10 research outputs found

    Enabling Multi-Stakeholder Cooperative Modelling in Automotive Software Development and Implications for Model Driven Software Development

    Get PDF
    One of the motivations for a model driven approach to software development is to increase the involvement for a range of stakeholders in the requirements phases. This inevitably leads to a greater diversity of roles being involved in the production of models, and one of the issues with such diversity is that of providing models which are both accessible and appropriate for the phenomena being modelled. Indeed, such accessibility issues are a clear focus of this workshop. However, a related issue when producing models across multiple parties,often at dierent sites, or even dierent organisations is the management of such model artefacts. In particular, different parties may wish to experiment with model choices. For example, this idea of prototypingprocesses by experimenting with variants of models is one which has been used for many years by business process modellers, in order to highlight the impact of change, and thus improve alignment of process and supporting software specications. The problem often occurs when such variants needed to be merged, for example, to be used within a shared repository. This papers reports upon experiences and ndings of this merging problem as evaluated at Bosch Automotive. At Bosch we have dierent sites where modellers will make changes to shared models, and these models will subsequently require merging into a common repository. Currently, this work has concentrated on one type of diagram, the class diagram. However, it seems clear that the issue of how best to merge models where collaborative multi-party working takes places is one which has a significant potential impact upon the entire model driven process, and, given the diversity of stakeholders, could be particularly problematic for the requirements phase. In fact, class diagrams can also be used for information or data models created in the system analysis step. Hence, we believe that the lessons learned from this work will be valuable in tackling the realities of a commercially viable model driven process

    Automatic layout of UML class diagrams in orthogonal style

    No full text
    Unified modelling language (UML) diagrams have become increasingly important in engineering and re-engineering processes for software systems. Of particular interest are UML class diagrams whose purpose is to display generalizations, associations, aggregations, and compositions in one picture. The combination of directed and undirected relations poses a special challenge to a graph layout tool. Current approaches for the automatic layout of class diagrams are based on the layered graph drawing paradigm. These algorithms produce good results for class diagrams with large and deep structural information, that is, diagrams with a large and deep inheritance hierarchy. However, they do not perform satisfactorily in absence of this information. We suggest to use the topology-shape-metrics paradigm for automatic layout of class diagrams, which has been used very successfully for drawing undirected graphs in orthogonal style. Moreover, we introduce the algorithms UML-Kandinsky and GoVisual fitting into this paradigm. Both algorithms work for class diagrams with rich structural information as well as for class diagrams with few or no structural information. Therefore, they improve the existing algorithms significantly

    New Approaches to Classic Graph-Embedding Problems - Orthogonal Drawings & Constrained Planarity

    Get PDF
    Drawings of graphs are often used to represent a given data set in a human-readable way. In this thesis, we consider different classic algorithmic problems that arise when automatically generating graph drawings. More specifically, we solve some open problems in the context of orthogonal drawings and advance the current state of research on the problems clustered planarity and simultaneous planarity

    Enabling collaborative modelling for a multi-site model-driven software development approach for electronic control units.

    Get PDF
    An important aspect of support for distributed work is to enable users at different sites to work collaboratively, across different sites, even different countries but where they may be working on the same artefacts. Where the case is the design of software systems, design models need to be accessible by more than one modeller at a time allowing them to work independently from each other in what can be called a collaborative modelling process supporting parallel evolution. In addition, as such design is a largely creative process users are free to create layouts which appear to better depict their understanding of certain model elements presented in a diagram. That is, that the layout of the model brings meaning which exceed the simple structural or topological connections. However, tools for merging such models tend to do so from a purely structural perspective, thus losing an important aspect of the meaning which was intended to be conveyed by the modeller. This thesis presents a novel approach to model merging which allows the preservation of such layout meaning when merging. It first presents evidence from an industrial study which demonstrates how modellers use layout to convey meanings. An important finding of the study is that diagram layout conveys domain-specific meaning and is important for modellers. This thesis therefore demonstrates the importance of diagram layout in model-based software engineering. It then introduces an approach to merging which allows for the preservation of domain-specific meaning in diagrams of models, and finally describes a prototype tool and core aspects of its implementation

    Visualization Algorithms for Maps and Diagrams

    Get PDF
    One of the most common visualization tools used by mankind are maps or diagrams. In this thesis we explore new algorithms for visualizing maps (road and argument maps). A map without any textual information or pictograms is often without use so we research also further into the field of labeling maps. In particular we consider the new challenges posed by interactive maps offered by mobile devices. We discuss new algorithmic approaches and experimentally evaluate them
    corecore