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ABSTRACT 

 

Segmentation of skin lesions is an essential step in 

computer aided diagnosis (CAD) for the automated 
melanoma diagnosis. Recently, segmentation methods based 

on fully convolutional networks (FCNs) have achieved great 

success for general images. This success is primarily related 

to FCNs leveraging large labelled datasets to learn features 

that correspond to the shallow appearance and the deep 

semantics of the images. Such large labelled datasets, 

however, are usually not available for medical images. So 

researchers have used specific cost functions and post-

processing algorithms to refine the coarse boundaries of the 

results to improve the FCN performance in skin lesion 

segmentation. These methods are heavily reliant on tuning 

many parameters and post-processing techniques. In this 
paper, we adopt the generative adversarial networks (GANs) 

given their inherent ability to produce consistent and realistic 

image features by using deep neural networks and adversarial 

learning concepts. We build upon the GAN with a novel 

stacked adversarial learning architecture such that skin lesion 

features can be learned, iteratively, in a class-specific 

manner. The outputs from our method are then added to the 

existing FCN training data, thus increasing the overall feature 

diversity. We evaluated our method on the ISIC 2017 skin 

lesion segmentation challenge dataset; we show that it is 

more accurate and robust when compared to the existing skin 
state-of-the-art methods.  

 

Index Terms— Segmentation, Fully Convolutional 

Networks (FCN), Skin Lesion 

 

1. INTRODUCTION 

 

Malignant melanoma has one of the most rapidly 

increasing incidences in the world with a considerable 

mortality rate. Early diagnosis is particularly important since 

melanoma can be cured with prompt excision. Dermoscopy 

plays an important role in the non-invasive early detection of 
melanoma [1]. However, melanoma detection using human 

vision alone is subjective, can be inaccurate and poorly 

reproducible even among experienced dermatologists [2]. 

This is attributed to the challenges in interpreting images with 

diverse characteristics including lesions of varying sizes and 

shapes, lesions that may have fuzzy boundaries, different skin 

colors and the presence of hair [2]. Motivated by these 

difficulties, there has been a great interest in developing 

computer-aided diagnosis (CAD) systems that can assist the 
dermatologists’ clinical evaluation [1, 2]. 

Segmentation of skin lesions is an important step for a 

melanoma CAD. However, traditional methods [3, 4] that use 

edges, regions and shape models, rely on hand-crafted 

features and a priori knowledge that limit widespread 

application. Recently, deep learning methods based on fully 

convolutional networks (FCNs) have been successful in 

natural image segmentation related challenges [5]. This 

success is primarily attributed to the ability of a FCN to 

leverage large datasets to hierarchically learn the features that 

best correspond to the appearance as well as the semantics of 

the images [5]. In addition, FCNs can be trained in an end-to-
end manner for efficient inference, i.e., images are taken as 

inputs and the segmentation results are directly outputted. 

However, there is a scarcity of annotated medical imaging 

training data due to the large cost and human manpower 

required [6]. So in the situation where training data cannot 

account for skin lesions from different patients with large 

differences in textures/size/shape, FCNs do not provide 

accurate results. Data augmentation approaches, such as 

random crops, flips and color jittering, have been applied to 

increase the overall volume of the training data, but they 

simply duplicate existing training features rather than add a 
variety of new features for leaning. 

Some researchers have used specific cost functions and 

post-processing algorithms to refine the coarse boundaries of 

the results to improve FCN skin lesion segmentation. For 

example, Yuan et al [7] replaced the cross-entropy loss used 

in traditional FCN with a Jaccard distance loss for training. 

Bi et al [8] used cellular automata algorithm as a post-

processing algorithm to refine the FCN segmentation 

outcomes. Unfortunately, data specific cost functions have 

limited generalizability to different datasets. In addition, the 

reliance on post-processing algorithms could override the 

FCN outcomes because the post-processing is usually 
unsupervised and cannot fully describe the training data. 

In this paper, our aim is to improve the segmentation 

performance of FCNs via stacked adversarial learning (SAL). 

We leverage generative adversarial networks [9] (GANs) and 

add a stacked adversarial learning architecture to iteratively 
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learn skin lesion features in a class-specific manner e.g., 

melanoma and non-melanoma classes, and then added the 

learned skin lesion features into the existing FCN training 

data. Our hypothesis is that this approach will increase the 

overall feature diversity that then allows the FCN to learn and 

then improve the accuracy of the segmentation.  

 

2. METHODS AND MATERIALS 

 

2.1. Fully Convolutional Networks (FCNs)  

 

The FCN architecture was converted from convolutional 

neural networks (CNNs) for efficient dense inference [5]. It 

contains downsampling and upsampling components. The 

downsampling part has stacked convolutional layers to 

extract high-level semantic information and has been 

routinely used in CNNs for image classification related tasks 

[11, 12]. The upsampling part has stacked deconvolutional 

layers, which are transposed convolutional layers that 
upsample the feature maps derived from the downsampling 

component to output the segmentation results. For skin lesion 

segmentation, the FCN architecture can be trained end-to-end 

by minimizing the overall loss function (e.g., cross-entropy 

loss) between the predicted results and the ground truth 

annotation of the training data. The FCN parameters 

(weights) can then be updated iteratively using e.g., a 

stochastic gradient descent (SGD) algorithm. 
 

 

2.2. Stacked Adversarial Learning for Skin Lesion 

Features 

 

Adversarial Learning (also known as generative 

adversarial networks (GANs) [9]) has 2 main components: a 

generative model G (the generator) that captures the data 

distribution and a discriminative model D (the discriminator) 

that estimates the probability of a sample that came from the 

training data rather than G. The generator is trained to 

produce outputs that are difficult to be distinguished from the 

real data by the adversarially trained discriminator, while the 

discriminator is trained to detect synthetic data created by the 

generator.  
For learning skin lesion features, we embed the training 

label (annotation) for training and adoption as part of the 

formulation. During training, the generator takes the training 

label as the input to learn a mapping to synthesize the 
dermoscopic images that appear realistic. The discriminator 

then attempts to separate the real and synthetic dermoscopic 

images. Thus the loss function can be defined as conditional 

[13, 14] on the label 𝑙: 
 

ℒ(𝐺, 𝐷) = 𝔼𝑙,𝑦[𝑙𝑜𝑔𝐷(𝑙, 𝑦)] + 𝔼𝑙,𝑧[log(1 − 𝐷(𝑙, 𝐺(𝑙, 𝑧)))] 

 

where 𝑦  is the dermoscopy images and 𝑧  is the input 

random noise. 𝐷(∙) represents the probability that the input 

to 𝐷(∙)  came from the real data while 𝐺(∙)  represents the 

mapping to synthesize the real data. We used a stacked 

architecture to refine the output of the synthesized images, 

which can be defined as: 

 

ℒ(𝐺∗, 𝐷∗) = 𝔼𝑠,𝑦[𝑙𝑜𝑔𝐷
∗(𝑠, 𝑦)]

+ 𝔼𝑠,𝑧[log(1 − 𝐷∗(𝑠, 𝐺∗(𝑠, 𝑧)))] 
 

where 𝑠 is output of the synthesized data and Fig. 1 shows 

the overall structure of the proposed stacked adversarial 

learning. 

 

2.3. Adversarial Learning for Improving Segmentation  

 

Fig. 2 presents our proposed approach to leverage the 

proposed SAL. Initially, we separated the training data 

(denoted as 𝑅 ) into melanoma (denote as 𝑀 ) and non-

melanoma (denote as 𝑁) training sets. Afterwards, we used 

the label 𝑀𝑙  and images 𝑀𝑦  in 𝑀  to train a stacked 

adversarial learning model (SAL) for deriving melanoma 

 
 

Figure 1. Overview of our proposed stacked adversarial learning (SAL). 



features (denote as M-Model). The same approach was also 

used to train the non-melanoma training data (denote as N-

Model). At the adoption stage, the trained N-Model was 

applied on the label 𝑀𝑙  to produce the additional non-

melanoma training data 𝑁𝑦
∗
 while M-Model was applied on 

the label 𝑁𝑙 to get the additional melanoma training data 𝑀𝑦
∗. 

Finally, the original training data 𝑅 together with the derived 

additional training data were used to train a new FCN. The 

reason we divided the training set into two disjoint sets is so 

that the individual sets could describe different class-specific 
attributes, e.g., melanoma and non-melanoma. Consequently, 

this allows the FCN to learn additional skin lesion features in 

a controlled manner. 

We trained the first and the second stage of the SAL 

separately with the Torch library on a 12 GB Nvidia Maxwell 

Titan X GPU. For training the first stage we resized the image 

to 256×256 and to 512×512 for the second stage, while 

keeping the aspect ratio (the shorter axis of the image was 

padded with 0 values). The two stages were trained with a 

batch size of 1 at a learning rate of 0.0002 for 200 epochs.  

 

 
 

Figure 2. Outline of our approach. 

 

3. RESULTS AND DISCUSSION 

 

3.1. Materials and Experimental Setup 

 

The 2017 ISIC Skin Lesion Challenge (denoted as ISIC 

2017 [10]) dataset is a subset of the large International Skin 

Imaging Collaboration (ISIC) archive. It contains 

dermoscopic images acquired with a variety of different 
devices at numerous international clinical centers. The 

dataset provides 2,000 training images (1,626 non-melanoma 

and 374 melanoma) and a separate test dataset of 600 images 

(483 non-melanoma and 117 melanoma). Image size varies 

from 453×679 pixels to 4499×6748 pixels. The training 

dataset was used to train the deep models that were then 

applied on the test dataset. Manual delineations by clinical 

experts were used as the ground truth. 

To evaluate the effect of including SAL in FCN 

segmentation, we applied it to two widely used FCN 

segmentation models based on classic VGGNet [17] 
architecture (denote as VGGNet), and the more recent FCN 

using residual network architecture (101-layer, denoted as 

ResNet [15, 16]). The top 3 results from 21 teams for the ISIC 

2017 challenge [10] were used for further comparison. The 

common segmentation evaluation metrics including the dice 

similarity coefficient (Dice) and Jaccard (Jac.) were used.  

 
Table 1: Segmentation results for the ISIC 2017 Skin Lesion Challenge 

dataset. Red represents the best and Blue the second best results. 

 

  Dice Jac. 

Overall Team – Mt. Sinai [18] 84.90 76.50 

Team – NLP LOGIX [19] 84.70 76.20 

Team – BMIT [20] 84.40 76.00 

VGGNet 80.87 71.56 

VGGNet+SAL 81.35 72.34 

ResNet 84.69 76.21 

ResNet+SAL 85.16 77.14 

Non-

Melanoma 

Team – Mt. Sinai [18] 85.81 77.78 

Team – NLP LOGIX [19] 86.07 78.02 

Team – BMIT [20] 85.50 77.60 

VGGNet 81.74 72.88 

VGGNet+SAL 82.04 73.47 

ResNet 85.65 77.56 

ResNet+SAL 85.87 78.17 

Melanoma Team – Mt. Sinai [18] 81.04 71.20 

Team – NLP LOGIX [19] 79.07 68.82 

Team – BMIT [20] 79.62 69.28 

VGGNet 77.29 66.11 

VGGNet+SAL 78.50 67.67 

ResNet 80.74 70.60 

ResNet+SAL 82.23 72.91 

 

3.2. Results and Discussions 
 

Table 1 and Fig. 3 show that our method improves upon 

traditional VGGNet and ResNet based FCN segmentation 

methods and reflects the advantage of adding more variants 

of the skin lesion features to the original training data that 
then enables better learning. As expected, the differences 

between VGGNet and ResNet indicate the benefit of the deep 

residual architecture for segmentation, where residual blocks 

allowed the increase in overall depth of the network (101-

layer in ResNet compared with 16-layer in VGGNet) and thus 

resulted in more meaningful image features. 

Table 1 shows that our ResNet+SAL outperforms the 

state-of-the-art methods. Our approach improved on the 

Jaccard measure by 1.71% compared to team Mt. Sinai, by 

4.09% for team NLP LOGIX and 3.63% for the BMIT. 

Generally, melanoma studies are more difficult to segment, 
due to the marked inhomogeneity and non-uniformity of the 

boundary patterns. We attribute our enhancement to using 

SAL to derive additional class-specific e.g., melanoma and 

non-melanoma characteristics of the skin lesions. Hence the 

FCN can segment non-melanoma studies as well as the more 

challenging melanoma studies and ensures a balanced 

segmentation performance across melanoma and non-

melanoma studies. 

In Fig. 4, we show how the derived output images from 

SAL have various melanoma and non-melanoma 

characteristics and further that the output from the second 

stage is markedly improved and artifacts have been 
minimized. 



 

 
Figure 3. A sample segmentation result with: (a) input image, (b) ground 

truth annotation, (c-f) results from VGGNet, VGGNet+SAL, ResNet and 

ResNet+SAL. 
 

 
Figure 4. SAL feature learning results with: (a) real dermocopic images; (b) 

input label images; (c) and (d) derived additional training features at the first 

and the second stage of SAL. 

 

 

4. CONCLUSION AND FUTURE WORK 

 
We proposed a new method to improve FCN based 

segmentation for dermoscopic images via a stacked 

adversarial learning (SAL) approach. Our SAL learns skin 

lesion features iteratively in a class-specific manner e.g., 

melanoma and non-melanoma, and so improves the diversity 

of the features in the training data. Our experiments with the 

ISIC 2017 skin lesion challenge dataset show that our method 

improved the VGGNet and the recent ResNet based FCN 

segmentation methods. Further, when we coupled our SAL to 

ResNet it was the best performed method.   
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