5 research outputs found

    Detecção de artefactos em imagens da retina

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia BiomédicaA evolução da tecnologia na área da medicina tem permitido ao ser humano aumentar a qualidade e a esperança média de vida. A visão é um dos sentidos mais importantes, uma vez que nos dá a percepção visual do mundo que nos rodeia. Ao longo dos tempos têm sido diagnosticadas várias patologias associadas à retina, sendo por isso alvo de muito interesse científico. Nos últimos anos foram estudados vários algoritmos de detecção automática para permitir um rastreio mais uniforme e conciso das doenças retinianas. Apesar de alguns algoritmos já implementados apresentarem uma taxa de sucesso bastante elevada, os mesmos, apenas fazem um diagnóstico correcto em imagens de boa qualidade, isto é, sem nenhum artefacto na imagem. Os artefactos surgem naturalmente nas imagens da retina devido, por exemplo, ao paciente estar em contacto directo com a câmara que capta a imagem fazendo com que surjam alguns artefactos indesejáveis na imagem final. Nesta dissertação foi estudado um método de detecção automática de artefactos nas imagens do fundo ocular. Um dos primeiros entraves no processo de criação do algoritmo para a detecção foi o facto de as imagens apresentarem uma não uniformização da luminosidade, sendo por isso estudados alguns dos processos de equalização de iluminação. O método apresentado para a detecção de artefactos baseia-se na caracterização da forma e cor dos artefactos que surgem nas imagens da retina. Para tal, foi utilizado uma imagem padrão pré-definida que irá “procurar” em toda a imagem as zonas com maiores coincidências com a imagem padrão. Devido a esta estratégia não ser condição suficiente para encontrar os artefactos, foi criado um classificador com várias características particulares dos artefactos e de seguida dá-se um processo de validação, eliminando os falsos candidatos e validando os verdadeiros artefactos. O trabalho foi testado com um conjunto de 48 imagens recolhidas através de vários equipamentos diferentes e apresentou uma percentagem de sucesso de 92,6% para a detecção de artefactos

    Automatic Identification Of Medical Structures

    No full text
    A software tool for automatic identification in medical images should allow the identification of anatomical structures ^ and the presence of abnormalities in these structures, such as malformations and tumors. The automation of these tasks would help to decrease the time required for decision making in routine diagnosis and surgical planning. We have addressed the problem of identification of medical structures using a multiscale approach, the scale space, combined with a matching procedure that uses a priori information. The method can be divided in three steps: 1) construction of the linear scale space; 2) application of a feature detector that leads to a multiscale representation based on them; and 3) matching the elements present in the structure built in step 2 with a known pattern that describes the structure under study. We have built an application that uses geometrical information on the desired feature and its relations with other features present in the scene. Results have shown the method's ability to identify medical structures at several levels of resolution and noise. The method allows the generation of specific patterns to be matched by the target-structure with different diseases from a medical database. It can also be used as part of a content based image retrieval system.5748501509Ruggeri, A., Pajaro, S., Automatic recognition of cell layers in corneal confocal microscopy images (2002) Computer Methods and Programs in Biomedicine, 68, pp. 25-35Bartolini, F., Carfagni, M., Governi, L., Model-based extraction of femoral medulla ducts from radiographic images (2004) Image and Vision Computing, 22, pp. 173-182Zrimec, T., Sammut, C., A medical image-understanding system (1997) Engineering Applications of Artificial Intelligence, 10 (1), pp. 31-39Kobashi, M., Shapiro, L.G., Knowledge-based organ identification from CT images (1995) Pattern Recognition, 27 (4), pp. 475-491Verma, B., Zakos, J., A computer-aided diagnosis system for digital mammograms based on fuzzy-neural and feature extraction techniques (2001) IEEE Transactions on Information Technology in Biomedicine, 5 (1), pp. 46-54. , marchOgiela, M., Tadeusiewicz, R., Syntactic pattern recognition for X-ray diagnosis of pancreatic cancer (2000) IEEE Engineering in Medicine and Biology, 19 (6), pp. 94-105. , novemberCheng, H.D., Cai, X., Chen, X., Hu, L., Lou, X., Computer-aided detection and classification of microcalcifications in mammograms: A survey (2003) Pattern Recognition, 36, pp. 2967-2991Goodenday, L.S., Cios, K.J., Shin, I., Identifying coronary stenosis using na image-recognition neural network (1997) IEEE Engineering in Medicine and Biology, 16 (5), pp. 139-144Frangi, A.F., Niessen, W.J., Hoogevee, R.M., Van Walsum, T., Viergever, M.A., Model-based quantitation of 3-D magnetic resonance angiografic images (1999) IEEE Transactions on Medical Imaging, 18 (10), pp. 946-956. , OctoberKeserci, B., Yoshida, H., Computerized detection of pulmonary nodules in chest radiographs based on morphological features and wavelet snake model (2002) Medical Image Analysis, 6, pp. 431-447Fang, B., Hsu, W., Lee, M.L., Tumor cell identification using feature rules (2002) Proceedings of 8th ACM SIGKDD, pp. 495-500. , ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 8th. Edmonton, Alberta, CanadaVan Ginneken, B., Romeny, B.M.T.H., Viergever, M.A., Computer aided diagnosis in chest radiograpy: A survey (2001) IEEE Transactions on Medical Imaging, 20 (12), pp. 1228-1241. , dezembroRivière, D., Mangin, J.F., Papadopoulos-Orfanos, D., Martinez, J.M., Frouin, V., Régis, J., Automatic recognition of cortical sulci of the human brain using a congregation of neural networks (2002) Medical Image Analysis, 6, pp. 77-92Cocosco, C.A., Zijdenbos, A.P., Evans, A.C., A fully automatic and robust brain MRI tissue classification method (2003) Medical Image Analysis, 7, pp. 513-527Thies, C., Metzler, V., Lehmann, T., Aach, T., Formal extraction of biomedical objects by subgraph matching in attributed hierarchical region adjacency graphs (2004) Medical Imaging 2004, 5370, pp. 14-19. , San DiegoDy, J.G., Brodley, C.E., Kak, A., Broderick, L.S., Aisen, A.M., Unsupervised feature selection applied to content-based retrieval of lung images (2003) IEEE Transactions on Pattern Analysis and Machine Intelligence, 25 (3), pp. 373-378. , marchWitkin, A.P., Scale space filtering (1983) 8th IJCAI, pp. 1019-1022Koenderink, J.J., The structure of images (1984) Biological Cybernetics, 50, pp. 363-370Yuille, A.L., Poggio, T.A., Scaling theorems for zero-crossings (1986) IEEE-PAMI, 8, pp. 15-25Ter Haar Romeny, B.M., Introduction to scale space theory (1996) Tutorial of Fourth International Conference on Visualization in Biomedical ComputingLindeberg, T., Detecting salient blob-like image structures and their scales with a scale space primal sketch: A method for focus-of attention (1993) Intemational Joumal of Computer Vision, 11 (3), pp. 283-318Florack, L.M.J., Ter Haar Romeny, B.M., Koenderink, J.J., Viergever, M., Scale and the differential structure of images (1992) Image and Vision Computing, 10 (6), pp. 376-388Rebelo, M.S., Gutierrez, M.A., Furuie, S.S., Moura, L., Extraction of cardiac structures through the incorporation of a priori knowledge in a multiscale approach (2000) Proceedings of Computers in Cardiology 2000, 27, pp. 611-614http://www.bme.unc.edu/mirg/mcat/Vincken, K., (1995) Probabilistic Multiscale Image Segmentation by the Hyperstack, , PhD Thesis. University of UtrechtThe Netherland
    corecore