2,225 research outputs found

    Leveraging Supervoxels for Medical Image Volume Segmentation With Limited Supervision

    Get PDF
    The majority of existing methods for machine learning-based medical image segmentation are supervised models that require large amounts of fully annotated images. These types of datasets are typically not available in the medical domain and are difficult and expensive to generate. A wide-spread use of machine learning based models for medical image segmentation therefore requires the development of data-efficient algorithms that only require limited supervision. To address these challenges, this thesis presents new machine learning methodology for unsupervised lung tumor segmentation and few-shot learning based organ segmentation. When working in the limited supervision paradigm, exploiting the available information in the data is key. The methodology developed in this thesis leverages automatically generated supervoxels in various ways to exploit the structural information in the images. The work on unsupervised tumor segmentation explores the opportunity of performing clustering on a population-level in order to provide the algorithm with as much information as possible. To facilitate this population-level across-patient clustering, supervoxel representations are exploited to reduce the number of samples, and thereby the computational cost. In the work on few-shot learning-based organ segmentation, supervoxels are used to generate pseudo-labels for self-supervised training. Further, to obtain a model that is robust to the typically large and inhomogeneous background class, a novel anomaly detection-inspired classifier is proposed to ease the modelling of the background. To encourage the resulting segmentation maps to respect edges defined in the input space, a supervoxel-informed feature refinement module is proposed to refine the embedded feature vectors during inference. Finally, to improve trustworthiness, an architecture-agnostic mechanism to estimate model uncertainty in few-shot segmentation is developed. Results demonstrate that supervoxels are versatile tools for leveraging structural information in medical data when training segmentation models with limited supervision

    Knowledge-based document retrieval with application to TEXPROS

    Get PDF
    Document retrieval in an information system is most often accomplished through keyword search. The common technique behind keyword search is indexing. The major drawback of such a search technique is its lack of effectiveness and accuracy. It is very common in a typical keyword search over the Internet to identify hundreds or even thousands of records as the potentially desired records. However, often few of them are relevant to users\u27 interests. This dissertation presents knowledge-based document retrieval architecture with application to TEXPROS. The architecture is based on a dual document model that consists of a document type hierarchy and, a folder organization. Using the knowledge collected during document filing, the search space can be narrowed down significantly. Combining the classical text-based retrieval methods with the knowledge-based retrieval can improve tremendously both search efficiency and effectiveness. With the proposed predicate-based query language, users can more precisely and accurately specify the search criteria and their knowledge about the documents to be retrieved. To assist users formulate a query, a guided search is presented as part of an intelligent user interface. Supported by an intelligent question generator, an inference engine, a question base, and a predicate-based query composer, the guided search collects the most important information known to the user to retrieve the documents that satisfy users\u27 particular interests. A knowledge-based query processing and search engine is presented as the core component in this architecture. Algorithms are developed for the search engine to effectively and efficiently retrieve the documents that match the query. Cache is introduced to speed up the process of query refinement. Theoretical proof and performance analysis are performed to prove the efficiency and effectiveness of this knowledge-based document retrieval approach

    Multi-site, Multi-domain Airway Tree Modeling (ATM'22): A Public Benchmark for Pulmonary Airway Segmentation

    Full text link
    Open international challenges are becoming the de facto standard for assessing computer vision and image analysis algorithms. In recent years, new methods have extended the reach of pulmonary airway segmentation that is closer to the limit of image resolution. Since EXACT'09 pulmonary airway segmentation, limited effort has been directed to quantitative comparison of newly emerged algorithms driven by the maturity of deep learning based approaches and clinical drive for resolving finer details of distal airways for early intervention of pulmonary diseases. Thus far, public annotated datasets are extremely limited, hindering the development of data-driven methods and detailed performance evaluation of new algorithms. To provide a benchmark for the medical imaging community, we organized the Multi-site, Multi-domain Airway Tree Modeling (ATM'22), which was held as an official challenge event during the MICCAI 2022 conference. ATM'22 provides large-scale CT scans with detailed pulmonary airway annotation, including 500 CT scans (300 for training, 50 for validation, and 150 for testing). The dataset was collected from different sites and it further included a portion of noisy COVID-19 CTs with ground-glass opacity and consolidation. Twenty-three teams participated in the entire phase of the challenge and the algorithms for the top ten teams are reviewed in this paper. Quantitative and qualitative results revealed that deep learning models embedded with the topological continuity enhancement achieved superior performance in general. ATM'22 challenge holds as an open-call design, the training data and the gold standard evaluation are available upon successful registration via its homepage.Comment: 32 pages, 16 figures. Homepage: https://atm22.grand-challenge.org/. Submitte

    Improving Skin Lesion Segmentation via Stacked Adversarial Learning

    Get PDF
    Segmentation of skin lesions is an essential step in computer aided diagnosis (CAD) for the automated melanoma diagnosis. Recently, segmentation methods based on fully convolutional networks (FCNs) have achieved great success for general images. This success is primarily related to FCNs leveraging large labelled datasets to learn features that correspond to the shallow appearance and the deep semantics of the images. Such large labelled datasets, however, are usually not available for medical images. So researchers have used specific cost functions and post-processing algorithms to refine the coarse boundaries of the results to improve the FCN performance in skin lesion segmentation. These methods are heavily reliant on tuning many parameters and post-processing techniques. In this paper, we adopt the generative adversarial networks (GANs) given their inherent ability to produce consistent and realistic image features by using deep neural networks and adversarial learning concepts. We build upon the GAN with a novel stacked adversarial learning architecture such that skin lesion features can be learned, iteratively, in a class-specific manner. The outputs from our method are then added to the existing FCN training data, thus increasing the overall feature diversity. We evaluated our method on the ISIC 2017 skin lesion segmentation challenge dataset; we show that it is more accurate and robust when compared to the existing skin state-of-the-art methods
    • …
    corecore