clustering 132 

6.9 Comparison ___________________________________________________ 137 

6.10 Summary ____________________________________________________ 139 

7.1 Introduction __________________________________________________ 140 

7.2 Main Menu ___________________________________________________ 140 

7.3 Loading and Enhancing Image ______________________________________ 141 

7.4 Lung Segmentation______________________________________________ 143 

7.5 2D-Clustering __________________________________________________ 143 



 

IV 

7.6 Feature Extraction and Classification _________________________________ 144 

7.7 3D-Clustering __________________________________________________ 147 

7.8 Measuring Volume ______________________________________________ 147 

7.9 Summary ____________________________________________________ 148 

8.1 Introduction __________________________________________________ 149 

8.2 Review of Methodology __________________________________________ 149 

8.3 Conclusions ___________________________________________________ 151 

8.4 Research Limitations ____________________________________________ 151 

8.5 Future Works __________________________________________________ 152 

8.6 Summary ____________________________________________________ 152 

 



 

V 

LIST OF FIGURES 

Figure 1-1: Distribution for all Cancer, Males and Females Combined According to Incidence Rate Ratio, 

Ninawa/Iraq 2001-2010 (AL-Hashimi and Wang 2013) ___________________________________ 4 

Figure 2-1: Research Methodology; Main Stages _______________________________________ 11 

Figure 3-1: Images of CT Lung Slices: (a) CT Planes Passing Through the Body; (b) Coronal CT Slice of Lung; 

(c) Sagittal CT Slice of Lung; (d) Axial CT Slice of Lung (Sluimer 2005) _________________________ 15 

Figure 3-2: pulmonary nodules types’ classification (Sluimer 2005) ___________________________ 17 

Figure 3-3 The Axial Image Slices of Nodule Types: (a) Solid Nodule; (b) Part-Solid Nodule; (c) Pure Ground 

Glass Nodule (Sluimer 2005) _____________________________________________________ 18 

Figure 3-4: CT Lung Slice Saved in DICOM Format with Dimensions of 512×512 Pixels ______________ 19 

Figure 3-5: Image Histogram of Two Thresholds, Region 1 belongs (0–50), Region 2 belongs (50–150), and 

Region 3 belongs (150–255) of Grey Scale Values _______________________________________ 21 

Figure 3-6 Individual segments of lung CT image: (A) original, (B) segmented image in pseudocolour, (C–E) 

individual segments ___________________________________________________________ 26 

Figure 3-7: An Overview of Shape Description Techniques (Ping et al., 2013). __________________ 30 

Figure 3-8: Illustration of Linear Regression on a Data Set (Draper and Smith 2014) _______________ 37 

Figure 3-9 Two Line Segments to Fit the Dots in Global Logistic Regression(Hsieh et al., 1998) ________ 38 

Figure 3-10 (Global) Logistic Regression for Classification :(a) a Curve of Global Logistic through Data (b) a 

Curve of Global Logistic through Noise (c) a Curve of   Global Logistic does not Work Because of more Than 

Two Segments (Hsieh et al., 1998) _________________________________________________ 38 

Figure 3-11: Hyperplane Separates Two Classes (Al-Waeli 2017) ___________________________ 40 

Figure: 3-12 Multilayer Perceptron Configuration (Hu and Hwang, 2001) ______________________ 43 

Figure 4-1 General Block Diagram of the Detection System ________________________________ 51 

Figure 4-2 Block Diagram of the Proposed System Processes _______________________________ 52 

Figure 4-3 a) Human Lung; b) Continuous HLCT Images; c) Normal HLCT Slice (Huaqing & Chen, 2012) __ 54 

Figure 4-4: DICOM Tag _________________________________________________________ 55 

Figure 4-5 Sample of Dataset before Updating _________________________________________ 56 

Figure 4-6 Sample of Dataset after Updating __________________________________________ 57 

Figure 4-7: Block Diagram of Lungs Segmentation by Fast Fuzzy C-means and Morphological Operations 61 

Figure 4-8: Overall Block Diagram of Lung Segmentation _______________________________ 62 

Figure 4-9: Denoising and Adjusting of CT- Scan Lung Image, A) Original CT Lung Image; B) Denoising CT 

Lung Image by Gaussian Filter; C) Increasing Contrast of CT Lung Image by Adjusting Algorithm and D) 

Denoising and Increasing contrast of CT Lung Image by Gaussian Filter and Adjusting Algorithm ______ 64 

Figure 4-10: Corresponding Histograms Representation for Each One of a) Denoising CT lung image by 

Gaussian Filter; B) Increasing Contrast of CT Lung Image by Adjusting Algorithm and C) Denoising and 

Contrast Increasing of CT lung image by Gaussian Filter and Adjustment Algorithm _______________ 65 

Figure 4-11: CT Lung Image with Pseudo Colour of Algorithm_______________________________ 66 



 

VI 

Figure 4-12: Fast Fuzzy C-means Algorithm Applied on CT Lung Image, Shows Pixels Belonging Degree to 

Each Cluster in the Image _______________________________________________________ 67 

Figure 4-13: Samples of CT Original Lung Images and Segmented Lungs Images by Fast Fuzzy C-

Means ____________________________________________________________________ 67 

Figure 4-14: CT Lung Images Delineated the Boundaries with Green Colour by Radiologist and Segmented 

of Background by Fast Fuzzy C-Means Method ________________________________________ 68 

Figure 4-15 Flow Chart for Image Intensity- Based Clustering _______________________________ 73 

Figure 4-16: a) Clustering with 45 Threshold; b) Clustering with 90 Threshold; c) Clustering with 120 

Threshold __________________________________________________________________ 76 

Figure 5-1: Accuracy Rates of Five Classifiers Through 4-Cross-Validation ______________________ 87 

Figure 5-2: Accuracy Rates of Five Classifiers Through 10-Cross-Validation _____________________ 88 

Figure 5-3: Accuracy in Classifying Vessels and Nodules of Four Classifiers ______________________ 89 

Figure 5-4: Accuracy in Classifying Vessels and Nodules of Naïve Bayes Classifier _________________ 89 

Figure 5-5: Accuracy in Classifying Vessels and Nodules of SVM-poly 4-Cross-Validation ____________ 90 

Figure 5-6: Accuracy in Classifying Vessels and Nodules of SVM-POLY 10-Cross-Validation ___________ 90 

Figure 5-7: Accuracy in Classifying Vessels and Nodules of SVM-RBF in 4-Cross-Validation ___________ 91 

Figure 5-8: Accuracy in Classifying Vessels and Nodules of SVM-RBF in 10-Cross-Validation __________ 91 

Figure 5-9: Accuracy in Classifying Vessels and Nodules of SVM-PUK in 10-Cross-Validation __________ 92 

Figure 5-10: Recall of Nodules for all Classifiers ________________________________________ 93 

Figure 5-11: TNR Vessels for all Classifiers ____________________________________________ 93 

Figure 5-12: FNR of Vessels for all classifiers __________________________________________ 94 

Figure 5-13: FPR of Nodules for all classifiers __________________________________________ 94 

Figure 5-14: Precision Measure of Nodules and Vessels for all classifiers and Average of both ________ 95 

Figure 5-15: F- Measure Score for all classifiers ________________________________________ 96 

Figure 5-16: MCC Measure for all classifiers___________________________________________ 97 

Figure 5-17: AUC Measure for all classifiers ___________________________________________ 97 

Figure 5-18: ROC Curve for TPR & FPR of all classifiers____________________________________ 98 

Figure 5-19: Curves of Circularity Values for Vessel and Nodule ____________________________ 102 

Figure 5-20: Curves of Ellipticity Values for Vessel and Nodule _____________________________ 103 

Figure 5-21: Curves of Slenderness Values for Vessel and Nodule ___________________________ 104 

Figure 5-22: Curves of Area Values for Vessel and Nodule ________________________________ 105 

Figure 5-23: Curves of Perimeter Values for Vessel and Nodule_____________________________ 106 

Figure 5-24: Curves of Compactness Values for Vessel and Nodule __________________________ 107 

Figure 5-25: Curves of Rectangle Degree Values for Vessel and Nodule _______________________ 108 

Figure 6-1: Original CT Lung Images of Slices 60-64 with Red Referral of Two Attached Nodules and 

Assessed by 4 Experts, a. Candidate Nodule in the 60 slice; b, c, d. Similar Structures of Nodules through 61, 

62, 63; e. Candidate Nodule in 64 Slice, f. The Normal Image after 64 Slice ____________________ 117 



 

VII 

Figure 6-2: 3D Clustering of CT lungs with Referral to Two Diagnosed and Attached Nodules in 60 and 64 

Slices ____________________________________________________________________ 118 

Figure 6-3: 3D Clustering of Attached Nodules in 60 and 64 slices and Another One in the 46 slice with 

Centre Pixels Corresponding Radiologists’ Assessment __________________________________ 119 

Figure 6-4: 3D-DBSCAN Method Clusters the Linked Nodules in Yellow and the Remaining Nodules with 

Different Colours of the Same Patient ______________________________________________ 121 

Figure 6-5: 3D-DBSCAN Method Clusters the Linked Nodules with Yellow Colour, Centres Pixels, Which 

Were Reported in Radiologist Evaluation, and the Remaining Nodules with Different Colours _______ 121 

Figure 6-6: DBSCAN Method Just Clusters the Linked Nodules and Proves One Nodule _____________ 122 

Figure 6-7: 3D Plot of the Areas of Nodules with Similar Structures Between Different Levels from Slice 60 

to 64 (going upwards) ________________________________________________________ 123 

Figure 6-8: 3D Plot from Different Angle to Figure 6-7, Black Areas (Bubbles) Represent the Overlap 

Between Them to Show the Connected Regions _______________________________________ 124 

Figure 6-9: (A, B) Show the Overlap between Centre Pixels of Clustered and Actual Nodule in 60 Slice with 

Two Colours Red and Green Respectively ___________________________________________ 125 

Figure 6-10: Pixel Spacing Values against of Two Pixels Centres in Vertical and Horizontal of 2D Pixels 

Matrix (Treichel et al. 2012) ____________________________________________________ 126 

Figure 6-11: (a) Frustum Model, (b) CT Slices Contain Nodule’s Structures (Mahmood, Abbas, and Ali 

2014) ____________________________________________________________________ 128 

Figure 6-12: Segmented and Clustered CT Lung Images for Nodule Starts from Slices 60 to 64 with Column 

for Convex Areas in Pixels and MM of Nodules, Manually Calculated Volume ___________________ 129 

Figure 6-13: Pseudo-Code for Automatic Nodule Volume _________________________________ 133 

Figure 6-14: Nodule and False Positives Clustered by 3-DBSCAN and Measuring the Volume for each Cluster

 ________________________________________________________________________ 134 

Figure 6-15: The Centre Pixels for Nodules in Slices 46, 60 and 64 ___________________________ 135 

Figure 6-16: the Centre Pixel of Nodule in the Slice 12 ___________________________________ 135 

Figure 6-17: A. 3D- DBSCAN Clustering of 2D Classification Results, B. Identifying the Attached Nodules 

Location in DBSCAN Figure, C. The Cluster of Attached Nodules are Clustered in B in a 3D View ______ 137 

Figure 7-1: Main Menu of Proposed System __________________________________________ 141 

Figure 7-2: Loading and Enhancing Image ___________________________________________ 142 

Figure 7-3: Lung Segmentation Stage ______________________________________________ 143 

Figure 7-4: 2D-Clustering ______________________________________________________ 144 

Figure 7-5: Results and Execution Time before Features Reduction for 4,10-Cross Validation ________ 145 

Figure 7-6: Results and Execution Time after Features Reduction for 4,10-Cross Validation _________ 146 

Figure 7-7: 3D-Clustering ______________________________________________________ 147 

Figure 7-8: Measuring Volume Stage ______________________________________________ 148 

 



 

VIII 

LIST OF TABLES 

Table 3-1: Description and definition regarding pulmonary nodule types  _______________________ 17 

Table 4-1: Hausdorff Values for Ten Segmented Lung Images_______________________________ 68 

Table 5-1: Accuracy Values for Five Classifiers Through 4-Cross-Validation______________________ 88 

Table 5-2 Accuracy Values for Five Classifiers through 10-Cross-Validation _____________________ 88 

Table 5-3: Time Values for Five Classifiers through 4-Cross-Validation before and after Features Reduction

 _________________________________________________________________________ 99 

Table 5-4: Time Values for Five Classifiers through 10-Cross-Validation before and after Features Reduction

 _________________________________________________________________________ 99 

Table 5-5: Samples of Features Vectors for Nodule and Vessels ____________________________ 101 

Table 5-6: Circularity Values of Vessel and Nodule _____________________________________ 102 

Table 5-7: Ellipticity Values of Vessel and Nodule ______________________________________ 103 

Table 5-8: Slenderness Values of Vessel and Nodule ____________________________________ 104 

Table 5-9: Area Values of Vessel and Nodule _________________________________________ 105 

Table 5-10: Perimeter Values of Vessel and Nodule_____________________________________ 106 

Table 5-11: Compactness Values of Vessel and Nodule __________________________________ 107 

Table 5-12: Rectangle Degree Values of Vessel and Nodule _______________________________ 108 

Table 5-13: Accuracy, Sensitivity and Specificity Rates for Four Optimal Classifiers  _______________ 109 

Table 6-1: Other works compared with this study in terms of accuracy and measurements the nodule 

characteristics automatically. ___________________________________________________ 138 

 

 

 

 

 

 

 

 

 



 

IX 

Acknowledgement  

First of all, my great thanks to ALLAH for his mercy and blessing. Also, this thesis would 

never be completed without the excellent supervision and guidance that I received from 

Prof. Dr Farid Meziane and Dr Rob Aspin and Prof. Dr Eman AL-Shamery. There are no 

words in the English dictionary can express my gratitude to them. Also, I would like to 

thank my sponsors, the Iraqi Ministry of Higher Education and Scientific Research and the 

University of Babylon for funding my PhD study. I would say heartfelt thanks to my mother 

for her prayers, which bless me all the time. Besides, I would like to pay my regards to all 

relatives and friends, especially (Prof. Dr Eman AL-Shamery and Assist. Prof. Dr Abdul 

Sameea Alkilabi) for the help that they showed. I would like to express my profound respect 

and sincere appreciation to my husband "Aqial", my sister and my children for their 

patience and encouragement that gave me so much hope and support. 

 

 

 

 

 

 

 

 

 



 

X 

 

 

 

 

To my Mother’s Soul 

To my Husband  

To my Sister and Sons 

 

 

 

 

 

 

 

 

 

 

 

 



 

XI 

ABBREVIATIONS 

CADs   Computer Aided-Detection Systems 

CT   Computed Tomography Imaging 

DBSCAN  Density-Based Spatial Clustering of Applications with Noise  

DICOM  Digital Communications in Medicine Services 

FFCM   Fast Fuzzy C-Means 

FPR   False Positive Rate 

GGN   Ground-Glass Nodule 

IDRI   Image Database Resource Initiative 

IIBC   Image Intensity-Based Clustering 

LIDC   Lung Image Database Consortium 

LR   Logistic Regression 

MK-M   Modified K-Means 

MLP   Multi-Layer Perceptron Neural Network 

MRI   Magnetic Resonance Imaging 

MCC   Matthews Correlation Coefficient 

NB   Naive Bayes 

PSN   Part-Sold Nodule 

PGGN   Pure Ground-Glass Nodule 

RBF   Radial Basis Function 

SSN   Sub-Sold Nodule 



 

XII 

SVM   Support Vector Machine 

TNR   True Negative Rate 

TPR   True Positive Rate 

 

 



 

XIII 

Abstract 

Precise 3D automated detection, description and classification of pulmonary nodules offer 

the potential for early diagnosis of cancer and greater efficiency in the reading of 

computerised tomography (CT) images. CT scan centres are currently experiencing high 

loads and experts shortage, especially in developing countries such as Iraq where the results 

of the current research will be used. This motivates the researchers to address these 

problems and challenges by developing automated processes for the early detection and 

efficient description of cancer cases. This research attempts to reduce workloads, enhance  

the patient throughput and improve the diagnosis performance. To achieve this goal, the 

study selects techniques for segmentation, classification, detection and implements the best 

candidates alongside a novel automated approach. Techniques for each stage in the process 

are quantitatively evaluated to select the best performance against standard data for lung 

cancer. In addition, the ideal approach is identified by comparing them against other works 

in detecting and describing pulmonary nodules. This work detects and describes the nodules 

and their characteristics in several stages: automated lung segmentation from the 

background, automated 2D and 3D clustering of vessels and nodules, applying shape and 

textures features, classification and automatic measurement of nodule characteristics. This 

work is tested on standard CT lung image data and shows promising results, matching or 

close to experts’ diagnosis in the nodules number and their features (size/volume, location) 

and in terms the accuracy and automation. It also achieved a classification accuracy of 98% 

and efficient results in measuring the nodules’ volume automatically. 
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 INTRODUCTION 

1.1 Introduction 

Radiology and medical imaging are efficient technologies used to diagnose inner body 

diseases by offering an internal insight and visual representation of organ tissues and 

recognising abnormalities even in complex cases. The threat imposed by serious diseases 

such as tumours to human health increases the importance of using medical imaging in 

diagnosis. Consequently, this technology has become a subject of interest in other fields, 

which can improve diagnosis with the development of analysis and processing techniques 

applied to medical images. Computer science and medical image processing and analysis 

are combined to extract vital information that is relative to pathological patterns (Deserno 

2011). Within these fields, systems and applications that are able to automatically and 

precisely detect tumours are developed, and they can compete with the diagnosis made by 

radiologists in terms of precision and speed when using medical images. In addition, they 

address the challenges and problems faced by CT centres resulting from the increasing 

number of lung cancer patients around the world (Salim et al., 2011) and (AL-Hashimi and 

Wang 2013). Therefore, automated detection systems are sought to be adopted by those 

centres in order to reduce the workload, improve throughput and accurate detection of 

nodules in the early stages of lung cancer without the help of specialists. These systems are 

based on the segmentation and classification of lung cancer (pulmonary nodules) in 2D and 

3D medical images (CT lung images).  

This introduction addresses the key areas of this study. Some of the relevant questions that 

this research is attempting to answer are discussed below. 

What is the main subject of this work? 

The subject of this study is concerned with the precise detection of pulmonary nodules in 

CT lung images to be conducted automatically, without human intervention. This area 

includes various approaches in the computer science and image processing fields (Eadie et 

al., 2012). The work is based on the segmentation, detection and classification of both 2D 

and 3D CT lung images to correspond to the automatic system requirements.  
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- Why is it timely to consider this now?  

Currently, lung cancer is a common disease throughout the world, especially in developing 

countries because of high rates of smoking, pollution, wars and accidents. Consequently, 

lung cancer patients’ need for healthcare has increased and generated a working pressure 

on CT centres. Requirements for greater numbers of radiologists and experts and large 

budgets have led to the lack of follow-up and early diagnosis, denying patients of higher 

chances of survival by not receiving effective treatments (Lederlin et al. 2013). 

Furthermore, the work pressure causes a rush in the reading of images by radiologists who 

may miss small nodules or complicated ones that are hidden in dense tissues. Moreover, 

the time-consuming process spent on normal cases leads to a reduction in the CT centres’ 

throughput. An automatic detection system is considered as a worthwhile and ultimate 

solution for most of these issues.  

-Who will potentially benefit from the research presented here? 

This study may benefit both patients and radiologists. For the patient, the early discovery 

of cancer raises the possibility of controlling on the disease, which can possibly help their 

recovery with appropriate treatments. Improving throughput of patients will be achieved 

via the use of a system detects the nodules automatically. 

Automated systems offer several benefits to radiologists. The precise and early detection 

of nodules by systems increase the confidence of radiologists with their diagnosis. 

Furthermore, because the systems usually reject normal cases through a previous reading 

of images before the radiologist scan, it ultimately reduces the workload of radiologists and 

CT centres. Another benefit of the automated systems to both radiologist and patient is 

detecting the complicated nodule patterns, which are typically hard to be recognised in 2D 

images which based by radiologists for diagnosis purposes. Moreover, an automatic form 

of detecting and classifying pulmonary nodules helps to avoid the need for additional 

radiologist evaluations. 

- How will the research be conducted? 

This work attempts to develop an approach that can introduce a more efficient solution as 

compared with other works in this field. The automatic system performance will be 

validated, evaluated and compared using appropriate metrics and methods.  
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1.2 Research Motivation 

Lung cancer is a fatal disease from which many people around the world suffer, particularly 

in Iraq. In an evaluation for all cancer types in Ninawa, which is the second biggest province 

in Iraq after Baghdad (the Capital of Iraq), the lung cancer accounted for around (13.6%) 

of all cancer cases, as shown in Figure 1.1. This was due to smoking, pollution and 

accidents that have risen from the significant environmental pollution during the First and 

Second Gulf Wars in 1990 and 1997 respectively (Al-Rahim, Ch, and Cm 2007) and (AL-

Hashimi and Wang 2013). The motivations behind constructing an automatic detection 

system are due to two pressing issues: the health services deterioration and diagnosis 

challenges faced by the radiologists despite the availability of the CT-scan technology and 

the impact of the increase in the number of cancer patients who visit the CT-scan centres. 

This pressure and time limit hinders precise diagnosis and patient follow-up and requires 

more experts and CT centres. Equally, losing time and effort in dealing with normal cases 

ultimately reduce the patient's throughput in CT centres. Consequently, these factors have 

led to the degradation of medical services in CT centres. As for the second issue, the 

challenges that face radiologist in diagnosis are present too, such as the variance of lung 

tissue, nodule size (smallness) and the lack of precision when considering the difficulty in 

measuring nodule features. The above problems and the significant development of CT-

scan technology have motivated researchers in computer science and image processing to 

construct automated systems (Sieren et al. 2010). These systems, which exploit CT 

technology development, are considered by radiologists in CT centres as applicable and 

reliable, based on segmentation and classification in detecting pulmonary nodules 

automatically and precisely. It offers early nodule detection that ensures proper treatment 

management of tumours by radiologists reduces workload by rejecting normal cases and 

therefore avoids the need for additional experts. Furthermore, improving the throughput of 

patients will be conducted in CT centres and consequently enhance the diagnosis 

performance notably. Moreover, to describe the nodule progress, the systems ensure a 

precise measurement for nodule characteristics, which are vital in guiding treatment 

management (resection, follow-up or treatment) of the nodule. In addition, the systems 

provide accurate detection of complicated cases and small nodules that the radiologist may 

miss through the rushed reading of images. Therefore, an automatic detection system offers 

solutions for both problems in terms of the tumour detection precision and full automation. 
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However, the requirements of the optimal systems are still not addressed and need more 

investigation (Javaid et al. 2016) and (Kuruvilla and Gunavathi 2014). 

 

 

Figure 1-1: Distribution for all Cancer, Males and Females Combined According to 

Incidence Rate Ratio, Ninawa/Iraq 2001-2010 (AL-Hashimi and Wang 2013) 

1.3 Aim and Objectives 

The main aim of this study is to propose a new system to detect the tumours in CT lung 

images automatically. Then, identifying the nodule numbers that show the disease 

spreading, determining the location and shape which provide information about tumour 

type. In addition, measuring the size that refers to nodule progress. The system has matched 

the assessments made by radiologists. This aim is achieved using techniques based on 

segmentation, classification and detection in 2D and 3D CT lung images.  

 Specifically, the research focuses on the following objectives to address the previously 

identified problems: 

1. Segmenting the lungs from background according to qualitative and quantitative 

evaluation. 
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2. Extracting computation characteristics of the nodule to reflect diagnostic information 

which determines the treatment management and the malignancy rate. 

3. Detecting the complicated cases that radiologists have missed in the diagnosis. 

4. Constructing a proposed system which corresponds to most Computed Aided Detection 

(CAD) requirements regarding false positive reduction, precise nodules number and types 

even the nodules that are difficult to be recognized by radiologists such as small and glass 

type. 

1.4 Research Questions 

In addition to the questions answered in the introduction section, this attempts to address 

the following academic questions: 

1. What are the best techniques for determining the segmentation, classification and 

detection of pulmonary nodules? 

2. Do the best techniques offer the best-integrated solution for the automated system? 

3. Do the best techniques used in the automated system accurately identify the different 

tumours in CT lung images? 

1.5 Research Contributions 

A new approach is proposed to detect and describe the pulmonary nodules in CT images 

with high accuracy and automatically based classification and detection in 2D& 3D of CT 

lung images. The novelty and specific contributions of this study are summarised as 

follows: 

• An Image Intensity-Based Clustering (IIBC) is proposed a new algorithm for 2D images 

to separate the nodules and vessels from normal tissue of lungs to concern the search space. 

•  A new 3D-DBSCAN algorithm is introduced to cluster the nodule depending on location 

(x,y) and thickness instead of intensity values that are used in the previous works. 

Consequently, measuring volume has automatically become possible by applying the 
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trapezoid method while the volume has been measured manually in traditional ways of 

radiologists.  

• The detection of complicated cases of nodules that radiologists have missed through the 

diagnosis, which indicates deep view and correct decision. 

1.6  Thesis Organization 

This thesis is organised in eight chapters, and these are summarised as follows: 

Chapter 1: 

This chapter introduces the subject and the motivation for the study, followed by the aim 

and objectives, research questions and the main contributions of the study. The chapters are 

organised in sequence with providing a summary of signification and content of the 

different chapters in the thesis. 

Chapter 2: 

This chapter is concerned with the methodology that is applied in the study; it describes the 

research framework and defines the scope and methodology objectives. 

Chapter 3: 

This chapter introduces a background of medical images and survey of previous works on 

automated analysis and nodule pattern recognition of CT-scanning images, including 

segmentation, feature extraction, classification techniques and 2D and 3D clustering. Also, 

it surveys about computer-aided detection/diagnosis systems in medical images processing 

field. It finally reviews the various methods and their characteristics, advantages and 

disadvantages concerning this work.  

Chapter 4: 

This chapter discusses data collection, image processing, and lung segmentation as a pre-

processing task, with presentation and discussion of results. The chapter also includes post- 

processing with the CT lung image-clustering algorithm in 2D and discusses the results. 
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Chapter 5: 

This chapter displays the stages of image features extraction, the classification, validation, 

accuracy rates and an evaluation of classification. 

Chapter 6: 

This chapter evaluates the performance of 3D techniques compared with 2D in describing 

nodule characteristics, measuring the nodule volume, identifying the complex case of the 

nodules and discusses the outcomes. 

Chapter 7: 

The chapter displays a complete software supported with graphical user interfaces review 

the implementation stages of work systematically to be as guide for researcher and 

radiologist during dealing with the system. 

Chapter 8:  

This chapter summarises the outcomes in conclusions for this study, reviews the 

methodology with the limitations and the future suggestions potentials of the work.  
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 RESEARCH METHODOLOGY 

2.1 Introduction 

The purpose of this work is to construct an automated system based on detecting and 

classifying CT lung tumour images with high precision levels with the aim of detecting the 

characteristics of the tumour. It seeks to meet the criteria reported by current works to 

measure system accuracy in detecting tumours (Valente et al. 2016). This system aims to 

deliver an automated solution to improve diagnosis performance.  

2.2 The scope of the Research 

This work is concerned initially with the automated detection of lung tumours (pulmonary 

nodules) with high levels of precision, based on classification and detection using 2D&3D 

CT images. It mainly focuses on the standard dataset of lung cancer patients and, in 

particular, axial images. The images were diagnosed and reported by four experts in two 

reports that accompany the dataset obtained from the public Lung Image Database 

Consortium (LIDC) and Image Database Resource Initiative (IDRI) (Samuel et al., 2011) 

and (Clark et al. 2013). In the first report, nodules are numbered and classified by size 

discriminating, between those greater and smaller than 3mm in diameter for each patient. 

In the latter, the report was updated only to include information about the nodules that are 

greater than 3mm.The case report consists of the patient ID and the number, volume, 

diameter, location and slice number for each nodule in the updated file. One of the targets 

of this work is to compare and match radiologists’ assessments and the automatic detection 

system output, at least in terms of nodule numbers and location. In addition, the nodule 

characteristics detection accuracy is an interesting point in the diagnosis because they play 

a vital role in identifying tumour progress. In recent years, computer-aided 

detection/diagnosis systems (CADs) have made significant improvements in medical 

image processing. CADs have become the focus of many researchers in this field, where 

the objectives are: to increase detection precision, false positive reduction, full automation 

and speed. However, all efforts to build such systems could not address all CAD 

requirements and achieving a level of precision required in the automatic detection of 

tumours. The work is aimed at constructing a system based on the detection and 

classification of 2D and 3D CT images in an automated manner. In addition, it includes an 

approach that delivers precision levels in detecting and exactly matching or being close to 
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radiologist assessment in the nodules number and location. This modified approach will be 

evaluated against previous works’ findings for a final comparison. The work is based on 

understanding the characteristics of the datasets and automatic detection features required 

to construct an optimal system. Therefore, the research scope includes a definition of tools 

and techniques that efficiently detect tumour patterns with the intention to form a 

framework based on automatic detection and classification. Moreover, the research 

techniques used in this study will be compared with other approaches reported in the 

literature. 

2.3 Research Methodology 

Many image-processing tools can be applied in this research to solve the problem-domain-

specific challenges described in the literature review of other works. The definitions of 

process/method/algorithm and framework are known within the field of image processing 

will be reviewed, and this will include problem analysis, process implementation and 

automation (Deserno 2011), (Ramesh et al., 2004), (Liao 2005) and (Ayash 2014). 

Some interesting points in this work are the overlap between the approaches based on image 

processing techniques and the development in the medical modality imaging, as the initial 

conceptual implementation draws from both. This research aims at creating and evaluating 

a novel approach towards high precision levels in tumour detection. Furthermore, it 

comprehensively addresses CADs requirements necessary for constructing an optimal 

detection system. This new approach presents an automatic system to improve diagnostic 

performance by offering higher precision levels in the detection and description of nodules. 

Among the objectives of the research are improvements in diagnosis turnaround times. The 

objectives provide solutions to problems reported in previously published work (Van 

Rikxoort and Van Ginneken 2013). The improvements produced in this work will 

frequently be assessed and evaluated through quantitative analysis. 

The starting point for this work is to draw from a current understanding of medical image 

diagnosis problems, CADs requirements, datasets and the impact of detection precision on 

diagnostic performance. The approaches will be detailed in the literature review, which sets 

out state of the art (Senthil Kumar et al., 2017), (Oseas et al. 2014) and (Javaid et al. 2016) 

regarding nodule detection. As a part of the literature review, there is a significant need for 

the investigation, study and understanding of the nature of the datasets to identify the tools 
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and techniques that need to be developed. Also, an identifying group of approaches based 

on the same dataset of this study in order to compare the new approach performance. Many 

published articles present some analysis of tumour detection systems in terms of accuracy 

levels (Valente et al. 2016). However, these publications did not offer ideal solutions to 

cancer detection problems, and neither do they fully address the detection system 

requirements. To summarise, a precise and full automated framework, which supports the 

research of an integrated system, is absent in these publications. The automated framework 

of nodule detection is constructed and guided by the literature review in this work. Also, it 

adopts existing principles and includes efficient evaluation metrics. 

Continuous development of selected and potential techniques within an evaluated 

framework is established through objective analysis to find the best technique. The 

improvement of the approach is compared against current research based on the same 

datasets. The accuracy of the detection system is assessed at each stage to determine the 

progress in addressing the CADs requirements. This processing of development in 

approach intends to determine the matching of approach with a goal. However, the ultimate 

aim of this research is to develop an approach that will be comparable to current methods, 

while allowing the possibility of future enhancement. To attain this, evaluation of the 

technique must be in comparison to the existing approaches in terms of available metrics 

required for computer-aided detection/diagnosis systems, in applications mapped to the 

problem domain.  

Figure 2.1 summarises the research methodology adopted in this research. The research 

starts with understanding the problem domain and defining candidate solutions arising from 

state of the art and the literature review to establish the best solutions for the detection and 

classification. In this framework, the research questions and objectives are intersected to be 

addressed in the methodology structure of this study. The best solutions are finally 

evaluated and validated. Research questions1, 2 and 3 are answered to achieve the aim. The 

methodology will be reviewed through a discussion at the end of the thesis. The figure also 

shows how the aim was accomplished according to the methodology, to develop an 

automatic detection system of lung tumours with a high level of precision and accuracy.
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Figure 2-1: Research Methodology; Main Stages 
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The research is focused on the following methodology objectives to deal with the 

previously identified problems: 

1. A comprehensive review of the literature on lung cancer detection systems, to define 

the current state of the art in the field and current approaches for automating detection 

and classification. 

2. Defining the characteristics of the problem and challenges that face the diagnosis 

performance.  

3. Identifying requirements related to the workflow of an automatic tumour detection 

system.  

4. Identifying the required precision and accuracy levels, which will be proposed for the 

evaluation framework. 

5. Designing and implementing an application in an automatic form, based on detection 

and classification techniques. 

6. Evaluating the application to select the appropriate method for processing.  

7. Defining an evaluation framework to achieve the precision level that is required for the 

tumour detection system.  

8. Selecting the evaluated proposed framework that offers high accuracy in the results.  

9. Defining the appropriate criteria for evaluating the novel approach. 

10. Determining whether the approaches to detect/count/measure match expert 

assessment.  

11. Assessing the novel technique for accuracy levels in counting, size and location by 

measuring performance using objective parameters.  
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2.4  Summary 

This chapter has outlined the research methodology for this study. The structure of the 

research is defined in relation to the aims, with a map of the objectives and research 

questions defined within the workflow shown in Figure 2.1. 
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 LITERATURE REVIEW AND 

BACKGROUND 

3.1 Introduction  

This chapter provides background to the work presented in this thesis and the state of the 

art review of related work based on a thorough literature review. Furthermore, the 

limitations and major issues of previous works are identified. The survey includes the 

methodologies, processes and techniques used in segmenting, classifying and detecting 

pulmonary nodules in the CT-scan image of the lung. In addition, the requirements of 

automated Computer Aided Detection (CADs) systems are identified. These 

methodologies concentrate on the analysis and pattern-recognition of the nodule objects 

in 2D &3D images to give a detailed description for a nodule. These methodologies offer 

approaches for the evaluation and validation of the techniques and tasks that are adopted 

in this field such as clustering, classification and segmentation.  

3.2 Introduction to Medical Imaging 

A medical image is one of the image applications, which includes development 

techniques and based in the medical field. Medical imaging displays the internal structure 

of the human body and the various pathology patterns in an efficient non-aggressive 

manner to improve the diagnosis. Moreover, these tools are considered harmless 

techniques, can be used to identify the pathology patterns within the body and support 

clinicians by providing an internal vision of the organs and vessels, tumours and broken 

bones (Dzung et al., 1998). In light of the rapid development of medical image 

technologies, the competition between scientists and researchers has become a productive 

path to processing and analysing the medical images, producing promising results for 

serious diseases that cannot be recognised precisely by the radiologists. The CT-scan 

image is the main tool of different works relevant to the detection of various tumours such 

as lung, liver and brain tumours.  

3.3 Lung Anatomy on CT-Scan 

The lungs are comprised within the chest, and they are wrapped into two pleural 

membranes close to the thorax walls. Each lung contains a tree of venous vessels, and 
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where arteries enter the lung, their diameter is about to 30 mm. The vessels’ diameter 

decreases when the veins and arteries become branched. The lungs include compartments 

called lobes; the left lung consists of two lobes, while the right lung comprises three.  

These lobes are divided by fissures, which represent thin sheets in the lung tissue. The 

CT-lung image is represented in three planes that are sagittal, coronal and axial. 

Figure 3-1 shows CT-lung slices with different planes, where a coronal slice divides the 

body to the frontal and posterior, while the sagittal slice cuts the body to the right and 

left, and the axial slice is in the horizontal plane of the body. 

 

Figure 3-1: Images of CT Lung Slices: (a) CT Planes Passing Through the Body; 

(b) Coronal CT Slice of Lung; (c) Sagittal CT Slice of Lung; (d) Axial CT Slice of 

Lung (Sluimer 2005) 

  

3.4 CT and MRI-Scans of Lung 

In general, improving patient care is the main objective of using radiology imaging 

techniques using different modalities, the most popular ones being the CT Computed 

Tomography (CT) Image and the Magnetic Resonance Imaging (MRI). The distinguished 
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performance of these modalities in pulmonary imaging is due to the different detection 

methods used for addressing specific challenges in radiology imaging and the output 

image characteristics. Since its introduction in the 1970s, the CT provides enormous 

insight into the structural and anatomical aspects of different lung diseases, as well as 

ventilation, perfusion and other mechanisms. One of the most encouraging factors of 

using a CT-scan is its availability with a high spatial resolution. In terms of time this 

technique can be considered as a useful tool to detect diseases in a very short time (~ 3 

sec), and this is a crucial point for the patients since most of them cannot hold their breath 

for longer than 3 sec during the examination. 

Furthermore, the high resolution of the CT-scan images is one of the successes of this 

technology. Moreover, the accurate detection of the nodules and characterisation of 

anatomic changes in the chest has been obtained using these tools. When compared to 

MRI, the CT-scan could be considered more accurate, because the CT density changes 

when the lung expands to provide more precise measurements of the lung volumes. In 

contrast, MRI imaging has problems due to its low proton density  (Sieren et al. 2010) 

and (Coxson et al., 2012).  

3.5 Pulmonary Nodule Types  

The tumours types in the lung are usually classified according to their characteristics 

appear in the CT image. Pulmonary nodules can be single or multiple and circular 

structures which exhibit various diameters about 3 to 30 cm and are surrounded by lung 

airways (Z. Li et al. 2015). Most of the studies combined the features of the CT image to 

describe the shape, internal structures and size of the nodules. The boundary of nodules 

could be lobulated, speculated or smooth and usually appear as concave margins, 

spherical and polygonal shapes. The difficulties in the nodule segmentation are due to a) 

the nodule being attached to a vasculature or other entities such as the fissures, pleura or 

abnormalities; b) the nodule being too small; c) the nodule being non-solid or part-solid, 

in this case, it is too difficult to recognise the boundary, and d) the data has a high level 

of noise. Therefore, the features that is relative to a nodule appearance represent 

challenges for segmentation algorithms in the medical image processing. Figure 3-2 

shows the nodule types based on the density level of nodules in their classifications. 

Table 3-1 explains the nodules’ characteristics in different aspects such as their shape, 
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density, position, size and their effects on lung details that are displayed as vascular 

structure and vessels. Figure 3-3 displays the axial slices of CT lung images with nodule 

types (solid, part-solid, and pure ground glass) (Sluimer 2005). 

 

 

 

 

 

 

 

Figure 3-2: Pulmonary Nodules Types’ Classification (Sluimer 2005) 

 

Table 3-1: Description and Definition Regarding Pulmonary Nodule Types 

Pulmonary Nodule 

 

 

 

Sub-Solid Nodule (SSN)  

 Part-Solid Nodule (PSN)  

    

Pure Ground-Glass Nodule (PGGN) 

(synonymous with solid component)  

 

Ground Glass 

Focal, rounded opacity <=3 cm 

diameter, mostly surrounded by aerated 

lung, including contact with pleura, but 

without potentially-related abnormalities 

in the thorax 

 

A part-solid or PGGN 

A focal opacity that has both solid and 

ground-glass component <=3 cm 

diameter 

A focal ground-glass opacity <=3 cm 

diameter that does not obscure the 

underlying broncho-vascular structure 

Opacification that is greater than that of 

the background, but through which the 

underlying vascular structure is visible 

 

Pulmonary Nodule 

Solid Sub-Solid Nodule (SSN) 

Part-Solid Nodule (PSN) Pure Ground Glass Nodule (PGGN) 
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Figure 3-3 The Axial Image Slices of Nodule Types: (a) Solid Nodule; (b) Part-

Solid Nodule; (c) Pure Ground Glass Nodule (Sluimer 2005) 

3.6 Image Pre-Processing Techniques 

Image pre-processing is a significant stage in a medical image processing system. 

Typically, it is responsible for preparing, smoothing and enhancing the image in order to 

eliminate the effects of deformation and corruption that may contaminate the vision of 

the medical image through the acquisition or transmission (Wanget al., 2012) and 

(Sharma and Anand 2013). This stage includes several steps such as removing noise, 

image adjustment and the reformation of the image for its conversion to greyscale 

(intensity values). 
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3.7 Image Conversion 

This process involves saving the CT lung image in a DICOM format that is the standard 

for storing, printing, handling, and transmitting the medical imaging information. 

DICOM files can be passed through two entities, which can receive the patient data and 

images in DICOM format. DICOM conformance enables the equipment to work with 

efficient electronic health record systems (Mustra et al., 2008) and (Blume and 

Hemminger 1997). Subsequently, there is a series of procedures that are required during 

the image processing process such as converting the CT lung scanning image to greyscale 

and binary values according to the processing requirements. Figure 3-4 shows the axial 

slice of a CT lung image in the DICOM format with dimensions of 512×512 pixels.  

 

 

Figure 3-4: CT Lung Slice Saved in DICOM Format with Dimensions of 512×512 

Pixels 

3.8 Image Enhancement 

Image enhancement techniques are vastly employed to refine and improve the visibility 

of the internal structures and the region of interest in medical images. Image enhancement 

supports the operators in recognising the details inside medical images, which could be 

invisible and disorganised after the acquisition of the original image (Pratt 2001). Image 

enhancement is essentially about improving the perception or interpretability of the 

https://en.wikipedia.org/wiki/Data_transmission
https://en.wikipedia.org/wiki/Medical_imaging
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information in images for an observer and preparing suitable inputs for automatic image 

processing systems. The principal target of image enhancement seeks to modify image 

attributes in order to be appropriate for specific processing or expert evaluation of the 

image. Also, image enhancement is important for the tumour detection systems to avoid 

the noise problems that hinder recognising the pathologic patterns. This will present a 

great amount of subjectivity into the selection of image enhancement schemes that 

enhances the image without damaging it. There exist two categories of image 

enhancement methods: spatial domain methods and frequency domain methods. The first 

group (spatial domain methods) directly deals with the pixel values of images to attain 

the desired enhancement. In the frequency domain methods, the Fourier Transform is 

computed for the initial transfer of the image to the frequency domain, where the 

enhancement operations are achieved, and then the inverse of the Fourier Transform is 

completed to obtain the resultant image. All the enhancement operations are 

accomplished in order to increase and modify the image’s contrast, brightness or the grey 

levels’ distribution. As a consequence, the intensities of the pixel value of the output 

image will be modified according to the transformation function applied through the input 

values (El-Shenawy, 2013; (Burger and Burge 2009)  

3.9 Lung Segmentation Techniques 

The main goal of the detection systems in the lung segmentation is to reduce the search 

area of the nodule as a pre-processing phase in the computer-aided detection systems 

(CADs). However, lungs-segmentation is a challenging step for the detection systems 

because of the similar structures within lung region such as veins, bronchi and arteries; 

in addition, the use of different devices and protocols in the medical imaging is equally 

challenging. Also, the varying contrasts and intensive, the high computational complexity 

for some methods, the difficulty in keeping the lung information and characteristics that 

are particularly relevant to diseases are factors that hinder the segmentation results 

improvement. Consequently, finding accurate, efficient and robust methods in the entire 

lung segmentation have motivated and encouraged researchers in this area. Therefore, 

over the last decade, automatic lung segmentation techniques have been developed in the 

medical imaging field to improve performance (Fu and Mui 1981). In this area, the 

relevant methods in the lung segmentation can be classified in four groups (Maintz 2005): 

techniques based on a threshold(Van Rikxoort and Van Ginneken 2013), deformable 



Chapter Three   

 

21 

shape and models, edge-based models with some techniques, and clustering methods (Pal 

and Pal 1993). In this section, some of the related works of this study are briefly presented. 

 Threshold-Based Lung Segmentation 

In these methods, the segmentation is based on the threshold of the histogram properties, 

which could be the simplest technique and suitable for brightness uniform regions or 

objects within images. This technique is performed to segment the foreground and 

background. However, this method does not work with multiple grey levels of image 

regions. To process this limitation, the multi-threshold technique is applied to achieve 

good segmentation results. Figure 3-5 shows the response of the image histogram to two 

thresholds dividing the image into three regions within greyscale values.  

 

 

 

 

 

 

Figure 3-5: Image Histogram of Two Thresholds, Region 1 belongs (0–50), Region 

2 belongs (50–150), and Region 3 belongs (150–255) of Grey Scale Values 

These techniques have been applied in the lung segmentation of the background. Previous 

works of a group of researchers have focused on the threshold techniques to segment the 

lungs in CT images. The technique of Van Rikxoort et al.(2009) depends on the image 

pixels intensity that is evaluated by a quantitative criterion of radiodensity which is called 

Hounsfield unit (HU) and was developed by Newbold in 1972. The grey scale range 

represents intensity values of pixels. The range from 1000-400 HU has been applied in 

many types of research to segment the lung regions. However, this fixed range is not 

efficient for the separation of the lungs object from all CT scan images because of the 

image contrast variety. Therefore, Tseng and Huang (2009) adopted an updated threshold 

with specific value iteratively increasing for different images until reaching the 

Threshold 1 Threshold 2 
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satisfactory criteria in the lungs segmentation works. To improve image contrast, Zhou et 

al.(2016) applied an enhanced threshold using stretch techniques to the image histogram 

for intensities distribution unified between areas with high and low Hounsfield values. In 

addition, Wang et al.(2009) employed experimental threshold value selected from -

400HU to -200HU range to display an initial prediction of normal and abnormal lung 

regions. However, threshold techniques have some disadvantages in lung segmentation. 

The density of CT lung is affected by factors such as air volume, organ tissue volume, the 

degree of inspiration, imaging devices protocol and physical material characteristics of 

the lung parenchyma.  

 Deformable Models -Based Lung Segmentation 

The essential approach in this segmentation is that the organs’ structure has a geometric 

form to model the different shapes of organs. The probabilistic models of image deform 

according to parameters represent texture features for an estimated model that is used for 

segmentation. Model-based techniques of segmentation include the active appearance 

model and shape, level-set based and deformable models. However, the disadvantages of 

these methods are that they require manual interaction to locate an initial model and select 

appropriate parameters and have poor detection of concave boundaries using standard 

deformable models (Pham et al., 2000). The deformable models are other techniques that 

proved effective in the medical images segmentation by discovering the salient edges of 

images precisely. Recently, (Rebouças Filho et al. 2013) and (Rebouc et al. 2015) used a 

crisp active contour to segment a whole lung from CT lung in two separate works. The 

first research reduces the curve energies, drawn inside the region of interest, to be pushed 

towards the object edges by successive iterations. The second research is based on the 

topology curve information for matching between the curve points and the contour 

expansion towards the lung boundary. To guide the active contour,(Annangi et al. 2010) 

employed an active contour depending on a suitable contrast of lung edge and extracted 

some features using canny edge applied upon the image histogram. In order to handle the 

local minima problems attached to active contour models in the segmentation, the region 

and shape terms are employed with an active contour in this method. However, the 

variance contrast and local minima are still a challenge for active contour models. 
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 Edge Detection -Based Lung Segmentation 

An edge-based segmentation is a common method to detect the edges and boundaries, 

which are split into distinct regions. The edge detection technique is able to detect and 

recognise the differences and discontinuities in grey level, colour, etc., which often 

represent boundaries among objects. The gradient (derivative) function is based on the 

edge detecting operators and is available in, for example, the Prewitt, Sobel, Roberts 

(1st derivative type), Laplacian (2nd derivative type), Canny, Marr-Hilclrath edge detector. 

However, these methods are affected by the weak edges and fake edges or the presence 

of noise that have an unsatisfactory impact on the segmentation results. For lung 

segmentation, edge detection algorithms are one of the techniques that focus on lungs 

boundaries information for accurate segmentation. These algorithms depend on some 

operators for the lung separation. In the work of (Saad and Hamid 2014), some filters 

such as Sobel, Prewitt, Laplacian and Canny edge filter with morphological techniques 

to segment lung regions in CT images were used. The results were unsatisfactory because 

of the effect of image noise on high pass filter performance. To accurately segment lung 

borders, Talakoub et al. (2007) proposed an algorithm which is based on edge detection; 

it uses wavelet analysis that stands a noise effect and discriminates the intensity of various 

types of edges. However, these algorithms are more interested in lung border detection 

than lung tissue and usually fail to be implemented for images with weak segment 

boundaries. 

 Clustering -Based Lung Segmentation 

Similarly, the methods that are based on clustering included many helpful features for 

segmenting. The principle of homogeneity is based on the region properties where pixels 

that have similar features are clustered as a homogenous region. The measure for absolute 

homogeneity is the grey level of points (Sonka et al., 1999), and this measure can be 

demonstrated by the following conditions: 

𝑅1 ∪ 𝑅2 ∪ 𝑅3 … .∪ 𝑅𝑖 = 𝐼 

Where R1, R2, R3, … Ri are the regions within the image I, and further, 
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 𝑅1 ∩ 𝑅2 ∩ 𝑅3 … .∩ 𝑅𝑖 = 0 

Further classification of region-based segmentation is divided into three categories that 

are derived from the region growing principle and these are, summarised as follows: 

a. Region Merging 

The process determines the initial seed points; the segmentation results’ success is 

due to the selection of seed points. By the criterion of merging, the iterative merging 

of the neighbouring pixels is performed for region growth. This process is stopped 

when each pixel is assigned to its particular region according to the merging 

criterion. 

b. Region Separating 

The principle of this process is the inverse of the region merging and iteratively splits the 

whole image until no further separation of a region is possible. 

c. Separating and Merging  

This is the integration of two processes (separation and merging) using their merits. In 

this method, the representation of the data is as quad-quadrant tree splits image segments 

into four quadrants as long as the original segment reflects non-uniform features. The 

uniformity of the segment (regions) ensures the merging of the four neighbouring squares. 

This splitting and merging process is continued until there are no new results for both the 

split and merge. 

As part of the mentioned techniques above, the K-means clustering is the one that is based 

on a region-based segmentation and the clusters’ pixels having similar grey levels. It can 

separate the object with most of the characteristics of the original image and has efficient 

clustering because it is able to shift the cluster centre of data to be in the right position 

among two or more clusters. 

The clustering conditions are adopted by various approaches such as the fuzzy clustering 

that applied to the lung segmentation broadly (Wang et al., 1996),(Gevers and Smeulders 

1997) and (Ney 1992). The methods of fuzzy clustering are considered a soft 

segmentation which is an ideal option to allow the region or clusters to be overlapped, 
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where the pixels can possess multiple memberships with different degrees of membership 

parameter in the various regions. In hard segmentation, the overlapping is not allowed for 

the separated region, and the pixels are assessed in the region according to their maximum 

membership value. Thus, soft segmentation holds more information of the original image 

through allowing the pixels to retain membership in several regions. 

For hard segmentation, the pixel has a binary membership defined as in Eq. 3-1: 

𝑚𝑘.𝑗 = {
1
−
0

 
𝑖𝑓 𝑗 ∈ 𝑅𝑘

−
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

            3-1

    

Where j is a jth pixel belonging to the image (I), and mk,j is the membership function of 

jth pixel in region Rk.  

On the other hand, in the soft segmentation, the pixel has several memberships in various 

regions, and the membership function must implement the following constraints: 

0 ≤ 𝑚𝑘.𝑗 1 for all k, j and                                                     

∑ 𝑚𝑘.𝑗 = 1 ∀𝑗𝑁
𝑘=1               3-2 

Here, N = the total number of separation regions in the image (I). By the value of 

membership of pixel j in Rk (kth region), one may measure how robustly the pixel belongs 

to the region; the more robust membership value is the member of region Rk. At the edge 

region, the pixel may have a diverse membership in several regions. 

Fuzzy clustering is an efficient method regarding soft segmentation and is widely based 

on an unsupervised algorithm in the segmentation of CT images. One of these methods is 

the fuzzy c-means. 

 Fuzzy C-Means Segmentation 

The partition of imaging data into various cluster regions within an image space is based 

on the similar intensity of the image values. Medical images usually introduce intensity 

overlapping of grey-scale for different tissues, and this method is found to be more 

suitable for medical image processing. Fuzzy c-means can be defined as follows: 
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Let 𝑋 = {𝑥1. … . 𝑥𝑐} represent a data set. Assume 𝑐 represents a positive integer that 

should be greater than one. A segmentation of 𝑋 𝑖𝑛𝑡𝑜 𝑐 clusters can be defined by 

mutually disassembled sets 𝑋1 . … . 𝑋𝑐 such that 𝑋1 ∪ … ∪ 𝑋𝑐 = 𝑋 or are equivalent to the 

indicator functions 𝜇1 . … . 𝜇𝑐  𝑠𝑢𝑐ℎ 𝑎𝑠 𝜇𝑖(𝑥) = 1 if 𝑥 is in 𝑋𝑖  and 𝜇𝑖(𝑥) =0 if 𝑥 is not in 

𝑋𝑖  for all 𝑖 = 1. … . 𝑐. All these called cluster in 𝑋  into 𝑐 clusters 𝑋1 . … . 𝑋𝑐, which is 

known as a hard c-partition{𝜇1 . … . 𝜇𝑐 }. The common method is k-mean (or called hard 

c-mean) and is an iteration method to reduce the objective function 𝐽𝐻𝐶𝑀 and is defined 

as: 

JHCM(μ. a) = ∑ ∑ μi(χj)
n
j=1

c
i=1 ‖χj − a‖

2
                                                                3-3 

Here, a1,…, ac are usually the c cluster centres. The fuzzy expansion allows 𝜇𝑖(𝑥) to 

become a membership functions in fuzzy sets 𝜇𝑖  on  X  having values in the interval [0, 

1] such that ∑ 𝜇𝑖(𝑥)𝑐
𝑖−1 = 1 for all 𝑥 in X. In this state, {𝜇1 . … . 𝜇𝑐 } is a so-called fuzzy c-

partition of X. Consequently, the objective function JFCM of the fuzzy c-mean (FCM) 

will become: 

𝐽𝐹𝐶𝑀(𝜇. 𝑎) = ∑ ∑ 𝜇𝑖
𝑚(𝜒𝑗)𝑛

𝑗=1
𝑐
𝑖=1                                                                3-4 

Here, {𝜇1 . … . 𝜇𝑐 } is a fuzzy c-partition and m is a constant number greater than one to 

display the degree of fuzziness. The FCM clustering method is a repetition by the 

necessary conditions to minimise 𝐽𝐹𝐶𝑀 . 

The separated segments of this image have been obtained using the fuzzy-c-means 

algorithm and are illustrated in Figure 3-6, which shows a segmented image by fast fuzzy 

c-means and the pseudo colour covers the individual segments representing each one the 

belonging degrees of region’s pixels. 

 

 

   

A B C D E 

Figure 3-6 Individual Segments of Lung CT Image: (A) Original, (B) Segmented 

Image in Pseudocolour, (C–E) Individual Segments 
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However, the original fuzzy c-means is modified and enhanced to fast fuzzy c-means in 

later research to show more robustness against the outlier, and reduce its sensitivity to 

noise and the segmentation process accelerating in the fuzzy c-means algorithm. The grey 

information and local spatial play a vital role in the fuzzy c-means clustering acceleration 

which is based on the number of grey-levels instead of an image size that needs longer 

segmentation time; therefore, the image segmentation time is extensively consumed 

according to the image size (Biniaz et al., 2012). 

Some of the researchers, (Sivakumar and Chandrasekar 2012) and (Javed et al. 2013), 

have considered the weight of fuzzy and some features as a standard of lungs image 

segmentation. (Sivakumar and Chandrasekar 2012) proposed a segmentation approach 

for CT lung images using Fuzzy C-Means (FCM) and Weighted Fuzzy C-Means 

(WFCM) algorithms to validate and evaluate the segmentation performed by the two 

approaches. Meanwhile, the lungs CT scan images are enhanced by a Median filter, which 

is used to remove the noise. Haralick features are then calculated from the co-occurrence 

matrices as input data to the FCM and WFCM algorithms. (Javed et al. 2013)suggested a 

method of segmentation of the CT lung image using fuzzy logic where the weights to 

pixels are assigned by fuzzy logic. The pixels have higher weights if its entropy and local 

variance are less, while lower weights are assigned to pixels having a high entropy and 

local variance. 

3.10 Nodules Segmentation Techniques 

 Pulmonary nodules detection amongst lung pathologies is considered as one of the 

challenges that face researchers in this field. The challenge is not only due to the nodule 

patterns variation in the CT lung image but also a result of the difference in the intensities, 

contrast, lung tissue and the recognition difficulty of the connected vessels and nodules 

attached to the lung wall. A huge number of studies adopted diverse techniques and 

involved various solutions for these problems. They will be explained in detail below. 

 Nodule Segmentation Based on Clustering 

 The clustering techniques are broadly applied in the nodules segmentation. (Nie et al. 

2012) proposed a weighted kernel of fuzzy c-means that employed the information of 

vessels and class as weights for semi-solid nodules segmentation in CT lung images. 
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Manual detection of the nodule is defined in the centre slice where the possible nodule 

pixels are clustered by improved weighed kernel fuzzy c-means (IWKFCM) from the 

centre slice and its attached slices. The method validated 36 nodules and achieved 

accurate results. In their investigation, (Jinke Wang and Cheng 2015) have employed an 

adaptive fuzzy C-Means (AFCM) technique to improve the training phase of nodules. In 

this technique, Mahalanobis distance is implemented for the classification of the 

candidate test nodules that are identified by a proper threshold. This method was validated 

through 35 thoracic CT images, and a 2.8 false-positive rate was obtained from the 

experiment per scan. Furthermore, (K. Chen et al. 2013) proposed a curvature coefficient 

based on the fuzzy clustering algorithm for identifying nodule surrounding tissues. The 

fuzzy clustering obtains edge information as an initial segmentation and then reduces the 

false-positive object by filtering. This algorithm demonstrated its results with juxta-

vascular and GGO (ground glass opacity) nodules. 

 Nodule Segmentation Based on Active Models 

The most efficient methods used in the nodule segmentation are active models. In their 

work of (Keshani et al. 2010) used the active contour in the lung segmentation to transfer 

non-isolated nodule linked to chest wall apart. Then, the active contour extracts the 

contours of the region of interest (ROI) by applying 2D stochastic features. In another 

work, (Keshani et al. 2013), these features with 3D anatomical features are used by a 

support vector machine to detect the nodule. The active contour with mask techniques is 

adopted for the nodule contour extraction that transfers non-isolated nodules into isolated 

ones. The performance of the first method was 3 false positive (FP) per scan and 89% 

detector rate for the second method. (K. Zhou and Weng 2015) suggested a snake model 

to segment suspicious nodule edges in the lung tissue using pathological features 

extracted from nodules to decrease interference and indicate suspect nodules in CT scans. 

Furthermore, (Farag et al. 2012) based on template matching formulation of the active 

appearance (AAM), measured a similarity degree between the input image and an AAM 

template. This template deals well with various scans and the location of nodules because 

of the template possession of the sufficient rotation parameters have been applied for a 

different radiology imaging.  
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 Nodules Segmentation Based on Feature Extraction and 

Classification  

 Features extraction represents a crucial stage in multimedia processing. To extract 

optimal features that present the fundamental content of the images as much as possible, 

this task is still a challenging problem for researchers in the computer vision field. The 

attention focused on a feature extraction provides a comprehensive study for images 

feature representation methods. The extracted features are various and describe different 

aspects of the image such as shape features as given in figure 3-7, texture, statistical, 

structural and spectral features. 

i. Shape Features 

It is acknowledged that shape description is an important scheme for human beings in 

order to recognise and identify the real-world things and objects by some geometrical 

forms such as straight lines in various directions. The classification of shape-featured 

extraction methods can often be divided into two classes (D. Zhang and Lu 2004); region 

and contour-based methods. The first measures the shape features for an entire region of 

the shape, while the second method calculates features specifically from the boundary of 

the shape. Both techniques are performed on an image concerning the spatial relationship 

presence, which can report the object location and relationships among objects in an 

image(Yang et al., 2005) and (Ping et al., 2013). 
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Figure 3-7: An Overview of Shape Description Techniques (Ping et al., 2013). 
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ii. Textural Features 

The viewpoint of image segmentation and classification is that the textural features are 

important tools that perform image segmentation and classification or both. The texture 

can be described as something containing mutually attached elements reflecting 

smoothness or coarseness. This will be according to the spatial relationship of the pixels 

in the texture structure or the pixel intensity properties of the texture tone. The goal of the 

texture-based segmentation scheme is subdividing the image into segments having 

various textural features while the classification aims to sort the prior segmented regions 

by other segmentation methods. The texture features-based approaches are divided into 

the structural, the statistical approach and the spectral approach as follows: 

iii. Statistical Methods 

The spatial distribution of grey-level pixel values establishes statistical methods for 

extracting texture features that apply to different tasks in the computer vision. The texture 

features of an image are calculated statistically depending on the intensity of the 

positions’ distribution. These methods produce a wide range of textural features that 

include first order, second order and then higher order statistics. The techniques that are 

related to the statistical features’ orders are a histogram of image intensity and 

autocorrelation features representing the second order, while the higher features’ order is 

correlations as superior statistics than the second order. 

iv. Structural Methods 

In the case of the structural approach, the texture is described as producing a complete 

pattern based on placement rules that are acquired by modelling the geometric relation 

between the textures’ primitives or studying their statistical features. Individual pixels, 

lines segments or an object with similar grey-levels represent the texture primitives to 

organise the texture spatially. The local binary pattern is a common technique to extract 

structural features. 

v. Spectral Methods 

The textures, in this case, are defined through the spatial domain based on the filtering 

technique in deriving the textures’ features. In the frequency domain, gradient filters with 
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adjusted frequencies perform the filtering for extracting lines, edges, and isolated dots, 

etc. Following this notion, the filter banks are applied as mathematical models to convolve 

the input image in order to extract the spectral features. 

There are methods found for extracting and classifying the previous approaches such as 

textural features derived from the co-occurrence matrix of image values and defined by 

the statistical description of the image greyscale (Argenti et al., 1990) and (Haralick, 

Shanmugam, and others 1973). The fractal texture description method, the run of the 

length of the grey level method (Chaudhuri and Sarkar 1995), the syntactic method and 

the Fourier filter technique are common to generate robust descriptors. Comparing the 

above-mentioned three approaches, the spectral frequency-based methods are less 

efficient. While the statistical methods are particularly useful for random patterns/textures 

and for complex patterns, the syntactic or structural methods still give better results. 

Texture-based methods are the best for the segmentation of medical images when 

compared to the segmentation of medical images using simple grey level-based methods 

(Koss et al. 1999). 

 Features Selection and Dimension Reduction Techniques  

In view of other researches, the features reduction is an essential step has been applied 

before the classification stage in the machine learning field(Saeys, Inza, and Larrañaga 

2007). The reduction of features dimensionality may facilitate a complicated 

understanding of questions about the research area and interest and reduce the cost of 

computations through the training and testing the dataset. The features reduction can be 

divided into supervised and unsupervised techniques. Both techniques of reducing the 

features have been divided into three categories are wrapper, filter and embedded 

methods. First, wrapper techniques based on objective functions belong to the regression 

machine learning model(Guyon and Elisseeff 2003). Second, filter techniques involve t-

test, Pearson correlation coefficient and ANOVA (Ying Wang et al. 2010) and (C. Chen 

2015). Final, the embedded methods are applied to choose relevant features through 

forcing penalties onto a machine learning model, thus submitting a subset of relevant 

features(Tibshirani 2011).  
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 Pattern Recognition Techniques 

The classification presents a process to isolate the objects in images into sorts to support 

and automate the diagnosis in medical imaging and several other applications, such as 

speech recognition and robotics(G. Dougherty 2009). Also, it assigns image classes based 

on features’ space partitioning which are extracted from an image with known labels for 

each class. In addition, it contains two phases of the process: the first phase is the training 

phase or learning phase implemented on a known number of data classes that are usually 

derived from the application problem specification. In the second phase, the classifier is 

applied for classifying the test data determined in the dataset, which is called the “test 

phase” (Larose 2005) and (Han et al., 2011). 

The classification techniques are defined in two groups: the structural approach and 

statistical approach. The statistical approach consists of probability computations of the 

class and measurement of the standard deviation and mean to reflect the ideal class 

representation in data such as support vector machine (SVM), linear discriminant analysis 

(LDA), and K-nearest neighbour (KNN) (Dougherty, 2009; Han et al, 2011.; Li et al., 

2006). The intelligent approach exhibits various learning capabilities including the use of 

AI techniques in the classification process such as ANN (Hagan et al. 1996). This 

approach is predominantly based on some features representing the classes and provides 

prior knowledge to support the classification process. Furthermore, features extraction is 

a complicated operation that requires pre-processing such as relevance analysis, which 

removes irrelevant features or redundant ones that do not contribute to the classification 

process and thus reduces the cost of the computations. Moreover, a transformation of 

extraction features through normalisation to a new form suitable for the classification 

avoids the features with large ranges in order to outperform the features with small ranges. 

The models that used for classification are explained their basic work principles. 

1- Bayesian Classifier 

The Bayesian classifier representation is quite intuitive and easy to understand the issue 

that is often a significant interest in machine learning. It is considered a probabilistic 

statistical form that performs a probabilistic relationship between a set of variables with 

their wide conditional dependences. Bayes' theory relies on the use of advance 

information about unknown landmarks(Ghosh et al., 2007). Therefore, it solves several 
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problems and applications in particular in artificial intelligence. The formula can be 

defined as: 

P(A∩B)= P(A/B)P(B)             3-5 

=P(B/A)P(A)              3-6 

[=P(A)P(B)]               3-7 

P(B/A)= 
P(A/B)P(B)

P(A)
=

P(A/B)P(B)

P(A/B)P(B)+P(A/B)P(B)
                                                       3-8 

P(B/A)∝P(A/B)P(B)              3-9 

P(B/A)=P(A/B)*P(B)/P(A)                                                                            3-10 

Where:  

1. P(A) is the marginal or prior probability of A (since it is the probability of 

a prior to having any information about B). 

2. P(B) is the marginal or prior probability of B.  

3. P (A|B) is the likelihood function for A given B. 

4. P(B|A) is the posterior probability of B given A (since it depends on 

having information about A). 

In view of Bayesian about subjective probability emphasizes that completely unknown 

parameters are handle as uncertain and therefore they need to be described through a 

probability distribution. Consequently, there are three ingredients attached to Bayesian 

statistics (Domingos and Pazzani 1997). The first ingredient represents the background 

knowledge about the parameters belonging the tested model. It indicates to all knowledge 

available is held in the so-called prior probability and before understanding the data. The 

second ingredient represents the data information themselves. It is the observed proof 

extracted in terms of the likelihood function of the data given the parameters. The third 

ingredient is established by merging the first two ingredients, which is declared posterior 

probability. Both (1) and (2) are merged via Bayes’ theorem and are summarized through 

the supposed posterior probability, which is an adjustment of the observed evidence and 

the prior probability. The posterior probability considers one’s updated knowledge; 

stability observed data with prior probability (Van de Schoot et al. 2014). 
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Advantages 

  The Bayesian framework reduces many of the contradictions connected to   

traditional hypothesis testing. 

  The Bayesian framework presents a more direct expression of suspicion, including    

full ignorance. Bayesian methods are different from other frameworks as they are 

the only that can combine background knowledge within the analyses through 

means of the prior distribution. 

  It endorses updating knowledge to avoid a null hypothesis test over again.  

 The Bayesian paradigm often leads to reproducing others’ conclusions or 

sometimes strengthening them. 

2- Naive Bayes Classifier 

This is a classifier based on Bayes’ Theorem with a supposition of independence between 

predictors. A Naive Bayes technique assumes that the existence of a particular property 

in a category is unrelated to the existence of any other property (Ozekes and Osman 2010). 

In other words, this classifier can produce its decision even if the features are based on 

each other or depend on the presence of other features. To summarise the Naive Bayes 

model characteristics, they can be defined as follows (McCallum et al., 1998). 

 The Naive model is easy in construction and performs well in multiclass prediction.  

 It is useful for large data groups.  

 Naive Bayes is known to outperform the highly complicated classification methods. 

 It quickly predicts the class of test data set and needs little training data (Lewis 

1998). 

In this study, the Naive Bayes could be suitable classifier and efficient to classify the 

feature vectors for nodule and vessels and issues a decision that detects a potential nodule 

from the vessel in a CT image. Mathematically, the Naive Bayes classifier can be defined 

as: 

𝑃(𝑦|𝑥) = 𝑃(𝑥|𝑦)𝑃(𝑦)/𝑃(𝑥)                                                                                         3-11 

Where: 

 P(y/x) is the posterior probability of class (y, target) given predictor (x, attributes) 

https://en.wikipedia.org/wiki/Bayes%27_theorem
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P(y) is the prior probability of class 

P(x/y) is the likelihood, which is the probability of predictor given class 

P(x) is the prior probability of predictor 

Naïve Bayes Weakness 

In a close look at Naïve Bayes, it has some drawbacks that can be summarised as: (i) if 

the attributes are not independent, it decreases the Naïve Bayes classification accuracy 

and (ii) it cannot deal with nonparametric continuous attributes. Therefore, the 

dependence presence among image attributes values leads to the unsuccessful 

classification of Naïve Bayes. To process these problems, there are many proposed 

classifiers as alternative methods to improve prediction accuracy and deal with dependent 

and irrelevant attributes such as linear regression that suggests different models be tested 

in several domains with better results (Ng and Jordan 2002).  

3. Linear Regression 

The linear regression is a statistical process that describes the relationship between one 

or more independent variables (input) and one dependent variable (output). The main task 

of regression analysis fits a single line at the centre of scattered spots. Figure 3-8 shows 

a regression line with dataset points (Draper and Smith 2014). The simplest form with 

one dependent and one independent variable is defined by the formula:  

𝑦 = 𝑐 + 𝑏 ∗ 𝑥                                                                                                                      3-12 

Where y = estimated dependent, c = constant, b = regression coefficients, and x = 

independent variable.  

The linear regression process can be divided in two processes depending on the number 

of independent variables (x); if the x is one variable with one or more independent 

variables, the process called simple linear regression. However, multivariate linear 

regression process predicts multiple correlated dependent variables are for more than a 

single independent variable. 
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Figure 3-8: Illustration of Linear Regression on a Data Set (Draper and Smith 2014) 

 

 Logistic Regression  

Logistic Regression predictor is most common model applied for regression analysis. The 

model is developed to predict binary outcomes for classification, by David Cox in 1958. 

This model is designed to estimate binary dependent variables for one or more 

independent variables. The logistic regression based on characteristics of other memory-

based methods in classification. Thus, it works with two analysis algorithms: global 

logistic regression and locally weighted version (Hsieh et al., 1998). A global logistic 

regression statistical algorithm, its output represents Boolean, resists the noise because 

the curve of the logistic function can go in midway through the data points. A logistic 

function can be similarly employed here as a sigmoid function, which represents a 

continuous function between 0 and 1, to fit the data points in memory as shown in 

Figure 3-9 . The global logistics fails when more than two segments of data in the memory 

as shown in Figure 3-10 , therefore, a locally weighted version, which able to deal with 

several segments of data and based assigning the weights of data in order to avoid noise, 

is implemented. The independent variables (input variables) of logistic regression in this 

study are some features extracted from the region of interested (ROIs) while logistic 

regression outputs are two classes (binary classification) and represent nodule and 

vessels. The logistic regression is defined in the Eq.3-13. 
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𝑃(𝑥) =
1

1+𝑒−𝑥𝑏
             3-13 

𝑥𝛽 = 𝛽0+𝛽1𝑥1 + 𝛽2𝑥2+…+𝛽𝑘𝑥𝑘. Here 𝛽 are the regression coefficients of input 

variables.

 

Figure 3-9 Two Line Segments to Fit the Dots in Global Logistic Regression(Hsieh 

et al., 1998) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-10 (Global) Logistic Regression for Classification :(a) a Curve of Global 

Logistic through Data (b) a Curve of Global Logistic through Noise (c) a Curve of   

Global Logistic does not Work Because of more Than Two Segments (Hsieh et al., 

1998) 
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4- Support Vector Machine 

The support vector machine (SVM) is one of the supervised learning models and 

developed in 1992 by Vapnik, Boser and Guyon. It is used in different applications known 

such as object and handwriting recognition, identifying the speaker and medical diagnosis 

(Han et al., 2011). It is considered a statistical approach performs both nonlinear and 

linear classification using nonlinear mapping to transform the features into a higher 

dimension. To optimal separation, it searches the linear or nonlinear hyperplane for the 

features separation into classes. SVM presents accurate classification even though in 

cases the features number is large while the sample is small (Dubitzky et al., 2007). The 

optimal separation of the hyperplane is established when the two closest data points of 

two classes have the maximum distance between them shown in Figure 3-11 (Han et al., 

2011; Dubitzky et al., 2007).  

The decision function is represented by Eq. 3-14. 

𝑑(𝑥, 𝜔, 𝑏) = 𝜔. 𝑥 + 𝑏 = ∑ 𝜔𝑖𝑥𝑖 + 𝑏𝑛
𝑖=0                 3-14 

Where x is the vector of attributes, 𝝎 is the vector of weight, b is a scalar and known as 

a bias or as an additional weight 𝜔0 too, and n represents the attributes number. In case, 

two attributes are found (A1, A2), then X= (x1, x2), where values’ vectors are x1 and x2 

of these two attributes. When the sets=0, the decision function can estimate the separating 

hyperplane function as given in Eq. 3-15.Figure 3-11 shows how hyperplane function to 

separate two classes. 

𝜔. 𝑥 + 𝜔0 = ∑ 𝜔𝑖𝑥𝑖 + 𝜔0 = 0𝑛
𝑖=1                     3-15 

Therefore, for each point that lies over the separating hyperplane will offset Eq. 3-16: 

𝜔0 + 𝜔1𝑥1 + ⋯ + 𝜔𝑛𝑥𝑛 > 0                     3-16 
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Figure 3-11: Hyperplane Separates Two Classes (Al-Waeli 2017) 

 

Correspondingly, for per point, which lies below the separating hyperplane, will offset  

𝜔0 + 𝜔1𝑥1 + ⋯ + 𝜔𝑛𝑥𝑛 < 0          3-17 

 

Whilst the expression of the margins “sides” can be written as Eq. 3-18 and Eq. 3-19 

𝐻1: 𝜔0 + 𝜔1𝑥1 + ⋯ + 𝜔𝑛𝑥𝑛 ≥ 1         3-18 

𝐻2: 𝜔0 + 𝜔1𝑥1 + ⋯ + 𝜔𝑛𝑥𝑛 ≤ 1         3-19 

Where H1 and H2 are considered the hyperplanes and also defined support vectors.  

By merging Eq. 3-18 and Eq. 3.19, Eq. 3-20 is acquired.  

𝜔0 + 𝜔1𝑥1 + ⋯ + 𝜔𝑛𝑥𝑛 ≥ 1, ∀i         3-20 

Each attribute sample that locates on the support vectors H1 or H2 will offset Eq. 3-20 

and it gets as Eq. 3-21:  

𝜔0 + 𝜔1𝑥1 + ⋯ + 𝜔𝑛𝑥𝑛 = 1          3-21 

𝜔. 𝑥 + 𝜔0 = 1 

𝜔. 𝑥 + 𝜔0 = 0 

𝜔. 𝑥 + 𝜔0 = −1 

𝐶𝑙𝑎𝑠𝑠 

𝐶𝑙𝑎𝑠𝑠 

m 

𝐴1 

𝐴2 
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Thus, the size of the maximal margin (m) is obtained easily and which considers the 

distance for each point placed on the support vector H1 to the hyperplane is
1

∥𝜔∥
, where the 

‖𝝎‖ represents the Euclidean norm of 𝝎, which it is √ 𝜔1
2 + 𝜔2

2+. . +𝜔𝑛
2 . And, this equals 

to the distance from any point that is located on the support vector H2 to the hyperplane. 

Thus, the greater distance among the support vectors is 
2

∥𝜔∥
.  

To get the superior separability, the maximal distance must be maximized 
2

∥𝜔∥
, or 

sometimes minimized ‖𝝎‖. The latter term may be solved using the Lagrangian method 

through minimizing Eq. 3-22 and it is equal to minimizing 
1

2
∥𝜔 ∥ (Sonka et al., 2014) and 

(Hamel 2011).  

  

𝐿 =
1

2
||𝜔||2 − ∑ 𝛼𝑛[𝑦𝑛(𝜔. 𝑥𝑛 + 𝜔0) − 1]𝑛         3-22 

Via deriving Eq.3-22, Eq. 3-23 is acquired 

𝜕𝐿

𝜕𝜔
= 𝜔 − ∑ 𝛼𝑛𝑦𝑛𝑥𝑛 = 0𝑛           3-23 

And 𝜔 is defined in Eq. 3-24  

𝜔 = ∑ 𝛼𝑛𝑦
𝑛

𝑥𝑛𝑛            3-24 

Through substituting 𝝎 in Eq. 3-22, Eq. 3-25 is acquired 

𝜕𝐿

𝜕𝜔0
= − ∑ 𝛼𝑛𝑦𝑛 = 0𝑛            3-25 

Thus, SVM classifier can be acquired the discriminant function as Eq. 3-26.  

𝑑(𝑥𝑇) = − ∑ 𝑦𝑛𝛼𝑛𝑥𝑛𝑥𝑇 + 𝜔0𝑛          3-26 

 

Where 𝑦𝑛 represents the class label for support vector 𝑥𝑛, 𝑥𝑇 represents the set of 

attributes while ∝𝑛 represents numeric parameter which is automatically determined 

through the optimization process (Hamel 2011). 
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5.  Artificial Neural Network  

The artificial neural network (ANN) is an intelligent model that is built to simulate the 

human brain neurons (Ross and others 2004) in the processing. It solves several problems 

in the different areas, such as pattern recognition, object recognition, classification, signal 

processing, and robotics. These networks are specified by the pattern of connectivity, 

processing elements learning rules, the strength of weights and training. Initial weights 

are set, and these weights adjust during implementation (Birry 2013) and (Wilson and 

Ritter 2000). 

 Multilayer Perceptron  

The multilayer perceptron (MLP) neural network is a model well known in ANNs. It has 

provided a nonlinear mapping of its input and the output of net to solve several problems 

in the prediction areas and medical applications diagnosing (Birry, 2013; Jiang et al., 

2010) and (Hwang and Hu 2001). Typically, the MLP network is shown in Figure: 3-12. 

It consists of levels of input; hidden layers are one or more and an output layer. Such that 

the number of input layers corresponds to the number of parameters in features vector.  

Usually, no neuron function performed in that layer (Hwang and Hu 2001) While the 

output layers based on the output of the processed problem. The neurons of the net are 

completely connected where every neuron a layer connected to whole neurons of next 

layer (Larose 2005), (Han et al., 2011) and (Günther and Fritsch 2010). Typically, for 

choosing the hidden layers no a theoretical limited but the maximum number does not 

exceed one or two layers for processing of pattern recognition problems. Also, increasing 

the hidden layers affect the classification accuracy because they cause the overfitting, 

computation cost, memorizing the training set. While increasing the neurons number in 

hidden layer increases the optimization for tackling complex cases. Therefore, the number 

selection of the hidden layers and neurons is experimental.  

 The most common functions that effectively contribute to decision-making neurons for 

classification process are the hyperbolic tangent and sigmoid functions. Such functions 

accepting the nonlinear functions, approximation conditions of ANNs, and more 

differentiable (Lekutai 1997), (Özkan and Erbek 2003) and (Negnevitsky 2005). 
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Figure: 3-12 Multilayer Perceptron Configuration (Hu and Hwang, 2001) 

  

The sigmoid function is defined as Eq. 3-27.  

𝑓(𝑥) =
1

1+𝑒−𝑥
            3-27 

This function maps a large input for any value between plus and minus infinity and within 

the small range from 0 to 1. Also, it is a nonlinear function, therefore, permits the MLP 

to classify the linearly inseparable data (Han et at., 2011). As well as, the error of a 

sigmoid function has a positive derivative and is flat or smooth (Birry, 2013; Rojas, 2013).  

The second function is used in the hyperbolic tangent function; it is defined as following 

Eq. 3-28 (Graupe 2013):  

𝑓(𝑥) = tanh(𝑥) =
1−𝑒−2𝑥

1+𝑒−2𝑥
          3-28 
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It is a bipolar version of the sigmoid function to map data into the infinity range of -1 to 

+1. The hyperbolic tangent function is more active classification than sigmoid function 

and has a faster convergence of learning algorithm (Özkan and Erbek 2003). 

The backpropagation is a popular learning algorithm in the training of MLP, was 

developed by Rumelhart Hinton and Williams in 1986 (Lekutai 1997). To minimize the 

mean squared error between actual output and target of the MLP network, an iterative 

descent method is used (Larose 2005). Two issues affect training and designing of MLP 

network: the number of neurons and hidden layers that affect the final output in the 

network. Therefore, the number of hidden layers and neurons must be selected carefully 

(Panchal et al. 2011). 

Recently, these classifiers are based in the works for classifying the nodules to nodule or 

non-nodule in automatic and semi-automatic systems for lung nodules detection. The 

efforts could be discussed in brief below: 

The work of (Campadelli et al., 2006) reduced the false positive number obtained from 

an effective recognition of true nodules by sensitive SVM training. Experimental results 

were performed on two data sets, applying for Gaussian, features selection means and 

appointing various parameters to train SVMs. The compared results of the best SVM 

gained approximately 1.5 false positives for each image with sensitive increases equalling 

0.71. The study of (Eskandarian and Bagherzadeh 2015) was based on SVM for the 

solitary nodule diagnosis in an attempt to gain more accuracy. SVM is combined with a 

threshold to describe lung areas and to reduce the false positive ratio. The obtained result 

demonstrated 89.9% sensitivity and false positive per scan of 3.9. The approach of (Ying, 

Tong, and Ming-Xiu 2011) employs different algorithms in the segmentation and 

detection of the solitary nodule, features selection and classification. It provides a solitary 

nodule segmentation based on multi-scale morphological filtering while the features are 

selected by separating their probability distribution, to be classified using SVM. The 

sensitivity was 94.6% of nodules detection for twenty cases. Interestingly, (Jacobs et al. 

2014)have applied a privileged set of 128 features, which defined the shape, texture and 

aspects of intensity, to detect sub-solid nodule candidates. These features improve the 

classification performance of the CAD system in recognizing the sub-solid nodule within 

computed tomography images. This system used different classifiers with SVM to 

validate the algorithm and evaluated by a spacious dataset from sites of a multi-centre 
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lung cancer screening trial. The proposed system reached 80% sensitivity at an average 

of only 1.0 false positive detections per scan.  

3.11 Computer-Aided Detection/Diagnosis Systems (CADs) 

Since the early years, many researchers have been attempting to develop computer-aided 

diagnosis/detection systems to detect, segment and diagnose lung tumours from CT scans 

(Ma et al., 2009). These systems still face challenges in terms of sensitivity, specificity, 

accuracy, false positive rates, full automation, speed in the nodule detection and dataset 

size. The challenges are the result of varying intensities and irregular shapes of lung 

tumours in CT images. Therefore, the complex characteristics of tumours pose difficulties 

in predicting the size, location and types (benign or malignancy) of the nodule and in 

making the radiologist distrustful CAD to be based in the medical practice. Although 

researchers attempt to construct efficient and active systems, the ideal results require 

more efforts to be achieved. Consequently, several methodologies in computer 

applications continuously handle the problems above in this area. Some works are 

summarized to explain computer-aided detection systems processing to 2D &3D CT lung 

images in detecting the nodules. In the work of (Javaid et al. 2016) proposed an approach 

to segment and detect the challenging pulmonary (juxta-vascular and juxta-pleural) 

nodules. The k-means and shape specific morphology is applied to detect the nodule after 

lung segmentation by a threshold. The next step is that potential nodules are divided into 

six groups depending on their percentage of connectivity with lung walls and thickness. 

These groups have eliminated false positives (FP) in each set of nodules by describing 

their salient features. The sensitivity is 93.8% for the proposed system as well as the 

overall sensitivity of 91.65% of receiver operating characteristic (ROC) curve. However, 

the system's sensitivity of small nodules is still lower than the total sensitivity of the 

algorithm. (X. Zhang et al. 2005) suggested a new automated method to segment nodules 

attached to vessels. A scheme developed on a parametrically deformable geometric model 

was based on processing the problem of segmenting juxta-pleural nodules. The false 

positives were 7.5 per exam.(Hara et al. 2006) developed a recognition approach to detect 

small nodules that have a diameter within range 3-16 mm. This algorithm presented a 

high sensitivity of 94% with 2.5 false positives rate per scan. However, the algorithm 

validation that was accomplished on 139 nodules that were acquired from a private 

database that may result from an unreliable diagnosis, as well as the number of nodules 
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is low. (Ozekes et al., 2008) suggested new approach segments some regions of interest 

using Genetic Cellular Neural Networks technique. In this approach, the lung is separated, 

and the eight directional search technique then processes its interest regions. The 

technique had a sensitivity of 97% with 10.5 false positives for the exam. (Q. Wang et al. 

2013) obtained acceptable results in the system sensitivity rate, but the false positive rate 

is still of a high value of 9.1 per image. In addition, the research-based database is not 

public, and hence avoids the replication of results. (Cascio et al. 2012) offered sensitivity 

of 97%, but with 6.1 false positives per exam. When the sensitivity decreased to 88%, the 

technique achieved a better rate of false positives, existing in this case at 2.5 per exam. In 

the methodology of (Santos et al. 2014), the small lung nodules that have diameters 

between 2 to 10 mm are detected by Tsallis entropy, Gaussian mixture models, and SVM. 

Some techniques, such as Shannon’s entropy and Hessian matrix have been implemented 

in this work as well. The algorithm achieved specificity of 85%, sensitivity of 90.6%, 

accuracy of 88.4% and 1.17 false positives per slice. For the training stage, 112 exams 

with 118 nodules were used while 72 nodules of 28 exams of LIDC database have 

validated the algorithm. A developed approach of (Badura and Pietka 2014) has 

segmented types of pulmonary nodules in CT lung. The method adopted evolutionary 

computation and fuzzy connectivity (FC). LIDC–IDRI databases were selected for 

algorithm validation and included juxta-vascular, juxta-pleural, isolated and low-density 

nodules that have diameters between 3 and 30 mm. A total of nodules were 23 and 551 

from LIDC and LIDC–IDRI respectively used and 50% was the true positive rate of the 

exams. In a study of (Gong et al. 2018), three Machine learning (SVM, naïve Bayes 

classifier and linear discriminant analysis) classified all nodules to benign and malignant 

in a CADs scheme which is implemented on CT lung images. And, the performance 

assessment of the three models has been validated by applying cross-validation method. 

In addition, the area under curve (AUC) has been computed to compare the discriminant 

power of classifiers, which were fluctuated between 0.88 and 0.99. The early detection of 

lung cancer has achieved in the study of (Tirz\"\ite et al. 2018) which used the logistic 

regression analysis (LRA) to discriminate the stage of cancer. The overall sensitivity was 

95.8% for smokers and 96.2% for non-smokers. 

 Successful works in three-dimension have been performed to detect and describe lung 

nodule characteristics. The 3D-view offers an accurate description of shape, size, features 

of the nodule, and distinguishes the nodule from other structures in the lungs. 
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(Fetita et al. 2003) proposed a method to be used in the 3D space of the thorax’s volume, 

based on a specific grey-level mathematical morphology operator in order to discriminate 

lung nodules from other dense (vascular) structures. The method presents the false 

positives rate equals 8.5 per exam. In the work of (Way et al. 2006), 3D active contour 

method has applied to 96 nodules which have been extracted the features and classified 

by a linear discriminant analysis classifier. (Ozekes and Osman 2010) developed an 

algorithm of computer-aided detection (CAD) system based on three-dimensional (3D) 

to detect lung nodules for 16 exams from LIDC with 16 nodules which have diameters 

between 3.5 and 7.3 mm. The algorithm is evaluated by feed forward neural networks 

(NN), support vector machines (SVM), Naïve Bayes (NB) and logistic regression (LR) 

methods. To compare the results of methods, the methods were trained and tested via K-

fold cross-validation. The algorithm offered a sensitivity of 100% with 13.37 false 

positives per exam. (El-Baz et al. 2013) created a developed algorithm to detect lung 

nodules using Genetic Algorithm Template Matching within three stages: isolating 

nodules, arteries, veins, bronchi and bronchioles from other attached components; 

isolating the nodule by deformable 3D and 2D templates; finally, reducing the false 

positives by robust defining of three geometric features and the grey levels distribution 

of a nodule of the same kind. The algorithm presented rates of 82.3% and 9.2% for 

sensitivity and false positives respectively, wherein it was validated in a private database, 

i.e.,  in only 12 samples of the whole data set and 130 nodules for three types of nodules, 

all with diameters that were greater than 10 mm. (Choi and Choi 2014) developed an 

automated technique which detects the previously segmented nodules by applying 

enhancement filtering of multi-scale dot and extracting the characteristics that describe 

object shape in 3D. After that, a technique was used to eliminate the nodule edge for 

refinement. To validate the proposed technique, the LIDC dataset (acquired up to 2009) 

was adopted in this work. Juxta-pleural and juxta-vascular nodules were detected in 84 

exams, which included 148 isolated nodules with diameters ranging between 3 and 30 

mm. The sensitivity, accuracy, and specificity of the algorithm were 97.5%, 99.0% and 

97.5% respectively. In addition, the false positives number was around 6.76 per 

examination. (Hamidian et al. 2017) trained a 3D CNN using volumes of interest (VOI) 

to detect pulmonary nodules in chest CT images automatically, and then converted the 

3D CNN which has a fixed field of view to a 3D fully convolutional network (FCN) 

which can generate the score map for the entire volume efficiently in a single pass. And 
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this screening FCN is used to generate difficult negative examples which are used to train 

new discriminant CNNs. 

In discussing the works above in terms of the challenges that face the computer-aided 

diagnosis/detection to be applicable in practice, it still needs further investigation. Despite 

the reasonable sensitivity that is presented by different algorithms and that reached 100%, 

the false positive rate remains a high value, and the researchers still validate their 

algorithm with a low nodules number.  

3.12  Advantages and Disadvantages of Detection Techniques 

To summarise, this chapter presented some of the former studies, which could be outlined 

as follows: 

The previous works introduced efficient methods that proved their potentials in the 

detection, segmentation, and classification of pulmonary nodules in CT-scan images 

using different approaches. Although these algorithms are promising concerning the 

experimental results in lung pathologies detection, they are still insufficient with various 

conditions accompanying the medical images. The mentioned techniques included some 

challenges which be summarised in the following points: 

1- Disadvantages of lung segmentation techniques (Van Rikxoort et al. 2009), 

(Tseng and Huang 2009) and (Jiahui Wang, Li, and Li 2009).  

 Although the optimal threshold can be found, there is still a need for many 

segmentations of the lung. 

 Threshold adjustment and determining lung segments boundaries are 

time-consuming.  

 Some of the issues such as unwanted background and air pixels 

accompany the threshold results.  

 The inaccurate segmentation of images that have large airways and trachea 

attached to the lung.  

2- Drawbacks of pulmonary nodule segmentation techniques and CAD systems 

 The segmentation techniques struggle in detecting the attached nodules to 

dense pathologies 
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 The presence of the lung diseases with their different contrast could be 

considered as one of the challenges in nodule segmentation.  

 A poor ability of segmentation methods to detect the diverse pathologies 

patterns in the radiology imaging. 

 Absence the full automation, which considers one of the CAD 

requirements to efficient detection, is an existing challenge. 

 

3.13 Summary and Lessons learned from the Literature 

Review  

The primary idea was built using knowledge included in the scope and understanding of 

the problem domain. The previous cognizance of medical imaging characteristics ( CT-

scan) and comprehensive of dataset form a view of appropriate techniques to accomplish 

detection and classification tasks in CT lung images perfectly (Motoyama et al. 2007) and 

(Washko et al., 2012). The former studies declared a viewpoint which showed the defects 

of the studies that inspected in CT lung image field (Mansoor et al. 2015) and (Van 

Rikxoort et al. 2009). State of the art for this research summarized the failure of CADs to 

be addressed in other works. The defects and challenges are various and seek for finding 

ideal solutions in terms of accuracy and precision in detecting the pulmonary lung 

nodules. The challenges could be mentioned briefly as:  

A detection difficulty of potential nodules which have irregular shapes in lung and thus 

no an ideal segmentation of nodule. Also, a low density and similar nodules tissue with 

the background are additional factors that affect nodules detection and increasing false 

positives rates and false negative. Full automation in nodules detection and description 

avoids the detection system to be based in CT centres.  

Also, there challenges in the diagnostic dataset which is taken from the public Lung Image 

Database Consortium (LIDC) and Image Database Resource Initiative (IDRI) (Samuel et 

al., 2011) and (Clark et al. 2013) on which this research bases. Four radiologists assessed 

it and revealed estimated measurements (volume, location, and diameter) of nodules 

greater than 3mm while the nodules that are less than 3mm in size were only their 

numbers mentioned. Therefore, the detection chance of such nodules became an 
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impossible task. The size and diameter length of the nodule are very vital parameter based 

by the radiologist to estimate the nodule malignancy rate and to identify the management 

strategy of the pulmonary nodule treatment. Whether the followed strategy is resection, 

follow-up or treatment of the nodule as declared that in the medical researchers (Lederlin 

et al. 2013). There is a significant interest in different approaches used to measure the 

nodule size and diameter to match or, at least, approximately meet of radiologists’ 

assessment, in order to obtain accurate information about the nodule diameter length for 

estimating tumour progress. 

 In general, this work focused on the target of improving diagnosis performance by 

constructing an automatic detection and classification system for and pulmonary nodules 

detection. This increases the radiologist’s confidence with such systems to be based in 

medical practice (Roy, Sirohi, and Patle 2015),. To evaluate the detection systems, 

qualitative and quantitative measurements were sought in this study (Taha and Hanbury 

2015).  
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 DATA COLLECTION AND 

SEGMENTATION OF CT IMAGES 

4.1 Introduction 

The aim of this study is to construct a system that is able to detect and describe pulmonary 

nodules precisely, offering the potential for the early detection of cancer and rejection of 

non-cancer cases. This will save the radiologists’ effort and time, which are spent in 

diagnosing and scan for long images stack of the case may be normal. In addition, reducing 

the workloads in CT centres, fasting work by automatic detection systems is sought in the 

medical practice. These systems support radiologists’ interpretation of medical images and 

the detection of lung cancer, which includes several challenges that obstruct the successful 

diagnosis. The challenges are such as increasing faint contrast and extremely fuzzy margins 

of pulmonary nodules, irregular and non-spherical shapes of nodules that confuse the 

radiologist’s diagnosis (Naresh and Shettar 2014). Therefore, the automatic detection 

systems of lung cancer remain the researcher’s goal in this field in order to solve diagnosis 

problems.  

The system is evaluated and compared using appropriate tools for all its stages. The work 

is divided into five areas: lung segmentation, vessels and nodule segmentation together, 

shape and texture features extraction, classification and developed 3D clustering to describe 

the nodule by a novel approach to detecting the nodules. 

The segmentation and detection approach to present the results of the nodules greater than 

3mm in this work, which seek to determine the ideal approach and completes the final 

validation. Figure 4-1 and Figure 4-2 show two block diagrams for the general stages and 

proposed system respectively. The first figure identifies the main processes of work while 

the second figure describes the processing stages in details.  

 

Figure 4-1 General Block Diagram of the Detection System 
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Figure 4-2 Block Diagram of the Proposed System Processes 
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4.2 Data Collection  

The most important part of this thesis is the data collection to test the developed prototype. 

180 nodules from 2D CT-scan lung images of 512*512 pixels were chosen for testing and 

validating the algorithm. Initially, the data were real and had been collected from different 

Iraqi hospitals. Then, the work plan was modified for many reasons, which can be 

summarised as follows. First, the missing of early diagnosis of cancer due to the limited 

ability of some centres in terms of the archive of patient’s history, which created difficulty 

in diagnosis, the cases in the early stages. Secondly, there are the patients’ rights, since 

some of the health centres refused to provide the data of their patients. Therefore, it was 

too difficult to collect sufficient numbers of nodule cases required to test and validate the 

algorithm. The third problem is presented regarding the image quality because the data as 

mentioned previously were collected from various hospitals and devices, and therefore the 

images involved a high level of noise. And, the data is usually diagnosed by only one 

radiologist that may be not adequate to reliable diagnosis results. According to the above 

problems, the precise diagnosis of the data from these Iraqi hospitals was impossible. 

Therefore, the standard data is considered a good alternative has been completely used in 

this work. Because of this data has been diagnosed by four experts, reported diagnosis 

information in the attached files of the site, it has a lot of cancer cases with their numbers 

and characteristics of the CT lung images so that it can validate the approach (Armato et 

al., 2011). 

 Standard Data 

The pulmonary nodules data were obtained from the Cancer Imaging Archive1. These data 

were provided with a diagnosis to four radiologists at least in one file which describes 

abbreviated information about the nodules such as the total number of nodules, which 

                                                   

 

1 https://public.cancerimagingarchive.net/ncia/login.jsf 
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sometimes exceed 30 nodules, and their size being greater or less than 3 mm. This data was 

updated to contain further information about the nodules that are just greater than 3mm in 

the separated file later. The file includes volume, diameter, location and slice number of 

nodules for each case. The patient stack images are saved as DICOM. However, these 

images are still raw data that include high levels of noise and the common outliers in the 

medical images. Additionally, this needs to pass through the pre-processing stage such as 

lung separation of the image background, enhancing the image contrast and removing 

noise, which was caused by motion, streak and metal artefacts. The CT scanning includes 

a series of slices. Figure 4-3  displays a) the CT scanning of the human lung; b) an example 

of CT lung scanning slices with continuous CT sequences, where the width and length are 

512 and the thickness of slices is 2.5 mm according to the information is saved in tags 

DICOM of CT-scan; and c) normal axial CT lung slice. 

 

 

Figure 4-3 a) Human Lung; b) Continuous HLCT Images; c) Normal HLCT Slice 

(Huaqing & Chen, 2012) 

 DICOM Standard 

Recently, the data structure of medical images has been included in a version named Digital 

Communications in Medicine Services (DICOM). This version is a simple data transfer and 

uses the model for data structure and identifiers that are responsible for network-oriented 

services and objects, which consist of images, patients’ data and reports. DICOM is 

considered as an evolutionary archive of the pictures, and it presents interfacing among the 

medical information systems. The file format of DICOM supports other useful information 
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for describing the image and data exchange, which are easy, safe and fast, avoiding any 

potential confusion caused by multiple files from the same study. Furthermore, it provides 

convergence for greyscale perception, ensuring consistency, management and efficient 

quality of presentation (Blume and Hemminger, 1997; Mustra et al., 2008). Figure 4-4 

shows how to access the DICOM tags that contain all information about scan image.  

 

 

Figure 4-4: DICOM Tag 
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 Data Diagnosis Reports 

The diagnostic reports of standard data, on which this study is based, are attached to the 

site and contain the description details of cancer cases with further information about 

nodules. The first report is available on the site, which consists of the nodules number 

divided into nodules that are less and greater than 3mm for each patient. This report was 

modified to include specific characteristics of nodules (volume, diameter, location and slice 

number) that are just greater than 3mm in an individual file; four experts evaluated both 

reports. These files attached to sites in the reference of Armato et al. (2011), for example, 

samples of the content of the file are shown in figures below. Figure 4-5 shows the 

radiologists’ report (first report) demonstrates the patient ID, total nodules number with 

two columns that included their classification according to the size (greater and smaller 

than 3mm). Figure 4-6 shows an updated report for nodules that are higher than 3mm only 

with some characteristics (volume, diameter, location and slice number) for each case was 

reported in the previous report.    

 

Figure 4-5 Sample of Dataset before Updating 
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Figure 4-6 Sample of Dataset after Updating 

4.3 Pre-Processing 

Removing noise and segmenting organ from the image background is an efficient process 

used to reduce the search area about nodules within the image data and is considered one 

of the challenges that confront researchers in the medical image processing field (Van 

Rikxoort and Van Ginneken 2013). This process requires the separation of the objects that 

contain the region of interest in a way that ensures the preservation of the important 

information of the disease and lung characteristics. The low contrast and noise are 

considered the main factors that prevent the pathology features’ vision in the medical image 

for both the radiologists and computer-aided diagnosis (CADs) systems. This work presents 

the segmentation of lungs from the CT image background, which is evaluated subjectively 

and objectively as an important part of the work stages. 
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 CT Image Enhancement 

The low contrast of the medical image and noise affect the visualisation and analysis of the 

image. Specifically, the radiologists depend on the bright and high-resolution of the image 

when reading the scan to see the internal anatomy of the organ and present the final 

diagnosis with high precision. Generally, the medical image encounters duplicated noise 

problems resulting from many sources, such as the movement of patients within the scan, 

the motion of molecules in the scanned tissue and streak and metal artefacts (Huaqing Chen, 

2012). In this study, both Gaussian filter and adjustment function used to enhance the 

contrast of the CT lung image and smooth the image (Pratt 2001). 

 Gaussian filter  

Spatial domain methods are classified as enhancement algorithms for the image. The 

Gaussian filter is one of these methods, which is able to suppress noise before the lungs’ 

segmentation of the image background. Furthermore, it shows spatial frequencies that have 

a fair range of the high and low filters frequencies (Kumar and Nachamai, 2012; Hamad et 

al., 2014).  

 Adjusted image 

Image adjustment aims to increase the contrast of the output image and make specific 

features easier to view by adjusting the intensities of the image. This technique maps the 

new range of image intensities’ value in the greyscale and enhances the visual image.  

 Lung Segmentation (Fully Automated) 

The importance of entire lung segmentation is to comprise the whole disease parts. Such 

challenge motivates the researchers to find and develop methods for this task. Also, the 

various contrast and homogeneity of lung organ are another obstacle hinders robust 

segmentation of the fuzzy lung edges. Furthermore, the juxta-pleural is a common nodule 

type attached to the lung wall and is often missed in the incorrect segmentation of lung 

boundaries (Jirapatnakul et al. 2011). Therefore, the implemented method to segment the 

lungs of the image background in this study is concerned with the image homogeneity. As 
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well as, it will be evaluated qualitatively and quantitatively by a suitable metric that deals 

with complex boundaries.  

 Fast Fuzzy C-Means  

The fuzzy clustering algorithms are traditional in image applications (Suganya and Shanthi 

2012). In fuzzy clustering, the data points are assigned as membership values for each of 

the clusters. And, fuzzy clustering algorithms allow the clusters to grow inside them. The 

algorithms have introduced promising outcomes in medical image especially. A fast fuzzy 

c-mean method is one of the improved clustering algorithms in the medical image 

applications and addresses speed problems from which fuzzy clustering suffers. Therefore, 

this method is necessary to accelerate the segmentation in this study and then save the 

diagnosis time. This algorithm could combine the grey information and local spatial to form 

a framework against noise and outlier problems that are common in the medical imaging. 

Furthermore, the algorithm reduces the segmentation time by depending on the number of 

grey-levels instead of the image size(Yon et al., 2004). Moreover, this method exploited 

fuzzy c-means advantages in dealing well with pixels and avoid disadvantages in terms of 

long computational time and sensitivity to noise and outliers (Ahmed et al. 2002) and 

(Biniaz et al., 2012). 

 Morphological Operations  

Morphological image processing is a group of non-linear operations connected to the 

morphology of features for an image. These operations are applied to binary and grey scale 

images and investigate the input image with a small template is called a structuring element. 

This template consist of an array of pixels is located at all possible positions in the image 

where each pixel corresponds to its neighbourhood. The aim of the structuring element is 

to distinguish expressive shape information in the image. In this study, using a disk-

structuring element is an essential part of the dilation and erosion of the morphological 

operations and is applied to probe the input image. The structuring element is a matrix that 

recognizes the processed pixel in the image and identifies the neighbour that is processed 

with the pixel. For the input image, the structuring element is chosen to match the shape 

and size of the lungs (Pratt 1991) and (E. R. Dougherty and Lotufo 2003). 
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In this study, the method is fully automated for lung segmentation. It contains the following 

steps: 

Pre-processing is as a step used an adjustment function and Gaussian filter to increase the 

contrast of the image and improve the visualisation of the image. Fast Fuzzy C-means is a 

popular method and is applied in the medical image segmentation which is proposed in the 

reference of Yon et al.(2004). This method is implemented in this work to segment the lung 

from the image background in the CT scan as part of the pre-processing stage. It identifies 

three clusters (background, lung wall and two lungs) in a 2D image (512*512). 

Algorithm  

Name: Fast Fuzzy C-means (FFC-means)  

Input: array of image pixels (512*512) 

Output: two objects (left and right lungs) 

Begin  

 Denoising image by the Gaussian filter.  

 Adjust the contrast of greyscale image data and brightness increase by using ‘imadjust 

(I)' function in Matlab. 

Apply fast fuzzy c-means to cluster the image into three regions as follows: 

Divide the image data partitions to 3 ranges, represented as 3 labels according to Eq.4-1:                  

image=Grey scale values/3               4-1                                                                                                   

Label1=0-85 

Label2=86-170 

Label3=171-255 

Calculate the pixels-belonging degree to each region by membership function of the fuzzy 

c-mean method 

Apply morphological operation (disk structuring element) to segment the lungs 
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Figure 4-7 shows the lung segmentation by Fast Fuzzy c-means, and the result is a 

segmented lungs image. Figure 4-8 shows the overall of processes of lung segmentation.  

 

 

 

Figure 4-7: Block Diagram of Lungs Segmentation by Fast Fuzzy C-means and 

Morphological Operations 
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Figure 4-8: Overall Block Diagram of Lung Segmentation 

 

4.4 Lung Segmentation Evaluation 

The research methodology of the present work offers an evaluated framework that 

determines precision levels of the automatic detection system and evaluates each task 

within this study. The evaluation of lung segmentation task is necessary to determine the 

accuracy the separation of lung boundaries that often have attached nodules. Both 

quantitative and qualitative evaluations have made for this stage of the work. The CT lung 

images are assessed subjectively by a radiologist who manually delineates the lung edge to 

be compared with segmented lungs by the algorithm. For the objective evaluation, 

Hausdorff distance metric is a useful tool which assesses the lung boundary segmentation 

quantitatively (Taha and Hanbury 2015).  
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 Hausdorff Distance 

One of the standard metrics which measure the distance between two points sets is 

Hausdorff Distance is considered sensitive to pixel position and deals with complex edges 

such as the irregular boundary of objects. Therefore, it is a suitable metric used to evaluate 

segmentation accuracy of lungs edge (Taha and Hanbury 2015), (Zhao, Shi, and Deng 

2005). The mathematical formal of this metric can be defined in Eq. 4-2, Eq. 4-3.  

HD(A, B) = max (h(A, B), h(B, A))              4-2 

Where A, B represent two sets of pixels of the evaluated images, h(A, B) represents 

Hausdorff distance that is given by 

h(A, B) = maxa∈Aminb∈B∥a-b∥              4-3 

∥a-b∥ is usually some norms such as Euclidean distance. 

This metric calculates the distance between pixels of the segmented image and its reference. 

Where the reference image represents the original image that was manually segmented by 

a radiologist. The outcome of the metric is a value indicates the difference between the 

segmentation of images. The lowest difference value identifies a proper segmentation and 

refers to a better converge or matching between the segmented and reference images. The 

optimal value of the metric is zero which demonstrate that there is ultimately matching 

between images boundaries. 

4.5 Experiments and Discussion 

Dataset of CT lung images has used to validate the automatic algorithm. The images that 

used in this work are obtained from LIDC database, constituting a total number is 40 scans 

consist of 180 nodules. The image has a resolution of 512*512 and the total number of 

slices for scan stack from 60 to 380. The pulmonary nodules sometimes exceed 35 nodules 

in the 1 scan, whose size varied between less and greater than 3mm. The algorithm has 

validated the nodules with size greater than 3mm in this work. 
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 Denoising and Adjustment 

In terms of denoising and increasing contrast, two tools have been used. First, the Gaussian 

filter is applied to remove the image noise that leads to inaccurate segmentation. The second 

tool is the adjustment function that increases contrast, improves the intensity of the image, 

and provides brightness for image details such as vessels, nodules, airways. Figure 4-9 

shows an original axial CT lung image is filtered by the Gaussian filter once, adjusted by 

applying adjustment function only and undergone by both the tools (Gaussian filter, 

adjustment function) once. 

 

                                 A                                 B 

 

                               C                               D 

Figure 4-9: Denoising and Adjusting of CT- Scan Lung Image, A) Original CT Lung 

Image; B) Denoising CT Lung Image by Gaussian Filter; C) Increasing Contrast of 

CT Lung Image by Adjusting Algorithm and D) Denoising and Increasing contrast 

of CT Lung Image by Gaussian Filter and Adjusting Algorithm  
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 Image Histogram 

The histogram of the image shows the differences of an image responding for filtering and 

adjustment the same image. Figure 4-10 shows CT lung image with the histogram response 

for different enhancement using Gaussian filter and adjustment algorithm. 

 

Figure 4-10: Corresponding Histograms Representation for Each One of a) 

Denoising CT Lung Image by Gaussian Filter; B) Increasing Contrast of CT Lung 

Image by Adjusting Algorithm and C) Denoising and Contrast Increasing of CT 

Lung Image by Gaussian Filter and Adjustment Algorithm  
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 Lung Segmentation 

The fast fuzzy c-means (FFCM) algorithm is implemented to separate the lung of image 

background using MATLAB version R2014a. In Figure 4-11, the algorithm labels the 

image with pseudocolour to three regions (two lungs, lung wall and background). 

Figure 4-12 displays three labelled images demonstrate the belonging degree the pixels of 

the three clusters regions that are divided into grey scale values. The segmentation of 

proposed method presents segmented lungs as shown in Figure 4-13 shows original CT 

lung images with segmented lungs by the algorithm. 

  

 Figure 4-11: CT Lung Image with Pseudo Colour of Algorithm 

 

 

 

 

 

 

 

 

 



Chapter Four   

   

67 

 

 

 

Figure 4-12: Fast Fuzzy C-means Algorithm Applied on CT Lung Image, Shows 

Pixels Belonging Degree to Each Cluster in the Image 

 

Figure 4-13: Samples of CT Original Lung Images and Segmented Lungs Images by 

Fast Fuzzy C-Means 
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4.6 Lung Segmentation Evaluation 

The suitable metric to evaluate the Fast Fuzzy c-means method segmentation is Hausdorff 

distance. The metric has applied on 10 images are segmented by fast fuzzy c-means and 

their reference which was accessed by the radiologist. Table 4-1 shows the metric’s values 

for the 10 images. Figure 4-14 shows samples of images were delineated their boundaries 

with green colour by a radiologist and then the same images were segmented by the fast 

fuzzy c-means method. 

Table 4-1: Hausdorff Values for Ten Segmented Lung Images 

Images 1 2 3 4 5 6 7 8 9 10 

Hausdorff 

Values 
6.659 5.012 4.590 6.048 8.201 7.011 5.25 4.390 6.432 5.352 

 

      

     

Figure 4-14: CT Lung Images Delineated the Boundaries with Green Colour by 

Radiologist and Segmented of Background by Fast Fuzzy C-Means Method 
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4.7 Post Processing 

The main objective of this work is the precise detection of nodules. To achieve this aim, 

the nodules should be distinguished the vessels and normal tissue of the lung. This stage 

adopts more than one process to reach this target. The first step is a segmentation process 

of both vessels and nodules from the normal tissue of the lung, depending on the intensities 

of the image values. Also, some shape and texture features are applied to describe the 

resulting objects of the previous step. The features vector is the input to classifiers that 

classify the clusters into two classes (vessel and nodules) in a later step. For more 

description of the nodule, this processing develops 2D clustering algorithm for 3D 

clustering to measure the volume of the nodule.  

 Vessels and Nodules Segmentation Together  

The pathology patterns often reflect the high intensities in the medical image. The various 

contrast of medical image pixels has become a search point whereby several algorithms 

focus intensity values used to separate the image regions. The significant challenge in the 

lung nodules detection is the similarity in intensity values between the nodule and the lung 

components. The main goal of this process is to exclude the normal tissue to reduce the 

research area of the nodules within the lung. Also, thus, the following processing 

concentrates on the objects that include the vessels and nodules. To detect the nodules 

easily, the selection of a segmentation method is based on its precision in describing nodule 

features (circularity, round, irregular shapes) to be classified correctly in the classification 

stage. 

 Image Intensity -Based Clustering (IIBC) 

The intensity characteristic is a vital factor in the various contrast regions segmentation of 

medical images. The proposed method offers active characteristics in clustering competing 

with the common methods. The algorithm presents a potential of representing the irregular 

shapes efficiently, dealing with the large data and the outliers in the best way. The image 

is divided into blocks to manage and process the large data faster. Each block has an equal 
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size (m*m). The memory is divided to tree contains the block pixels and a heap the space 

to process these pixels. Also, The algorithm adopted a dynamic, empirical threshold is less 

than the middle value of the grey scale values to keep most intensity values which may 

consider a part of a tumour (Oseas et al. 2014). The purpose of the threshold is to separate 

image data into two classes. The class’s values that are greater or equal to the threshold 

represent nodules and vessels while the background (normal tissue) of the lung is 

considered the class values that are less than the threshold value. There are two procedures 

for the proposed algorithm: the threshold conducts the separation procedure, and a merging 

is based on the connectivity and similarity principles. In the separation procedure, each 

pixel in a heap is checked by the threshold and classified to a class. For the merging 

procedure, the cluster that has similarity and overlap in the class will be merged into the 

single object. The merging is done if both the similarities and overlap are available together 

among clusters. The merging is performed into each block in the image and then among. 

The algorithm potential to process the clusters without shifting position enables the 

irregular object patterns to be identified efficiently. The proposed method can cluster the 

irregular shape and manage the time by dividing the memory into two places: one for the 

data structure and the second for the data processing. 

 

Algorithm 

Name: Image Intensity-based Clustering (IIBC) algorithm 

Input: xi.j  where 𝑥 represents image points (pixel intensity), i,j are the pixel value index  

Output:CWk  white cluster of objects, where k is the number of white objects 

              CBn   black cluster of objects, where n is the number of black objects 

Begin  

            W0 = 0, represents white object pixels, k=0 

            B0 = 0, represent black object pixels, n=0 

Divide the image to N-blocks (m*m), where N=number of blocks, m*m=block size   
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For each block 

Divide the memory (tree, heap), where T=tree of block pixels, H=heap=pixels processing 

location of T 

Order 𝑥 ascending in the heap 

While size (heap) <>0 do 

For each 𝑥 inside block 

           if x ≥ R  (R:  threshold value)             

          w. cluster : =  x 

          if   W0  complete 

           k=k+1   

          insert (W0  , w. cluster)  

          else 

           b. cluster: =  x  

           if   B0  complete   

                     n = n + 1  

          insert(B0 , b. cluster)

           End  

            delete(heap. x) 

Call merging procedure 

relocate(T. W0 ) 

 relocate(T. B0 ) 

CWk = W0  

 CBn = B0  

Pseudo-code of Merging 

Procedure for merging (u. v) 

Begin 
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𝑤. 𝑚 = the connectivity of eight neighbours between (𝑢&𝑣)  

For each pixel in the corner of the cluster 

Begin 

If i=1 

minDist = 𝑑𝑖𝑠𝑡(𝑝. 𝑤, 𝑚)    

if dist (u. v) ≤ minDist (minDist represents the close distance between two objects that 

belong to the same class)                                     

w = u ᴜ v 

no. of objects = no. of objects − 1  

End 

return(w) 

End   
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Figure 4-15 shows a flowchart for the proposed algorithm and includes two procedures for 

separating the data and merging to cluster the nodule and vessels into a class and normal 

tissue in another class. 

                               

                           

Figure 4-15 Flow Chart for Image Intensity- Based Clustering 
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4.8  Vessels and Nodules Segmentation Results 

In our experiments, to exclude normal tissue and reduce the search area of the nodule, 

Image Intensity-based Clustering (IIBC) algorithm is applied to the segmented lungs in the 

pre-processing stage. This algorithm clusters the lungs image in objects according to two 

procedures; the first one separates the image values (grey scale) depending on empirical 

and dynamic threshold value into two classes. The second procedure merges the class’ 

pixels that have a similarity and connectivity among them in objects belonging to each 

class. The resulting objects have high-intensity values that are upper the threshold and 

represent nodules and vessels together in a class. The second class includes the normal 

tissue that its values are less than the threshold.  

The threshold values are chosen according to experiments based on the middle value of 

grey scale values approximately and the middle value of the optimal threshold that is 

identified through tests. The experiments demonstrate that the threshold 90 is the most 

suitable threshold clusters the majority of intensity values that reserve disease regions. And, 

it to be the optimal threshold of the algorithm, as shown in Figure 4-16 -b-. The 90 value 

clusters the image with the concern of objects that are attached to boundaries. Figure 4-16- 

a-,-c- show the segmented lungs image is clustered with other thresholds to identify the 

optimal in clustering. The 120 threshold misses parts of lung edges with the lack of objects 

compared with the 90 threshold clustering. The experiments display that no clustering with 

45-threshold value of the image has been done where the threshold clusters two regions 

(lungs) have high density. For each clustered image, there is an index for the object pixels 

for each cluster, the selected threshold value and the block size shown in the GUI of Matlab 

2014a.  
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-a- 

 

-b- 
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-c- 

Figure 4-16: a) Clustering with 45 Threshold; b) Clustering with 90 Threshold; c) 

Clustering with 120 Threshold 

 

4.9 Summary 

This chapter has involved various tasks relative to the research. The data collection on 

which the study based, comprehensive understanding of implied challenges of data and 

their characteristics have made. Also, the segmentation task of the lung has done as a part 

of pre-processing of the image. In addition, a qualitative and quantitative evaluation has 

made of lung segmentation corresponding the research methodology that was set 

previously. Furthermore, the modified clustering method is implemented to separate the 

vessels and nodule in the pre-processing stage. The method clusters the vessel and nodule 

within objects efficiently. The objective of nodule segmentation has achieved in this 

chapter, to be prepared for classification stage subsequently.
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 NODULE CLASSIFICATION  

5.1 Introduction 

Classification is a process that involves sorting the image objects into separated classes 

based on vectors of features. It represents the final step of image analysis, consisting of 

sorting patterns into classes. The efficient classification relies on the variance of features, 

which belong to different classes, to raise the classifier’s precision for discriminating the 

patterns. Common classifiers are used to accurately assign clusters, obtained from images 

in the previous stage, to nodules and vessels. The most discriminant descriptors increase 

classification performance through the precise description of object characteristics. An 

evaluation of the classification process has been carried out in this study to determine the 

optimal classifiers in terms of accuracy using appropriate metrics (G. Dougherty 

2009),(Han et al., 2011) and (Russ 2016). 

5.2 Image Features  

To identify meaningful structures and find the desired objects within an image, some 

descriptors were obtained from the clusters to determine which image pixels belong 

together. These measurements are considered to be an essential step to interpret regions and 

recognise the groups of pixels that are called objects. In medical images, descriptors are 

important to the representation of objects that reflect pathological patterns in organ shape, 

defined by characteristics such as surface area, length, roundness, elongation, and 

compactness. Determining an appropriate measurement selection to reduce the amount of 

information attached to an object is a difficult task for medical applications. In this work, 

attention is given to the features that describe shape, size and texture of a nodule and which 

demonstrate the differences between vessels and nodules to achieve separation and 

detection. An active and segregating set of shape and texture parameters are extracted from 

objects within the image as an ideal group of features for the classification stage. The 

purpose of the group is to reduce the dimensionality of the problem, caused by redundant 

characteristics that influence classifier performance and data training time, as discussed in 

the next sections (Haralick et al., 1973) and (Ping et al., 2013). 
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 Features Analysis 

There are various approaches to extract textural and geometric descriptors based on the 

geometry; histogram and textures characteristics of objects form a medical image. These 

feature types were discussed in the literature review and background chapters in more 

details (Mingqiang et al., 2008), (Montero and Bribiesca 2009) and (X. Yang et al. 2012). 

The features extracted in this study introduced below. 

 The Shape and Geometric Descriptors 

 Area 

 This parameter counts the pixels of which the object consists. The area parameter measures 

the object size and provides information on whether the object is a real or noise using Eq.5-

1.This parameter is not capable of producing information about the object’s length; 

therefore, the perimeter parameter can report the length information of the object. 

 

𝐴 = ∑ 𝑓(𝑥. 𝑦). 𝑖𝑛 2𝐷 𝑠𝑝𝑎𝑐𝑒               5-1 

Where x, y represent the coordinates of pixel intensity value in the image. 

 Perimeter 

 The perimeter measures the length of an object boundary. The boundary is the collection 

of all edge pixels, which are all the object pixels that do not have an identical neighbour.  

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟(𝐿) = 𝑛0 + √2𝑛𝑒               5-2 

Here 𝑛0. 𝑛𝑒 are the odd and even code numbers of the chain code, respectively. 

Chain code represents pixels form a grid in x and y-direction to assign an orientation to the 

segments connecting every pair of pixels. The segments specify length and direction based 

on N-4 or N-8 connectivity (Mingqiang et al., 2008). 
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 Diameter 

 In centroid calculation of objects, the diameter parameter measures 𝑚𝑝𝑞 where 𝑝,-order 

origin moment is calculated using Eq.5-3. 

𝑎 = 2 × [[2(𝜇20 + 𝜇02 − √(𝜇20 − 𝜇02)2 + 4𝜇11
2)]/𝜇00 ]

1/2
          5-3 

μpq = ∑ ∑ xpyq

yx

f(x, y) 

μ00 = 𝐴𝑟𝑒𝑎 

 Circularity  

This geometrical parameter reflects the roundness of a 2D object. It represents a relation 

between structure’s area and perimeter by using Eq. 5-4 

𝑐 =
4∗𝜋∗𝐴

𝑙2
                            5-4 

        

Here 𝑙  is the perimeter, and 𝐴 the area of the object. The factor 4𝜋 ensures that 𝑐 equals 

1 (the lowest possible value) for a circle shape. 

 Compactness 

Compactness gives the low values for very compact objects, while high values demonstrate 

that the objects are less compact. It is the reciprocal of circularity, as seen in Eq. 5-5. 

F =
1

c
                                5-5    

 Ellipticity 

 This parameter uses Ellipses in two orientations of the object and is calculated by the ratio 

of the longest chord and shortest chord of an object using Eq.5-6. 

𝑒 = 𝑎/𝑏                            5-6 

𝑎, 𝑏 are the long axis and short axis, respectively, in a 2D space 
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 Slenderness  

A parameter to measure the elongation of an object. It represents the ratio of major axis 

to minor axis of the object using Eq.5-7.  

S = min(W. H) /max (W. H)                                               5-7 

𝐻, 𝑊 are the width and height of the potential nodule object, respectively, both are 

considered in the slenderness and rectangle degree parameters.  

 

 Rectangle Degree 

Also called the extent or rectangularity of an object, it is defined as the ratio of the object 

area to the product of width and height of the object using Eq.5-8. A perfect rectangle 

would have a degree of 1.  

R = A/(W × H). in 2D space                                       5-8 

 

 Concavity Ratio  

This parameter reflects the concavity of the object boundary and is the ratio of the 

difference between the original region and a convex hull and concave area using Eq.5-9 

Concavity Ratio (E)=
Se

S
               5-9 

 S is the area of a concave region, Se represents the difference between the original 

region and its convex hull. 

 Texture Descriptors  

In this work, texture parameters are obtained from the co-occurrence matrix that is a 

statistic derived from a second-order histogram that describes the relationship between sets 

of two pixels in the object region. This matrix contains some rows and columns of grey 

scale levels that produce some features (Haralick et al., 1973), (Ying et al., 2011) and (X. 

Yang et al. 2012). These are defined as follows below. 
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 Contrast 

The contrast descriptor is a measure that describes the intensity contrast for each a pixel 

and its neighbour in the image. It is defined using Eq. 5.10 (Haralick et al., 1973).  

Contrast(Con) = ∑ 𝑛2{∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑔−1

𝑛=0 }, |𝑖 − 𝑗| = 𝑛         5-10 

Where 𝑁𝑔 represents the number of grey scales in image, and 𝑝(𝑖, 𝑗) represents an element 

at the cell coordinates 𝑖 and 𝑗 in co-occurrence matrix. 

 Correlation  

A statistical coefficient that demonstrates the strength of the relationship between the 

real and predicted values. The coefficient increases when trends in the predicted values 

track real trends. It also depends on standard deviation and means values (𝜇𝑥, 𝜇𝑦, 𝜎𝑥 

and 𝜎𝑦) for 𝑃𝑥 and 𝑃𝑦, in ROI.  

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = ∑ ∑ 𝑃(𝑖, 𝑗)
(𝑖−𝜇𝑥)(𝑗−𝜇𝑦)

𝜎𝑥 𝜎𝑦

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0           5-11 

𝑃𝑥(𝑗) = ∑ 𝑃(𝑖, 𝑗)

𝑁𝑔−1

𝑗=0

 

𝑃𝑦(𝑖) = ∑ 𝑃(𝑖, 𝑗)

𝑁𝑔−1

𝑖=0

 

𝜇𝑥 = ∑ ∑ 𝑖. p(i, j)

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

 

𝜇𝑦 = ∑ ∑ 𝑗. 𝑝(𝑖, 𝑗)

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

 

𝜎𝑥 = ∑ ∑ (𝑖 − 𝜇𝑥)2. 𝑝(𝑖, 𝑗)
𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0
 

𝜎𝑦 = ∑ ∑ (𝑗 − 𝜇𝑦)2. 𝑝(𝑖, 𝑗)
𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0
 

 



Chapter Five   

   

82 

 

 Entropy  

It is a scale of the smooth region of interest (ROIs) by using low values and a measure 

of randomness. 

Entropy(ENT) = − ∑ ∑ P(i, j)
Ng−1

j=0

Ng−1

i=0 log P(i, j)           5-12 

 Energy  

A descriptor measures the pixel value distribution together with the grey-level range. 

Images with higher grey levels have higher energy than those with lower grey levels.  

Energy = ∑ ∑ P(i, j)2Ng−1

j=0

Ng−1

i=0              5-13 

 Homogeneity  

It is the quality or state of being homogeneous.  

Homogeneity = ∑ ∑ {P(i, j)}2Ng−1

j=0

Ng−1

i=0                                  5-14 

 Mean  

This parameter measures the average of intensity values that belong to the region of 

interest (ROI).  

𝑀𝑒𝑎𝑛() =
1

𝑁
∑ 𝑝(𝑖, 𝑗)𝑖,𝑗                                    5-15 

Where 𝑝(𝑖, 𝑗) represents the pixels intensity position in the image, N determines the 

total number of pixels in the image. 

 Skewness 

It describes the degree of asymmetry in the pixel distribution around its mean. Skewness 

produces a number that describes only the shape of the distribution. 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠(𝑆) =
1

𝑀𝑁
∑ ∑ [

𝑝(𝑖,𝑗)−𝜇

𝜎
]

3
𝑁
𝑗=1

𝑀
𝑖=1           5-16 

 Kurtosis  

It measures the sharpness or flatness of a distribution relative to a normal distribution 

with the same mean and standard deviation. 
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𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠(𝐾) =
1

𝑀𝑁
∑ ∑ [

𝑝(𝑖,𝑗)−𝜇

𝜎
]

4
𝑁
𝑗=1

𝑀
𝑖=1            5-17 

 Variance  

It considers the changes of the grey value in the ROI. 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = ∑ (𝑖 − 𝜇)2
𝑖,𝑗 𝑝(𝑖, 𝑗)                                   5-18 

 

 Inverse Different Moment (IDM) 

It raises the low contrast of ROIs because of the dependence on(𝑖 − 𝑗)2. 

Inverse Different Moment(IDM) = ∑
p(i,j)

1+(i−j)2i,j                      5-19 

5.3 Classification phase 

The study objective is to achieve the highest possible accuracy in pulmonary nodule 

detection from CT lung scan images. This requires identifying all tumours greater than 

3mm with minimal errors and early detection. In addition, the false positive rate should be 

reasonably low. Recently, for the various characteristics of the medical image and the best 

classification performance, some classifiers have received multiplied attention due to their 

high performance. The most common classifier models are the Support Vector 

Machine(SVM), Logistic Regression(LR), Bayesian and Multilayer Perceptron (MLP) and 

Naive Bayes, all used to predict cancers (Ozekes and Osman 2010), (H. Chen et al. 2012). 

In this study, these five common classifiers are used to accurately classify the clusters into 

nodules and vessels. To evaluate and analyse the classifiers’ performance, the K-fold cross-

validation is used. 

5.4 Validation Phase  

The evaluation of the classification task in nodule detection accuracy is done by cross-

validation (Witten et al. 2016). It is essentially used where the goal is to predict and to 

estimate how a classification is accurately performed in practice. Also, it describes the 

statistical analysis of the classification results which assess the classifiers’ accuracy using 

a statistical approach. In this study, the cross validation is carried out using a two-

dimensional matrix. The rows and columns in the matrix represent, respectively, the class 

instance number and the descriptor for each class (Han et al., 2011). K-fold cross-validation 

https://en.wikipedia.org/wiki/Accuracy
https://en.wikipedia.org/wiki/Statistics
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method divides the image data to N separate sets where the values at N-1 are used for 

training while the Nth set is used for testing. The merit of this model is to perform for both 

validation and training over iterated random sub-sampling. Each observation is selected for 

validation precisely once. In this work, two classes are defined; the first class denotes 

vessels and the second class refers to nodules. Two different fold of cross-validation models 

validates the five classifiers. For both two-fold, four classifiers achieved a high level of 

accuracy. Each data array for validation contains 19 descriptor values applied on 400 

instances (400*19). The instances consist of 180 candidate nodules (class b) and 220 vessel 

objects (class a). Firstly, 4-fold cross validation is employed on the array for training and 

testing with the five classifiers. In this fold, the data is divided into 4 groups; 3 groups are 

used for classifier training while the left out group is used for testing. The cross-validation 

method is repeated with 10-fold dividing the data into 9 groups for training and the left out 

group for testing (Witten et al. 2016). The sensitivity, false positive rate and accuracy are 

then obtained for each trained classifier. The posterior probabilities are achieved for every 

K-fold of cross-validation, which are obtained from the assigned groups for training in the 

fold and per classifier. The process of K-fold cross-validation is conducted thus; the 

training groups cover the left out-group to leave other groups for testing purposes and so 

on. The process stops when the posterior probabilities are calculated for all the candidate 

nodules (L. Ma et al. 2015). 

In this study, the five classifiers are compared in terms of performance to identify the 

optimal. The classifier functions and parameters significantly contribute to improving 

classification performance and are selected according to a previous study(Ozekes and 

Osman 2010). For SVM, three basic functions or kernels are used to get its approximate 

accuracies, such as Polynomial and Radial basis function (RBF) and PUK (Abakar and Yu 

2014). The hyperparameters values of SVM are Epsilon= 1.0E-12, C=1.0, Tolerance 

parameter= 0.001 for POLY, RBF and PUK. For MLP, there are two nodes for the output 

layer corresponding to two classes (nodules, vessels), Learning Rate =0.1 to 0.3 with the 

same results, and input and hidden layers contain 20 and 21 nodes respectively. The logistic 

regression has a Ridge parameter of 1.0E-8. The dataset used in this work consists of 180 

nodules with size greater than 3mm, which were initially taken from 40 patients with further 

processing for each slice. 
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5.5 The Evaluation Phase 

The goal of the classification is discriminating the nodules from other components 

efficiently into the clustered image. There are good tools that are able to assess the 

performance of the classifiers and to identify the robust classifier that achieves the highest 

accuracy. First, the confusion matrix is popular and presents statistical parameters that are 

calculated for each slice for evaluation purposes. Second, other metrics for further 

statistical measurements, which evaluate the accuracy and precision of classifiers, have 

been used in this study. 

 Confusion Matrix 

The confusion matrix is a good tool to evaluate the performance of classifiers (Xu et al., 

1992), (L. Ma et al. 2014). It deals with four terms known for evaluation purposes: TP (true 

positive), the abnormal case which is correctly classified as abnormal; FP (false positive), 

the normal case which is incorrectly classified as abnormal; TN (true negative); and FN 

(false negative). TN is the normal case that is correctly classified as normal, and FN is the 

abnormal case that is incorrectly classified as normal.  

Confusion matrix parameters are considered in the statistical computations to analyse and 

quantitatively evaluate a classifier's performance in terms of accuracy, sensitivity and 

specificity. The overall accuracy demonstrates the efficiency of a classifier; however, it 

could be misleading with imbalanced data. The total accuracy is calculated using Eq. 5-20. 

Sensitivity provides the information about the correct classification rate of abnormal cases, 

while the percentage of normal cases is estimated by specificity in the medical image using 

equations 5-21 and 5-22 respectively. 

Accuracy =
TP+TN

TP+TN+FP+FN
∗ 100%            5-20 

Sensitivity =
TP

TP+FN
∗ 100%             5-21 

Specificity =
TN

TN+FP
∗ 100%             5-22 
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 Other Metrics  

Other metrics related to accuracy, sensitivity and data balance are used to evaluate the 

classification performance in this study. These are the rates of True positives (TP) also 

known as Recall, True Negatives, False Positives (FP), False Negatives, Precision, F-

measure, Matthews Correlation Coefficient (MCC) and the Area under curve (Sun et al. 

2013),(Al-fahoum, Jaber, and Al-jarrah 2014). They require parameters from the confusion 

matrix for their calculation. The formulas for these metrics are given below: 

True Positive Rate(TPR) or Recall =
TP

P
=

TP

TP+FN
          5-23 

True Negative Rate(TNR) =
TN

N
=

TN

TN+FP
           5-24 

False Positive Rate(FPR) =
FP

FP+TN
= 1 − TNR          5-25 

False Negative Rate(FNR) =
FN

FN+TP
= 1 − TPR          5-26 

Precision =
TP

TP+FP
              5-27 

F−measure = 2 ∗
Precision∗Recall

Precision+Recall
            5-28 

Matthews Correlation Coefficient(MCC) =
TP∗TN−FP∗FN

√(TP+FP)(TP+FN)(TN+FP)(TN+FN)
       5-29 

Area Under Curve(AUC) =
1

2
(

TP

TP+FN
+

TN

TN+FP
)                                                                    5-30 
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5.6 Results and Discussions 

Both 4, 10-fold cross validation have been used to evaluate the classifiers’ potential to 

distinguish the nodule and vessels. The obtained accuracy results are as follows: the 

Bayesian, logistic regression (LR), multilayer perceptron (MLP), and support vector 

machine with PUK kernel (SVM-PUK) achieved the highest value of 98%. This was 

followed by accuracies of 76% and 76.25%, which are obtained by Naïve Bayes (NB) that 

has the lowest accuracy rate among all other classifiers in both 4 and 10-fold cross-

validation method. 

The accuracy results are shown in Figure 5-1, Figure 5-2, Table 5-1 and Table 5-2 all 

exhibit that the best accuracy rate reached 98% for the four classifiers. The lowest accuracy 

for the Naïve Bayes occurred because of reasons that have been discussed in details in 

chapter 3. Figure 5-4 shows the Naïve Bayes decreasing to half in the classification of the 

nodule patterns and has the worst classification rate. Furthermore, Figure 5-3 shows an 

error in the nodule classification rate sets of 0 and thus, the sensitivity rate is 100% percent 

as calculated by Eq. 5-21. 

 

Figure 5-1: Accuracy Rates of Five Classifiers Through 4-Cross-Validation 
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Table 5-1: Accuracy Values for Five Classifiers Through 4-Cross-Validation 

Classifiers 
Naïve 

Bayes 
Bayesian MLP Logistic SVM-PUK 

Accuracy 76% 98% 98% 98% 98% 

 

 

Figure 5-2: Accuracy Rates of Five Classifiers Through 10-Cross-Validation 

 

Table 5-2 Accuracy Values for Five Classifiers through 10-Cross-Validation 

Classifiers 
Naïve 

Bayes 
Bayesian MLP Logistic SVM-PUK 

Accuracy 76.25% 98% 98% 98% 98% 

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Naïve Bayes Bayes Net MLP Logistic SVM-PUK

A
cc

u
ra

cy

Classifiers

1 0 - C R O S S  VA L IDAT IO N



Chapter Five   

   

89 

 

 

Figure 5-3: Accuracy in Classifying Vessels and Nodules of Four Classifiers 

 

Figure 5-4: Accuracy in Classifying Vessels and Nodules of Naïve Bayes Classifier 

The SVM classification accuracy has various values according to its kernels (POLY, RBF 

and PUK) in both 4, 10 fold. The SVM accuracy dramatically decreases with POLY, RBF 

kernels, as shown in Figure 5-5, Figure 5-6, Figure 5-7 and Figure 5-8, however, it increases 

to reach 98% accuracy with PUK function Figure 5-9 showing the difference among SVM 

Kernels.  
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Figure 5-5: Accuracy in Classifying Vessels and Nodules of SVM-poly 4-Cross-

Validation 

 

Figure 5-6: Accuracy in Classifying Vessels and Nodules of SVM-POLY 10-Cross-

Validation 
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Figure 5-7: Accuracy in Classifying Vessels and Nodules of SVM-RBF in 4-Cross-

Validation 

 

 

Figure 5-8: Accuracy in Classifying Vessels and Nodules of SVM-RBF in 10-Cross-

Validation 
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Figure 5-9: Accuracy in Classifying  Vessels and Nodules of SVM-PUK in 10-Cross-

Validation 

 

To evaluate the classification performance, Figure 5-10 shows the TPR or Recall measure 

that represents the sensitivity of the five classifiers in detecting the TPR of the nodules. In 

this study, the TPR or Recall rate of nodule classification of four classifiers (Bayesian, 
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21 for the four classifiers that prove a very accurate classification of the nodule. That means 
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Figure 5-10: Recall of Nodules for all Classifiers  

  

   

Figure 5-11: TNR Vessels for all Classifiers  
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MLP, LR, and SVM-PUK). Other classifiers have higher misclassification of nodules, 

which passively affect FPR and FNR that are computed using Eq. 5-25 and Eq.5-26.  

 

 

Figure 5-12: FNR of Vessels for all Classifiers  

 

 

Figure 5-13: FPR of Nodules for all Classifiers 
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each classifier is shown in Figure 5-14. A perfect score of 1 was found for four classifiers 

(Bayesian, MLP, LR, and SVM-PUK) for vessels meaning no nodules were mistakenly 

classified as vessels. The score for nodules is just below 1 for all classifiers, indicating that 

some vessels were mistakenly classified as nodules in all cases using Eq.5-27. 

 

Figure 5-14: Precision Measure of Nodules and Vessels for all Classifiers and 

Average of both 

F-measure (F-score) is a metric for evaluating the classification accuracy. It is considered 

as a type of rates averages in math and is computed for a set of classes as statistical analysis 
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demonstrate the best performance in classification, as shown in Figure 5-15. For Naïve, 

SVM-POLY and SVM-RBF, the F-score decreases to 0.652, 0.925 and 0.375 respectively 
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for Naïve, SVM-POLY and SVM-RBF. 
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Figure 5-15: F- Measure Score for all Classifiers  
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Figure 5-16: MCC Measure for all Classifiers  

Area Under Curve (AUC) is a numerical method used to evaluate the performance of the 

binary classifiers and to identify the optimal classifier. Each point of the ROC curve 

distinguishes a probabilistic classifier where each point of this curve corresponds to a 

discrete classifier. Most of the four classifiers tend towards a value of 1 that is the perfect 

score of the AUC metric for nodules, vessels and their averages, and computed by Eq.5-30. 

This value shows which classifier has the optimal performance, as shown in Figure 5-17; 

four classifiers (Bayes, MLP, LR and SVM-PUK) displayed the best performance in this 

study.  

 

Figure 5-17: AUC Measure for all Classifiers  
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Receiver Operating Characteristic (ROC) 

A ROC curve is a visualization approach for exhibiting the trade-off between the TPR and 

FPR of a classifier. The ROC curve is used to compare the performance of several 

classifiers for many experiments. In a ROC curve, the horizontal axis represents the FPR 

while the vertical axis represents TPR. A good classifier should be set as close as possible 

to the upper left corner of the ROC curve figure, while a classifier that displays random 

behaviours should locate along the main diagonal, connecting the points  0,0 and 1,1 for 

TPR and FPR respectively. 

In this study, the ROC curve is employed to evaluate five classifiers by applying eight 

experiments for each classifier to the same data set. These experiments are three, four, five, 

six, seven, eight, nine and ten folds-cross validation. Figure 5-18 illustrates the best 

classifiers performance through the approaching of cut-points of TPR against FPR to 1 of 

a diagnostic examination. The ROC curve emphasizes the best performance of the five 

classifiers. 

 

Figure 5-18: ROC Curve for TPR & FPR of all Classifiers  

 Accordingly, the ROC curve figure could exhibit a plot of great discriminatory power and 

similar performance of four classifiers (MLP, SVM, Bayes and LR) with TPR that is so 
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close to a value of 1. Naive Bayes displays a weak classification compared with the other 

four classifiers and its discriminatory power with TPR is near to 0.7 value in this study.  

 Execution Time 

Besides the accuracy, the execution time is taken into account as another vital factor. To 

reduce the complexity in the systems, the dimension reduction is considered a crucial 

process that is done by the feature selection methods evaluating the feature's importance in 

the classification. The wrapper method is one of the feature selection methods depending 

on the leave -one –out (LOO) principle.  This method excludes the feature that influences 

negatively or no effect on the accuracy from the dimension of the features, while it retains 

the feature that has a positive effect. The experiments of feature selection have indicated 

that there is a slight difference in the execution time. Certain tables (table 5-3 and table 5-

4) show the execution time for all classifiers before and after applying feature selection 

through two folds (4 and 10 folds-cross-validation). Table 5-3 shows the time for all 

classifiers with 19 and 16 features before and after features reduction in 4-fold cross-

validation while the table 5-4 shows the time for all classifiers with 19 and 16 features, 

before and after features reduction in 10-fold cross-validation. 

Table 5-3: Time Values for Five Classifiers through 4-Cross-Validation before and 

after Features Reduction 

 

Table 5-4: Time Values for Five Classifiers through 10-Cross-Validation before and 

after Features Reduction 

4-Cross-Validation  Naïve Bayesian MLP Logistic Poly PUK RBF 

Before 0.02 0.06 2 0.09 0.04 0.07 0.07 

After 0.01 0.01 1.44 0.06 0.02 0.06 0.05  

10-Cross-Validation  Naïve Bayesian MLP Logistic Poly PUK RBF 

Before 0.03 0.08 2.15 0.23 0.08 0.11 0.14 

After 0.01 0.02 1.65 0.14 0.04 0.07 0.08 
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 Descriptors Performance 

 In this stage, nineteen shape and textures parameters are applied on objects, which are 

clustered using the previously described clustering algorithm in chapter four, to describe 

the nodule patterns. Table 5-5 shows numeric values of some feature vectors for 20 

instances (10 nodules and10 vessels), chosen as a sample of descriptors which have power 

or no effect on the precision of classification outcomes and discrimination. The experiments 

prove that three descriptors are ineffective compared with other features in this study. The 

remaining features hold significant information about the shape and size of each object. To 

explain the ineffective parameters in the classification, Figure 5-19, Figure 5-20 and 

Figure 5-21 demonstrate overlap between the parameter curves for both vessel and nodule 

for three parameters. Circularity, Ellipticity and Slenderness show noticeable overlap for 

nodule and vessels as a result of the convergence of values for both classes as in Table 5-6, 

Table 5-7 and Table 5-8. These parameters, therefore, have no an effect on classification 

accuracy through the validation by cross-validation method. The remaining features more 

strongly support classification. Figure 5-22 shows the area of both vessels and nodules and 

shows a significant difference and divergence between the two classes. Table 5-9 shows 

the area of both vessel and nodule objects. The perimeter of vessels is always greater than 

that of nodules, as shown in Table 5-10. The perimeter is thus considered a robust parameter 

in the description of the vessel and nodule as shown in Figure 5-23. Compactness is very 

important, low values of this parameter indicate that a nodule is close to a circular shape. 

Therefore, this parameter could be used to describe accurately the vessel and nodule as 

shown in Figure 5-24 and, Table 5-11 that show the compactness of both classes. Also, the 

rectangle degree parameter tends to diverge and helps discrimination between nodules and 

vessels as shown in Figure 5-25 and Table 5-12. 

For more investigation of three inactive parameters, the t-test has done to have significant 

values around 0.070, 0.656 and 0.650 for Slenderness, Ellipticity and Circularity 

respectively while the remaining parameters have 0.05 as optimal criteria value in this test.  
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Table 5-5: Samples of Features Vectors for Nodule and Vessels 

 

 

Area Perimeter Compactness Slenderness Diameter Ellipticity Circularity Rectangle 

Degree 

Class 

55 91.154329 7.5822003 2.5 7.8825568 1.2051307 1.0977845 1.375 Vessel 

120 154.85281 9.7380502 0.5 6.7553702 0.9506304 0.9750028 1.2244898 Vessel 

144 169.3381 10.686062 0.5333334 8.0982339 0.9888245 0.9943966 1.2 Vessel 

126 152.85281 10.358741 0.6153846 5.4048402 0.8472454 0.9204593 1.2115385 Vessel 

66 99.39697 8.3441222 2 5.6770729 0.9837553 0.9918444 1.32 Vessel 

105 148.61017 8.8787254 0.4285714 4.6032484 1.3110964 1.1450312 1.25 Vessel 

154 

 

154 

165.3381 11.704629 0.7692308 1.9204957 0.843648 0.9185031 1.1846154 Vessel 

228 212.79394 13.464352 0.6111111 7.4544388 0.8974361 0.9473311 1.1515152 Vessel 

121 

121 

140.61017 10.813804 1 5.3042599 0.792134 0.8900191 1.21 Vessel 

100 126.12489 9.9634342 1 4.5463619 0.7465584 0.8640361 1.2345679 Vessel 

Area Perimeter Compactness Slenderness Diameter Ellipticity Circularity Rectangle 

Degree 

Class 

49 82.669048 7.4484003 1 3.5330617 0.7683859 0.8765762 1.3611111 Nodule 

30 61.941125 6.0862814 0.8 4.0789541 1.3328226 1.1544793 1.5 Nodule 

56 90.911688 7.7406631 0.8571429 3.7803895 1.0107388 1.005355 1.3333333 Nodule 

48 80.669048 7.4772891 1.4 5.0236848 0.782398 0.8845326 1.3714286 Nodule 

42 74.426407 7.0914019 1.2 4.5737239 0.596839 0.7725536 1.4 Nodule 

42 74.426407 7.0914019 1.2 3.7750535 0.9412414 0.970176 1.4 Nodule 

20 45.455844 5.5290451 1.333333 3.2454343 1.1196016 1.0581123 1.6666667 Nodule 

48 80.669048 7.4772891 1.4 5.6724492 1.1547636 1.0745993 1.3714286 Nodule 

42 74.426407 7.0914019 1.2 2.7702703 1.270979 1.127377 1.4 Nodule 

36 70.426407 6.4235755 2.666667 6.3370351 1.8526187 1.3611094 1.5 Nodule 
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Figure 5-19: Curves of Circularity Values for Vessel and Nodule 

Table 5-6: Circularity Values of Vessel and Nodule 

 

 

 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9 10

V
al

u
es

 D
is

tr
ib

u
ti

o
n

Instances number

Circularity values of Nodules and vessels

Nodule Circularity Vessel Circularity

Nodule 

Circularity 

Vessel 

Circularity 

0.8765762 1.0977845 

1.1544793 0.9750028 

1.005355 0.9943966 

0.8845326 0.9204593 

0.7725536 0.9918444 

0.970176 1.1450312 

1.0581123 0.9185031 

1.0745993 0.9473311 

1.127377 0.8900191 

1.3611094 0.8640361 



Chapter Five   

   

103 

 

 

Figure 5-20: Curves of Ellipticity Values for Vessel and Nodule 

 

Table 5-7: Ellipticity Values of Vessel and Nodule 
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Figure 5-21: Curves of Slenderness Values for Vessel and Nodule 

 

Table 5-8: Slenderness Values of Vessel and Nodule 
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Figure 5-22: Curves of Area Values for Vessel and Nodule 

 

Table 5-9: Area Values of Vessel and Nodule 
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Figure 5-23: Curves of Perimeter Values for Vessel and Nodule 

 

Table 5-10: Perimeter Values of Vessel and Nodule 
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Figure 5-24: Curves of Compactness Values for Vessel and Nodule 

Table 5-11: Compactness Values of Vessel and Nodule 

 

 

 

 

 

 

 

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10

V
al

u
es

 D
is

tr
ib

u
ti

o
n

Instances Number

Chart Title

Nodule Compactness Vessel Compactness

Nodule 

Compactness 

Vessel 

Compactness 

7.448400318 7.58220034 

6.086281375 9.738050199 

7.740663142 10.68606191 

7.477289093 10.35874093 

7.091401936 8.344122197 

7.091401936 8.878725375 

5.529045102 11.70462907 

7.477289093 13.46435199 

7.091401936 10.81380395 

6.423575505 9.963434217 



Chapter Five   

   

108 

 

 

Figure 5-25: Curves of Rectangle Degree Values for Vessel and Nodule 

 

Table 5-12: Rectangle Degree Values of Vessel and Nodule 
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Finally, this study provides the highest accuracy and stability at 98% for 4 classifiers with 

a sensitivity of 100% in nodule detection. The final evaluation of the completely computer-

aided detection performance has been carried out using different tools. The performance of 

classification is evaluated by confusion matrix and other metrics that establish robust 

features in describing the instances of balanced data in this work. The Receiver Operating 

Characteristic (ROC) curves are one of these tools and present graphical summaries of a 

classifiers’ performance in the automatic systems where it identified the optimal classifier 

through the access to 1 score value. Table 5-13 summarizes the accuracy, sensitivity and 

specificity rates for four optimal classifiers evaluate the classification performance in this 

study.  

Table 5-13: Accuracy, Sensitivity and Specificity Rates for Four Optimal Classifiers 

Classifiers Bayesian MLP LR SVM-PUK 

Accuracy 98% 98% 98% 98% 

Sensitivity  100% 100% 100% 100% 

Specificity 96.4% 96.4% 96.4% 96.4% 

  

5.7 Summary  

One of the objectives of the research is to achieve high accuracy in detecting nodules. The 

study uses five common classifiers and identifies the optimal one for medical image 

analysis. Robust description of both vessels and nodule by textural and geometric 

descriptors plays a vital role in detecting the precision for four classifiers (Bayesian, MLP, 

LR, and SVM-PUK). Three geometric descriptors (Slenderness, Ellipticity and Circularity) 

have no effect on classification results; the number of descriptors reduces from 19 to only 

16 features, which reduces training time and computation cost. In this study, an accuracy 

rate of 98% has been achieved by four classifiers, which were also evaluated by confusion 

matrix and other metrics that are used to measure the classification performance and 

balance of data. The high sensitivity that reaches 100% confirms no nodules were missed 

in classification, with the reasonable low false positive rate. For this purpose, the software 



Chapter Five   

   

110 

 

WEKA is used for training and testing the data through 4, 10 fold-cross-validation method. 

The Naïve Bayes classifier had the worst accuracy, as it fails in the presence of dependence 

among image attributes.  
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 3D CLUSTERING AND MEASURING 

NODULE VOLUME 

6.1 Introduction 

In the previous chapters, the precise detection of pulmonary nodules has been achieved 

from 2D CT lung images in terms of accuracy and sensitivity. However, the full description 

of nodules, the accurate characteristic measurements, identification of small nodules and 

the existence of exceptional cases have not been defined in the studies that employed 2D 

images. As some nodule features require a multi-dimensional view to be detected, such as 

volume and type (juxta-pleural and juxta-vascular nodules), 2D techniques have not been 

considered adequate. Theoretical advantages of applying 3D volumetric computations 

include better estimation of total nodules bulk, more precise assessment of nodules 

development by adding a 3-view measurement, and a better evaluation of irregular and 

attached nodules. 3D clustering offers an accurate description of denser structures and low-

density regions of lung components. Moreover, it reveals information on nodule shapes 

(spherical or irregular) and helps to address false positives as a requirement for computer-

aided detection (CAD). The outcomes of 3D clustering have the capacity to improve the 

precision of diagnosis and support the radiologist in selecting appropriate treatment 

management (Lederlin et al. 2013) according to measuring the nodule volume. This chapter 

reviews the performance of 3D techniques in the enhancement of the 2D clustering results 

and the accurate description of the pulmonary nodule’s characteristics regarding size, 

location, type and the current nodule progress for early detection. A 3D clustering 

demonstrates the actual nodule numbers by identifying complicated cases that were 

suspected have missed by radiologists during the diagnosis. Moreover, measuring size has 

been automatically calculated for nodule (area and volume) and by the 3D-DBSCAN 

method for the first time. Furthermore, the descriptive form of the precession of the 3D 

clustering offers a potential detection of nodules that are less than 3mm. Finally, the 

outcomes are validated by matching the nodule centres in the system with the radiologists’ 

assessments.  
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6.2 3D Clustering Advantages 

The 2D clustering has succeeded in automatically detecting the nodules and some of their 

geometric features (e.g. area, diameter, circularity and location); however, it is not able to 

describe the nodule progress on consecutive exam slices. Hence, 3D clustering offers a 

more precise description of nodule types and shapes of other lung components (vessels, 

bronchi, etc.)( Magalhães Barros Netto et al., 2012). In fact, the accurate calculation of 

nodule volume has been achieved by 3D clustering. Also, good improvement in rating the 

false positives that resulted in the classification stage has been made using a 3D-DBSCAN 

method that rejects a lot of the classification results as a noise. Moreover, it also has the 

potential to identify nodules that are smaller than 3mm in diameter, which perhaps exist in 

the false positives rate. 

6.3 Research Materials 

A 3D clustering was implemented on 20 nodules in the CT lung images on the axial plane, 

with an image size of 512 ×512 pixels. It only describes nodules larger than 3mm of which 

characteristics (number, volume, diameter and location) were reported by radiologists’ 

report. The images also have nodules smaller than 3mm, and only their total number was 

available in the radiologists’ report.  

6.4 3D Clustering  

 In this study, the empirical threshold that is adopted in the 2D tests of CT lung images is 

applied in the clustering to reduce parenchyma tissue and the search area of nodules within 

the image and to separate the intensity values that include the vessels and candidate nodules 

together. Through the Modified K-means (MK-M) method is used to cluster intensity 

values in two clusters (vessels and nodules) to ignore the unwanted spots, which are with 

threshold results, and to label the data by two clusters. The MK-M is applied for each image 

in the scan separately, and the clustered images are stacked to be undergone the 3D graphics 

functions later. The K-means method is considered an efficient clustering technique 

because it keeps clusters in their appropriate location by allowing the centre of each cluster 

to shift and fit the cluster. It also clusters data in a non-supervised mode (Anand and Jeffrey 

2011), (Peter and Karnan 2013) and (Celebi et al., 2013). A 3D graphic of labelled clusters 
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is computed by some scalars with the integration of techniques and functions, which are 

provided by Mathworks for reconstructing a 3D structure of data. Geometric computations 

of clustered data are measured by the Isosurface function that presents an improved 

volumetric visualisation of objects. The function inputs are an array of pixel locations (x, 

y, and z) and value belonging to the pixel coordinates for each cluster, to generate the 3D 

volume. Equally, the Isocaps and Isonormal computations, patch and view functions 

contributed to the production of an enhanced 3D vision of the nodules and vessels compared 

to 2D images. 

The algorithmic steps applied to cluster each lung nodules and vessels in 3D as follows: 

A. Thresholding (T) 

In this process, the algorithm is based on an empirical threshold to reduce the regions and 

components surrounding the region of interest (ROI) to detect the nodule easily.  

Pixel intensity > T 

Where values of intensity greater than the threshold define intensity in the image, which 

represent the nodules and vessels values.                                

B. MK-M  

The next step is applying the K-means clustering on 2D CT lung images to remove the 

undesirable spots, which are produced from the threshold of the previous step. In addition, 

it identifies and labels the data in the two clusters for 3D functions processing purposes. 

The clusters represent the intensity values (nodules and vessels). K-means clustering carries 

out the following steps. 

1. Selecting k to identify cluster centre, C=𝑐1, 𝑐2,…, 𝑐𝑘  

2. Calculating the distance between each data pixel and cluster centres.  

𝑆 = ∑ ∑ ∣∣ 𝑥𝑖 − 𝑐𝑗 ∣∣2𝑛
𝑗=1

𝑚
𝑖=1          6-1         

Where 𝑥𝑖 is an image pixel, m and n are the image’s dimension 
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3. Assigning the data pixel to a cluster that has the minimum distance between its centre 

and the data point. 

4. Updating the cluster centre according to Eq. 6-2: 

Ci =
1

Ni,j

∑ xi,j
Ni,j

j=1           6-2                     

Where 𝑐𝑖  represents the 𝑖𝑡ℎ cluster centre, 𝑁𝑖,𝑗 represents whole data pixels that belong to 

the 𝑖𝑡ℎ cluster centre while 𝑥𝑖,𝑗 represents the data pixel belonging to 𝑖𝑡ℎ cluster centre.  

5. Repeating the steps 2 to 4 until the objective function S (4) becomes minimized. 

6. After that, the labelled clusters pixels undergo the 3D functions processing to generate 

the volumetric data.  

C. 3D Functions  

A 3D graphic is one of the image processing applications, which plots the data volume 

according to computations that are figured for the image pixels. The following are 

techniques combined to create 3D graphics of K-means outcomes to reflect nodule’s shape 

and type (Varios el at., 2003).  

1) Isosurface is a built-in Matlab functions presents an active treatment of volume 

visualization. It is applied to gather the inputs x, y, z which represent the coordinates of 

data and the V parameter is a value belonging to the above coordinates positions in the 3D 

space. Isosurface output is a structure which contains the faces and vertices values (Engel 

et al., 1999) and (Bankman and Morcovescu 2002). 

2) For the current axes of vertices and faces computed by Isosurface, the Patch function 

provides a patch with the colour given to faces in 3D space. The end-cap geometry of 

Isosurface data is computed by Isocaps functions to create an effect of isolating the surface 

and showing the values distribution on that plane with a red structure.  

3) View is a function creates axes in a 3D view if no axes were computed for the formed 

faces in the previous step. It deals with two parameters (Azimuth and Elevation). As the 

Azimuth parameter represents a polar angle which is positive angles in the x-y plane 
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rotating counter-clockwise of the viewpoint while Elevation parameter is the angle above 

as positive angle once or below (negative angle) the x-y plane.  

4) Isonormals calculates the normal of Isosurface vertices are handled for patch function 

to form a shadow of the surface through vertices gradient. 

In 3D clustering, the cluster data identified by the modified K-means algorithm will be 

plotted in 3D space with the above functions to build a 3D enhanced visualisation of 

nodules and vessels. The 3D method improves on a 2D clustering to provide the final 

description of the nodule characteristics that were not mentioned in the radiologists’ report 

such as the nodule types. In addition, it could distinguish a compound case for developing 

nodule patterns and its progress through the CT lung layers. 

6.5  Case Study 

This study identifies a complicated case that was invisible through radiologists’ diagnosis. 

According to the scan reported in a radiologists’ assessment, a patient has six nodules in 

different positions in the 2D images of CT lung. The 3D analysis describes six nodules in 

more details providing information regarding shape and location. Two nodules are found 

in slices 60 and 64 as shown in Figure 6-1 which also shows the original CT lung images, 

with a resolution of 512 ×512, of slide 60 to slide 65 which contain two nodules evaluated 

by four experts into 2D CT images. Also, Figure 6-1 refers, with a red referral, to the two 

nodules that are located in slices 60 and 64 while slices, which are among them, have 

similar and attached structures of the nodule progress in the 60th slice. After the 

experiments, the 3D clustering of exam images reported a connection between the two 

nodules attached by a thin tissue as shown in Figure 6- 2. The tissue line between the two 

nodules is invisible in 2D images. Therefore, the radiologists could not recognise it, which 

led to evaluate the one nodule as two isolated nodules. Generally, the method outcomes 

have emphasised that the nodule in the 60th slice is the largest and significantly developed 

through slices 61, 62 and 63 to be thinly linked to a smaller mass in slice 64. Consequently, 

the radiologists’ evaluation of one nodule as two in different slices is imprecise.  

Interestingly, although the radiologists’ evaluation did not demonstrate the nodule type, a 

3D method has identified the types of the nodule in this work in which the nodule 
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classification represents the juxta-vascular nodule and a nodule attached to the lung wall 

(juxta-pleural). Also, the 3D clustering's ability to detect the thin line, which connects the 

nodules in the slices 60th and 64th, reveals a potential for early nodule detection, which is 

thought to increase the chance of patient survival with early treatment.  
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Figure 6-1: Original CT Lung Images of Slices 60-64 with Red Referral of Two 

Attached Nodules and Assessed by 4 Experts, a. Candidate Nodule in the 60 slice; b, 

c, d. Similar Structures of Nodules through 61, 62, 63; e. Candidate Nodule in 64 

Slice, f. The Normal Image after 64 Slice 
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Figure 6-2: 3D Clustering of CT lungs with Referral to Two Diagnosed and 

Attached Nodules in 60 and 64 Slices 

In addition, in this study, one of the ways used to validate the results is the centre pixels of 

nodules, which corresponded, with the centres of actual nodules in the radiologists’ 

evaluation; Figure 6-3 shows the attached nodules and another nodule in the 46th slice with 

their centre pixels. 

 

 Nodule in 

60 slice 

 Nodule in 

64 slice 
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Figure 6-3: 3D Clustering of Attached Nodules in 60 and 64 slices and Another One 

in the 46 slice with Centre Pixels Corresponding Radiologists’ Assessment 

 

6.6 3D Clustering Evaluation  

Although the 3D graphic is visually appealing, it is also necessary to quantify the quality 

of results. To evaluate the accuracy of the proposed 3D clustering and the case study result, 

another 3D clustering method (3D-DBSCAN) and 3D plot.ly application were employed 

in this research. Both evaluate the proposed 3D clustering method results in terms of the 

description and detection accuracy, matching the system output and actual nodules centre 

pixel, which were reported in the experts' assessment (Bankman and Morcovescu 2002) 

and (Papademetris and Joshi 2006). 
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 DBSCAN Method 

The DBSCAN method (Density-based spatial clustering of applications with noise) is one 

of the most effective and common clustering methods based on regions density (Sander et 

al. 1998), (Daszykowski and Walczak 2010)and (Schubert et al. 2017). This algorithm 

collects a set of nearby points to be one cluster while it marks other points as outlier pixels 

that lie in isolation in low-density areas. Clustering of this method relies on two effective 

parameters are Epsilon and MinPts which deal with core pixels in the data. These 

parameters and core pixels are defined below. 

Core pixel: it is a point, which is surrounded by neighbours of clusters exceed the MinPts 

neighbour's number within a distance is equalled the radius of Epsilon. 

Epsilon (ε): it is the maximum radius between the Core pixel and other pixels. 

MinPts: it represents the smallest pixels number that forms a density region surrounding or 

close to a core pixel.  

This algorithm has been developed to cluster in 3D and evaluate the results of previous 3D 

clustering and case study. In this study, the 3D-DBSCAN algorithm finds the connected 

objects to core pixels according to the ε (eps) and MinPts parameters. At the same time, the 

algorithm ignores all points that do not represent core pixels or the points that are not 

included by the core pixel's neighbours. This method assigns all nearby clusters to core 

pixel if the cluster is within ε (eps) neighbour while other points are assigned as noise. 

There are many advantages to the algorithm, but the most important is that the method does 

not need the previous determination of cluster numbers in the data as opposed to k-means. 

Secondly, this algorithm also discovers randomly shaped clusters and reduces the effect of 

single-link according to MinPts parameter, and finally, a domain expert can specify the 

MinPts and ε parameters values, when the data is fully understood. 

In this study, very important tasks were achieved thanks to the valuable advantages of 

DBSCAN. This method is modified to cluster in 3D and to enable the evaluation of the 

proposed method in this work. The 3D-DBSCAN method was used to visually evaluate the 

case study and compare the results with the proposed method clustering outcomes by 

looking at centre pixel locations. Figure 6-4 displays the algorithm clusters in 3D, showing 
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the structure of the linked nodules in different levels with centre pixels that show the true 

location of the nodule. In this study, the 3D-DBSCAN algorithm evaluates the connection 

between attached nodules in the previous clustering and the precise outcomes of the 

proposed clustering method validating by matching in the centres' pixels as shown in 

Figure 6-5. In Figure 6-6, DBSCAN clusters the linked nodules between 60th and 64th slices 

to show the spread of the nodule by a thin line to form small nodule that is considered 

isolated.  

 

Figure 6-4: 3D-DBSCAN Method Clusters the Linked Nodules in Yellow and the 

Remaining Nodules with Different Colours of the Same Patient 

 

Figure 6-5: 3D-DBSCAN Method Clusters the Linked Nodules with Yellow Colour, 

Centres Pixels, Which Were Reported in Radiologist Evaluation, and the Remaining 

Nodules with Different Colours 
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Figure 6-6: DBSCAN Method Just Clusters the Linked Nodules and Proves One 

Nodule 

 

 Plot.ly Application 

 Another 3D application is also used for evaluating the case study outcomes. It is called 

plot.ly that is available on the site2 and protected; therefore, it is difficult to know its 

algorithm. This application plots the location of pixels as coloured bubbles of the candidate 

nodule and similar structures at different levels as shown in Figure 6-7 and Figure 6-8. The 

plot of the application contains the area and location of the structure of nodules, which are 

clustered in the previous 2D study from consecutive images with centre pixels. The 

application inputs are vectors consisting of location values of clustered nodules and their 

similar structures that are extended through the consecutive slices. Also, the third 

dimension of the pixels represents the slice number that contains the candidate nodule 

structures. The pixel size is required in the application and measured by the pixel spacing, 

                                                   

 

2 https://plot.ly/create/ 
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which calculated by Eq.6-3, times the thickness of the image. In addition, the area pixels 

are labelled with two colours: red and green for the nodule centre pixels of the proposed 

method in this study and actual nodules that were assessed by radiologists respectively. 

Therefore, sometimes the bubbles of centre points overlap because their convergent values 

as shown in Figure 6-9. Besides, the bubbles with black colours illustrate the overlap 

regions and connectivity between clusters through slices 60 to 64 while the blue bubbles 

form the remaining pixels of the cluster areas.  

Generally, the plot application and 3D-DBSCAN method efficiently evaluate the clustering 

of the 3D proposed method and case study when they could accurately describe the regions 

of the connection between linked nodules in CT lung images. By the evaluation of the 

results of previous techniques, the nodule that is detected in the slice 60 and unified with 

similar structures through slices 61, 62 and 63, actually ends in the slice 64. Consequently, 

the nodule in slice 64 is no other nodule but an extension of the 60 slice nodule.  

 

 

Figure 6-7: 3D Plot of the Areas of Nodules with Similar Structures Between 

Different Levels from Slice 60 to 64 (going upwards) 
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Figure 6-8: 3D Plot from Different Angle to Figure 6-7, Black Areas (Bubbles) 

Represent the Overlap Between Them to Show the Connected Regions 

 

-A- 
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-B-  

Figure 6-9: (A, B) Show the Overlap between Centre Pixels of Clustered and Actual 

Nodule in 60 Slice with Two Colours Red and Green Respectively 

 

6.7 Measuring the Volume 

One of the most important characteristics of a nodule is its volume. This value is a vital 

parameter that describes the nodule development in the lung. A tumour’s size determines 

the cancer risk progress that is necessary to be known for the specialist to select appropriate 

treatment management (treatment, surgery and follow up) of a tumour. A radiologist who 

relies on the Max software, which is common in a clinical setting to estimate the size of the 

candidate nodule, performs the task. The software groups the boundaries within unified 

regions of interest (ROI) corresponding to physical nodules. The volumetric size is 

computed by filling the area inside the boundary (excepting the boundary itself) and then 

multiplying the voxel size and nodule voxel number to produce the volume using Eq.6-5. 

The voxel size is the product of times x-size and y-size of the nodule voxel and the thickness 

value for the image slice using Eq.6-4. The x-size and y-size values represent a pixel 

spacing against two pixels centre in the medical image and are obtained through the squared 

ratio of the field of view of CT image to the image array size (512×512) using Eq.6-3 
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shown in Figure 6-10. The image parameters for the data in this work are: pixel spacing = 

0.703/0.703, thickness=2.5 and voxel size =1.235. 

Pixel spacing(x − size, y − size) = (
(Field of view(FOV))

(Matrix Size) 
)

2

                                              6-3 

= (
360𝑚𝑚

512
)

2
= 0.7032 =0.4943                 

voxel size = pixel spacing(x − size) × pixel spacing(y − size) × thickness        6-4 

 = 0.703×0.703×2.5=1.235 

Nodule volume = voxel size × nodul voxels number           6-5 

 

 

Figure 6-10: Pixel Spacing Values against of Two Pixels Centres in Vertical and 

Horizontal of 2D Pixels Matrix (Treichel et al. 2012) 

6.8 Nodule Volume Measuring Methods 

In other works of pulmonary nodules detection, the sizes of a tumour in 2D and 3D images 

are usually calculated in two ways: counting the object pixels to represent the nodule’s area 

in the 2D image and manually adding up the areas of the attached structures in different 

levels to produce the nodule volume value in a 3D image. Although there are existing 

attempts to measure the nodule volumes, they are still computed manually in 3D images. 

In 2D images, the area of the nodule is computed with image features in the previous 

chapter.  
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 Manually Nodule Volume Calculation 

Previous works calculate the nodule’s volume in 3D depending on manual measurement. 

In this way, researchers usually use segmentation of consecutive nodule regions extended 

through a number of slices. The convex area, which represents the number of the actual 

pixels of hull area in the image and is a parameter is calculated in the Matlab, is measured 

individually for each region where the nodule structures are located, slice by slice 

(Mahmood, Abbas, and Ali 2014) and (Hr and Chitharanjan 2013). To measure the volume 

of the whole nodule the frustum formula is applied to areas collected from 2D images. 

Although this formula measures regular shapes such as circle and pyramid, it is used to 

measure the nodule volume that usually comprises the irregular areas. After that, the nodule 

areas and the thickness value of CT images are considered as inputs of the Frustum Formula 

(V) to produce the total volume using Eq.6-6. 

V = ∑(
h

3
(A1 + A2 +

(A1×A2)

2
)        6-6 

Where height h = slice thickness + slice separation, A1 and A2 denote the areas of the two 

consecutive slices having a tumour.  

All the calculated areas have been converted their unit from pixels to mm as in section 

6.8.2. Figure 6-11 shows a) the frustum model and b) the number of slices that include 

nodules and its sequential structures. For example, Figure 6-12 shows ten slices of 

segmented and clustered lung images in two columns with red arrows pointing to the 

nodule. For each slice, the convex area is measured for each candidate nodule in the 

clustered images. Also, one column shows the total manual volume produced by the 

frustum formula using Eq.6-6 converted to mm using Eq.6-7.  



Chapter Six   

   

128 

 

Figure 6-11: (a) Frustum Model, (b) CT Slices Contain Nodule’s Structures 

(Mahmood, Abbas, and Ali 2014) 

 Converting the Area Unit from Pixel to MM  

In computer-aided detection systems, the object area consists of the number of pixels that 

form the object. The measuring unit is usually the pixel while the actual unit used by the 

radiologist to describe nodule volume is mm. The pixel is the smallest element and is a 

square in the image having a size mm measured using Eq. 6-4. To convert the nodule area 

unit to an actual unit in mm, the number of area voxels is multiplied by the pixel spacing 

value using Eq. 6-7. 

Nodule Area (mm2) =  number of area voxels × pixel spacing          6-7 
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Figure 6-12: Segmented and Clustered CT Lung Images for Nodule Starts from Slices 60 to 

64 with Column for Convex Areas in Pixels and MM of Nodules, Manually Calculated 

Volume 

Pixel Spacing=0.4943 Voxel size=1.235    

2D segmented CT lung clustering Convex Area in pixels Convex Area in mm Manual 

volume 

  

497 247.377 

 

45872.1534 

  

609 

 

303.314  

  

520 261.422  

  

204 126.849  

  

54 27.186  

  1954.5 966.10935  
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 Automated Nodule Volume Measurement  

The idea of automatically measuring the nodule volume starts from the manual method of 

volume calculation employed in the current researchers. In this study, the automated nodule 

volume was measured by exploiting the DBSCAN method characteristics in the clustering. 

The method is developed to cluster in 3D whole classes that represent nodules and false 

positives in the classification results of the previous 2D detection from CT lung images. 

The classification outcomes that are usually a binary output (0, 1) where class 0 is 

considered vessels and the class 1 is nodules and false positives. The 3D-DBSCAN method 

clusters class 1 location (nodules and false positives). For each cluster, the radius and the 

number of pixels (area) are calculated to identify the Epsilon and MinPts as parameters of 

DBSCAN later. The 3D-DBSCAN method, which clusters the attached and high-density 

regions of the nodule location in the different levels, considers the maximum radius and the 

pixels that form the smallest density among class 1 clusters as Epsilon and MinPts 

parameters respectively in the clustering. Due to the connection between the cluster’s 

structures in consecutive slides, which the DBSCAN method has performed in 3D 

clustering, the nodules have become accessible for processing purposes. This allows one to 

perform the calculation on each individual cluster easily. One of these calculations is to 

implement the trapezoidal method that measures the area of numeric data and irregular 

shapes. This method is applied to each a cluster in the 3D-DBSCAN figure directly by the 

trapezoidal integration function in Matlab (Davies and Hicks 1981). This function plots 

curve for numeric data and the area under the curve is divided by the trapezoidal method 

to intervals of the areas of attached trapezoids among curve’s pixels. The integration of the 

intervals is measured by the function using Eq. 6-8. Then the summation of integrated areas 

under the curve represents the area of an irregular region. In this study, the function 

integrates all the nodule structures into a single cluster. The volume of this irregular shape 

(cluster), which consists of structures spread out into different levels, is equal to the 

summation of its cross-sectional structure areas multiplied by the thickness value using 

Eq.6-9. For each cluster, the obtained areas by trapezoidal integration of the cluster’s 

surfaces, are summed and multiplied by the thickness of the CT image slice to produce the 

total volume for the nodule automatically. This process has been repeated for all clusters in 

the 3D-DBSCAN figure. Figure 6-14 and Figure 6-15 show the 3D-DBSCAN clustering 

of the classified objects to class 1 for the whole patient’s stack of images with five nodules 
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in the different slices. In the figures, aside list of numbered and marked clusters have a 

coloured cross along with their volume. Also, circular shape in the list indicates the noise 

structures of the classification outcomes in the figure. The coloured structures inside the 

figure represent the nodules and false positives of this scan. The five nodules and their 

characteristics were reported in the radiologists’ report to be detected with location and 

volume value in the 3D-DBSCAN method. In general, the figures show the attached 

nodules in slices 60 and 64, as one cluster that has a single volume value is more evidence 

to confirm that the nodules are part of a single body. In addition, the nodules in slices 46, 

60, 64 and12 that are identified in Figure 6-15, Figure 6-16 with their centre pixels match 

the experts’ evaluation in their location and number.  

Figure 6-17 is three parts and shows: (a) 3D-DBSCAN clusters from slices 60 to 64 that 

contain the attached nodules with their volume values, (b) the centre pixels of linked 

nodules are identified while (c) displays an example of attached nodules illustrating how 

3D-DBSCAN clusters the class. The volume measuring results proved again the two 

nodules discussed in section 6.5, is still part of a single cluster and has a one-volume value. 

Figure 6-13 shows the pseudo-code of the proposed algorithm. 

 Trapz function(Area) =
1

2
∑ (𝑥𝑛+1

𝑁
𝑛=1 − 𝑥𝑛)[𝑓(𝑥𝑛) + 𝑓(𝑥𝑛+1)]          6-8 

Where (𝑥𝑛+1 − 𝑥𝑛) represents the spacing for each successive pair of pixels, N is the 

number of pixels of the region. 

Trapz function (Volume) = h × (Area1 + Area2 + Area3 … + Arean)         6-9                                                  

Where h is the thickness of CT images slice. 

 

 

 

 



Chapter Six   

   

132 

 

 3D-DBSCAN Performance in Automated Volume Measuring and 

Evaluation of 3D Clustering 

The DBSCAN method has proved the efficiency in 3D clustering of nodules and false 

positive that have resulted from the classification stage and dealt with the noise in the best 

way. In the volume-measuring task, 3D-DBSCAN enabled to cluster the location of class 

1 for processing each cluster individually. The ability to process the cluster allows Trapz 

function to be applied and measure the volume of nodules automatically. Furthermore, the 

3D clustering of class 1 by the DBSCAN method within MinPts range and Epsilon distance 

parameters could display the extended nodules in consecutive layers and identify the 

connection between their structures. Also, the single volume value of the attached nodules 

in case study supports the merging of the nodules again into one body with a single volume. 

Moreover, the 3D-DBSCAN method could reduce the false positive rate through active 

clustering by excluding noise from the data. Furthermore, generally speaking, the variety 

of 3D-DBSCAN figure structures, in particular, the object patterns that reflect nodule 

shapes could likely be the nodules that are less than 3mm, of which only their number was 

given in the radiologists’ report. 
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Figure 6-13: Pseudo-Code for Automatic Nodule Volume 
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Figure 6-14: Nodule and False Positives Clustered by 3-DBSCAN and Measuring the 

Volume for each Cluster 
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Figure 6-15: The Centre Pixels for Nodules in Slices 46, 60 and 64  

 

Figure 6-16: the Centre Pixel of Nodule in the Slice 12  
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-A- 

-B- 
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Figure 6-17: A. 3D- DBSCAN Clustering of 2D Classification Results, B. Identifying 

the Attached Nodules Location in DBSCAN Figure, C. The Cluster of Attached 

Nodules are Clustered in B in a 3D View 

  

6.9 Comparison 

The comparison of the performance of our CAD system with approaches outcomes of other 

works is only significant if the other publications report about the performance measures 

in terms of detection accuracy, and a measured volume of the nodule. Three studies that 

show detection capability using the LIDC database in which reported detection meets the 

requirements of CADs, and are the closest to this study shown in Table 6-1.  

The automated system proposed by Javed et al. (2016) was tested on lung CT scan images, 

and SVM classifier is applied to have the proposed system for which the sensitivity of large 

nodules classification is 93.8% analysed by 10-fold cross-validation. The overall sensitivity 

of the system is 91.65%, and accuracy is 96.22%.  

-C- 
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An algorithm to detect the lung nodules was proposed by (Senthil Kumar et al., 2017). The 

algorithm manually measures the 3D nodule volume for 34 scans taken over a time span of 

6, 9 or 12 months per patient.  

In the work of (Oseas et al. 2014), an automated detection methodology is used, which is 

evaluated on 140 exams taken from the LIDC dataset of solitary nodules in CT lung scans. 

The nodules were described by shape and textures and classified by a support vector 

machine. The proposed system reaches a sensitivity of 85.91% and an accuracy of 97.55%.  

The proposed method automatically detects 180 pulmonary nodules greater than 3mm and 

describes their characteristics (diameter, location and volume). The proposed system 

achieved an accuracy of 98% and sensitivity of 100% for four classifiers (Bayes, LR, MLP, 

and SVM) and a novel algorithm in 3D also to automatically measure the nodule volume 

and matches or is close to radiologists’ assessments that were reported in reports.  

 

Table 6-1: Other Works Compared with this Study in Terms of Accuracy and 

Measurements the Nodule Characteristics Automatically.  

Papers Pre-processing Classifiers Accuracy Volume  

(Oseas et al. 2014) Not informed SVM 97.55% Not informed 

(Javaid et al. 2016) Lung segmentation by 

threshold and 

morphological 

SVM  96.22% Not informed 

(Senthil Kumar, 

Ganesh, and 

Umamaheswari 

2017) 

Lung segmentation 

using Auto K-means 

and Morphological 

Not informed Not 

informed 

Informed  

Proposed Method Lung Segmentation 

by Fast Fuzzy C-

Means and 

Morphological 

SVM 

Bayesian 

Logistic 

Regression

MLP 

 

98% Informed  
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6.10 Summary 

In this chapter, 3D clustering plays a vital role in describing, detecting and evaluating 

nodule patterns, types and sizes from CT lung images, which surpassed the 2D clustering 

in terms of accuracy and precision. The 3D clustering was able to show the nodule’s 

extension and their attachments through the slices efficiently. The methods that are used in 

this chapter innovates a descriptive form that exhibits the nodule interior, complicated cases 

that are suspected have been missed by radiologists during the diagnosis. An illustration, 

identifying the actual two nodules that are reported by the radiologist, as one tumour by 

proposed 3D clustering method, has made. Also, the matching between the outcomes of 

proposed 3D clustering and other methods (3D-DBSCAN and 3D application), which are 

used for evaluation and comparison purposes, supported against each other to test the 

reliability of the outcome. Also, efficient automatic measuring of nodule size in both 2D 

(area) and 3D volume was conducted to improve the diagnosis performance and helps the 

radiologist to choose the suitable treatment by determining the nodule growth. Also, there 

is addressing of computer-aided detection systems requirements such as reduction of false 

positives by identifying the 3D-DBSCAN of noise into classification results that included 

the false positives. Furthermore, the speed in the detection and description of nodules is 

between 8-10 minutes for whole stack images and is better compared with the standard 

diagnosis at CT centres. All these processes were explained showing algorithm and 

flowchart and were supported by figures demonstrating the effectiveness of the method’s 

performance regarding automation and accuracy. Furthermore, the method’s ability in 

clustering the whole stack allows a possible detection of the nodules less than 3mm, which 

were, reported only their numbers in the radiologists’ report for each case. The probability 

in detecting for these nodules has been expected within the rate of false positives, which 

resulted from the classification stage and are clustered by 3D-DBSCAN. 
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 SYSTEM DESIGN AND 

IMPLEMENTATION 

7.1 Introduction 

The main objective of this chapter is to offer and display some insight into the 

implementation phase of the research based on the methods and algorithms discussed in the 

previous chapters. Most of these image-processing methods have been employed to meet 

the requirements of the research needs and all techniques and algorithms presented are 

implemented using MATLAB (R2017b). The system could be implemented using any 

powerful programming language, but at this stage, MATLAB can achieve this purpose in 

an easier and faster way. Graphical user interfaces (GUI) have been designed as 

communication forms usable by both radiologists and users. It is worth mentioning that 

these interfaces make the system goal oriented without facing the difficulties of a design 

mechanism. 

This chapter is organised as follows: Section presents the purpose of the development of 

the  

7.2 Main Menu 

This section reviews the essential stages for implementing the proposed system. These 

stages contain the loading and enhancing of the original image (CT lungs), the separating 

of the lungs from the background, the 2D clustering of segmented lungs, features extraction 

and classification of resulted objects, clustering of the nodule in 3D, and measuring the 

nodule volume. Figure 7-1 shows the system implementation stages, which are performed 

from the main menu. 
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Figure 7-1: Main Menu of Proposed System 

7.3 Loading and Enhancing Image  

Loading and enhancing of the original image by Gaussian filter and Adjustment function 

processing is the first and important stage in the proposed system. In this stage, the original 

image is loaded and enhanced by enhancement processing that removes the noise and 

increases the image contrast as pre-processing of image.  Figure 7-2 shows the 

implementation steps where the right image reviews the original image(CT lung image) 

while the middle and left images represent the same original image after applying Gaussian 

filter and Adjustment function respectively. 
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              Figure 7-2: Loading and Enhancing Image 

 

 

 



Chapter Seven   

 

143 

 

7.4 Lung Segmentation 

The GUI of the lung segmentation stage displays the segmented lungs of CT image after 

enhancing the original image, which is done by applying the fast- fuzzy c-means method 

to segment the lungs from the background. The used method separates the foreground 

(lungs) and excludes the background as a step for reducing the research area of the nodule 

as shown in Figure 7-3. 

 

Figure 7-3: Lung Segmentation Stage 

7.5 2D-Clustering 

The 2D Clustering is an additional reduction of the region of interest (ROI), which is 

resulted from the previous stage based on the intensity values of the nodules. Consequently, 

the list of candidate of nodules for the highest intensity values are taken and neglect the 

lowest values, which are intuitively considered the normal tissue. It is called 2D clustering 

because of applying for each image individually. The GUI of this stage involves some 

experimental parameters such as threshold, blocks size to divide the image data, and has 

two options for loading and clustering the segmented lungs image (Load source image and 

Process image). In addition, there is a window of pixels location of each cluster, as shown 

in Figure 7-4.   
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Figure 7-4: 2D-Clustering 

7.6 Feature Extraction and Classification 

The GUI of features extraction includes two options with a gridview of the names of the 

parameters that are based in the classification. The first option ‘All features’ displays 

evaluation measurements results of the classification for 19 features with execution time. 

The second option ‘After Reduced features’ excludes three features. Figure 7-5 shows an 

interface of results for logistic regression classifier in 4 and 10 folds-cross validation; these 

results have indicated the same evaluation measurements values of two options with a 

different execution time which is certainly less when the features are saved into 16 features 

only which are illustrated by Figure 7-6. GUI of classification results shows many 

classifiers, which are implemented with the 8-folds start from 3 fold, such as Naive Bayes, 

Bayesian, MLP and SVM. In addition, the results reflect the evaluation measurements of 

confusion matrix; accuracy, sensitivity and specificity in the list. Also, the execution time 

is calculated for each classifier with 4 and10 folds before and after features reduction. 
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Figure 7-5: Results and Execution Time before Features Reduction for 4,10-Cross 

Validation 
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Figure 7-6: Results and Execution Time after Features Reduction for 4,10-Cross 

Validation 
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7.7 3D-Clustering  

The extended nodules can be viewed by the 3D clustering of the stack of CT images to 

reform each nodule through multi-views. This provides a 3D vision of a nodule and 

describes many characteristics, such as the location and shape. In Figure 7-7, a range of 

images is chosen by the option ‘Load images range’ to prepare them for clustering by option 

‘3D clustering’. Furthermore, two sides of clustered images in 3D are shown in two 

windows in the GUI. 

 

 

Figure 7-7: 3D-Clustering 

 

7.8 Measuring Volume 

In this stage, several images are selected by ‘Images Range’ option. Then pressing the 

‘Measuring Volume’ option to calculate the volume of the structures that are clustered by 

the 3D-DBSCAN method, using the trapezoid method. In addition, Figure 7-8 reviews the 

body of the nodules as a surface figure while the volume values are stated in the side list. 
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Figure 7-8: Measuring Volume Stage 

 

7.9 Summary 

The chapter demonstrates a collection of the proposed approaches and algorithms of the 

constructed system within a unified framework. To be more familiar for the user, the system 

has been divided into various stages that explain the processing and analysis of images in 

more details. Each stage is implemented into a platform package. The software has proved 

that the proposed system is applicable and friendly. Also, it is considered an opportunity to 

evaluate and test techniques used in the system of CT lung images. 
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  CONCLUSION AND FUTURE 

WORKS 

 

8.1 Introduction 

This chapter summarises the study that has been developed for the PhD programme. It 

discusses the obtained results as new achievements in the pulmonary nodules detection 

systems. Also, it included recommendations and suggestions for future works could be 

approached from this work. The methodology and techniques, which are performed to 

detect and describe the nodule in CT lung images, are reviewed. 

8.2 Review of Methodology 

The methodology applied research to process the aim through pursuing the activities of 

work, developing the clustering algorithms to segment, detect and measure the volume of 

the nodule within framework presents bettering understanding and actual development in 

this field. The fundamental knowledge of literature review identified the challenges and 

problem domain to determine the required tasks and suitable to develop the sought 

approach for achieving the target. This methodology manages a transition from common 

techniques, and simple application to development achievement based on a knowledge and 

understanding of the problem contribute to discovering the new approach for this study. 

Aim, objectives, and research question were distinguished in the research beginning, to 

form the research base, which is led by the iterative development of work stages. Also, it 

is supported and evaluated by the framework and the appropriate tools. The evaluation tools 

continually assess the performance to be compared with other works.  

A novel approach to constructing a fully automated system is successfully performed in 

this work. The developed methodology is validated, evaluated and applied to 180 nodules 

from LIDC-IDRI dataset. It is essential to assert that the LIDC-IDRI is hard complex and 

various database. This dataset is established by a partnership between the Image Database 

Resource Initiative and the Lung Image Database Consortium. Therefore, it has diverse 
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exams were acquired from different tomography protocols which increase the detection 

difficulties of computer-aided detection. The following characteristics may hinder the 

active detection: the various contrast between tomography devices, different spacing 

among the slices and annotation that is made by radiologists where every factor affects a 

stage of the computer-aided detection system. The successful results emphasise that the 

work’s methodology has an efficient performance. With this system, proper segmentation 

of lung of image background by applying fast fuzzy c-means in pre-processing stage and 

evaluated with the adequate metric that concentrates on the lungs edge at segmentation, 

which is often attached to a nodule. Besides, a new algorithm based the image properties 

to cluster the irregular patterns of vessels and nodules in CT lung images are implemented 

in this study. In the classification stage, the highest rates of accuracies are achieved by four 

classifiers (Bayesian, Logistic Regression, Multilayer Perceptron and Support Vector 

Machine) are 98% within two folds of Cross Validation (4 and10 fold). The system tests 

180 nodules are taken from 40 exams assessed by four experts have reported characteristics 

(volume, diameter, and centre pixel and slice number) for the nodules that are greater than 

3mm and just the number of nodules that are less than 3mm.  

The methodology succeeds in identifying a complicated case, could be invisible in 2D 

images, and was incorrectly diagnosed by the experts. This case is detected through 

efficient 3D clustering by K-means. 3D clustering is evaluated by another method for 

clustering and application to a 3D plot. An accepted description is received from 3D 

methods enable the system to measure the nodule volume automatically for the first time. 

Furthermore, the 3D method offers the detection potential of nodules that are less than 

3mm. 

Generally, many challenges are addressed in this work, such as full automation in the 

detection nodule and measuring volume of a tumour, enhancement in segmentation and 

high accuracy in the classification. The system is beneficial to the radiologist and ensures 

efficient reading of scan and early detection of lung cancer (Narad et al., 2015). 
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8.3 Conclusions 

The proposed system has demonstrated its efficiency in the early detection and description 

of pulmonary nodules, which have a size greater than 3mm in computed tomography 

images (CT). The conclusions of this work can be summarised as follows. 

 Fast fuzzy c-mean could succeed in segmenting the lungs from the background to 

be evaluated by qualitative (radiologists) and quantitative (Hausdorff metric) 

measures.  

 One of the most complicated problems in this field is a homogeneity characteristic 

between the nodules and vessels. Hence, the IIBC has proved to be an efficient 

method for isolating vessels from nodules accurately. 

 The high accuracy of the four machine learning classifiers, which are applied in the 

classification stage, has confirmed the precision separation results of nodules and 

vessels in the previous stage. 

 The 3D clustering has given a clear and deep view of the nodules, which leads to 

discovering the complicated cases that are missed by radiologists. 

 The proposed 3D-DBSCAN method has emphasized the evaluation of standard 3D 

clustering, which is used to describe the shape and extension of nodules, and has 

made possible with trapezoid method to measure the nodule volume automatically. 

This is considered the key contribution of this study. 

8.4 Research Limitations 

This research adopts a developed approach has taken the aim and objectives standpoint to 

address the problems of the nodule description and detection systems. Identifying of  

problem domain guides the direction of development of techniques from 2D to 3D to 

provide further information about the nodule regarding detection and description accuracy. 

Against this, there are some limitations encountered the research such as the complex type 

of noise which accompanies the CT image because of the patient’s motion through the scan. 

Moreover, this hinders pre-processing tasks in the lung segmentation and avoids the 

volume-measuring algorithm to validate more nodules that is because the algorithm needs 
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to cluster the whole images stack. The insufficient radiologists’ assessment of nodules that 

are less 3mm leads to losing a chance to detect them by the 3D algorithm. 

8.5 Future Works 

In this study, several recommendations could be interesting points for other researchers in 

this area. 

 

1- Implementing the proposed system on other organs of the body such as (brain, liver 

and kidney) 

2- Employing the fuzzy system to generate membership function in 2D clustering 

which computes the empirical parameters automatically instead of experimental. 

3- Using the ensemble method in the classification stage by relying on the voting 

decision of multi classifiers as an alternative tool to the five classifiers that are 

implemented dependently to ensure a higher accuracy and to mitigate the impact of 

the weak classifier (naïve Bayes) on reduction of false positive. 

4-  Applying the deep learning neural network with multilayers by including each 

stage in one layer or more. This can deal with huge datasets of CT images and 

reduce the number of classifiers into one classifier and it can deal with pixels 

directly without needing to extract features. 

5- Evaluating nodule volume measurement using a phantom scale which represents an 

excellent tool of ground truth for testing the system activity as quantitative and 

qualitative evaluation (Ravenel et al., 2008) and (Prionas et al., 2011). 

 

8.6 Summary  

This chapter mentions reviewing methodology, research limitations, conclusions and 

achievements the study and recommendations summarise future works that contribute to 

this work development. The future perspectives support constructing integrated detection 

system corresponding computer-aided detection requirements to be based on the practice. 
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