
New Jersey Institute of Technology New Jersey Institute of Technology 

Digital Commons @ NJIT Digital Commons @ NJIT 

Dissertations Electronic Theses and Dissertations 

Spring 5-31-2001 

Knowledge-based document retrieval with application to Knowledge-based document retrieval with application to 

TEXPROS TEXPROS 

Fang Sheng 
New Jersey Institute of Technology 

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations 

 Part of the Databases and Information Systems Commons, and the Management Information 

Systems Commons 

Recommended Citation Recommended Citation 
Sheng, Fang, "Knowledge-based document retrieval with application to TEXPROS" (2001). Dissertations. 
482. 
https://digitalcommons.njit.edu/dissertations/482 

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital 
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital 
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu. 

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F482&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.njit.edu%2Fdissertations%2F482&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=digitalcommons.njit.edu%2Fdissertations%2F482&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=digitalcommons.njit.edu%2Fdissertations%2F482&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/482?utm_source=digitalcommons.njit.edu%2Fdissertations%2F482&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu


 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT

KNOWLEDGE-BASED DOCUMENT RETRIEVAL
WITH APPLICATION TO TEXPROS

By
Fang Sheng

Document retrieval in an information system is most often accomplished through

keyword search. The common technique behind keyword search is indexing. The major

drawback of such a search technique is its lack of effectiveness and accuracy. It is very

common in a typical keyword search over the Internet to identify hundreds or even

thousands of records as the potentially desired records. However, often few of them are

relevant to users' interests.

This dissertation presents a knowledge-based document retrieval architecture with

application to TEXPROS. The architecture is based on a dual document model that

consists of a document type hierarchy and a folder organization. Using the knowledge

collected during document filing, the search space can be narrowed down significantly.

Combining the classical text-based retrieval methods with the knowledge-based retrieval

can improve tremendously both search efficiency and effectiveness.

With the proposed predicate-based query language, users can more precisely and

accurately specify the search criteria and their knowledge about the documents to be

retrieved. To assist users formulate a query, a guided search is presented as part of an

intelligent user interface. Supported by an intelligent question generator, an inference

engine, a question base, and a predicate-based query composer, the guided search collects

the most important information known to the user to retrieve the documents that satisfy

users' particular interests.

A knowledge-based query processing and search engine is presented as the core

component in this architecture. Algorithms are developed for the search engine to

effectively and efficiently retrieve the documents that match the query.



Cache is introduced to speed up the process of query refinement. Theoretical proof and

performance analysis are performed to prove the efficiency and effectiveness of this

knowledge-based document retrieval approach.



KNOWLEDGE-BASED DOCUMENT RETRIEVAL
WITH APPLICATION TO TEXPROS

by
Fang Sheng

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy in Computer and Information Science

Department of Computer and Information Science

May 2001



Copyright © 2001 by Fang Sheng

ALL RIGHTS RESERVED



APPROVAL PAGE

KNOWLEDGE-BASED DOCUMENT RETRIEVAL
WITH APPLICATION TO TEXPROS

Fang Sheng

Dr. Gary Thomas, Dissertation Advisor	 Date
Professor of Electrical and Computer Engineering, NJIT, Newark, NJ

Dr. Peter A. Ng, Dissertation to-Advisor 	 Date
Professor of Computer Science, University of Nebraska at Omaha, Omaha, NE

Dr. D.C. Douglas Hung, Committee Member 	 Date
Associate Professor of Computer and Information Science, NJIT, Newark, NJ

Dr. Ajaz Rana, Committee Member 	 Date
Assistant Professor of Computer and Information Science, NJIT, Newark, NJ

Dr. Ronald S. Curtis, Committee Member 	 Date
Associate Professor of Computer Science, William Paterson University, Wayne, NJ



BIOGRAPHICAL SKETCH

Author:	 Fang Sheng

Degree:	 Doctor of Philosophy

Date:	 May 2001

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer and Information Science,
New Jersey Institute of Technology, Newark, New Jersey, 2001

• Master of Computer Science,
New Jersey Institute of Technology, Newark, New Jersey, 1998

• Master of Computer Science and Engineering,
Tsinghua University, Beijing, China, 1991

• Bachelor of Computer Science and Engineering,
Tsinghua University, Beijing, China, 1988

Major:	 Computer Science

Presentations and Publications:

Fang Sheng, Gary Thomas and Peter A. Ng, "Intelligent Document Retrieval: A
Knowledge-Based Approach", To appear in Proceedings of the Fifth World
Multi-conference on Systemics, Cybernetics and Informatics, July 2001.

Xien Fan, Fang Sheng, Xuhong Li, Zhenfu Cheng and Peter A. Ng, "A Scalable
Automated System for Document Management", In Proceedings of the Fifth
World Conference on Integrated Design and Process Technology, June 2000.

Xuhong Li, Zhenfu Cheng, Fang Sheng, Xien Fan and Peter A. Ng, "A Document
Classification and Extraction System with Learning Ability", in Proceedings of
the Fifth World Conference on Integrated Design and Process Technology, June
2000.

iv



Xien Fan, Fang Sheng and Peter A. Ng, "DOCPROS: A Knowledge-Based Personal
Document Management System", In Proceedings of the 10th International
Workshop on Database and Expert Systems Applications, pp. 527-531, September
1999.

Xien Fan, Fang Sheng, Simon Doong, Peter A. Ng and Ching-Song Don Wei, "A
Process for Constructing a Personal Folder Organization", in Proceedings of the
International Workshop en Multimedia Database, pp. 20 — 27, August 1998.



This dissertation is dedicated to
my son

and
my husband

vi



ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my advisor, Professor Gary Thomas, for

his valuable guidance, comments, and encouragement to make this final manuscript

possible. Also, I would like to express my deep appreciation to my co-advisor, Professor

Peter A. Ng, for his long time support, guidance and constant encouragement through the

whole process. Special thanks are given to Dr. D.C. Douglas Hung, Dr. Ajaz Rana and

Dr. Ronald S. Curtis for actively participating in my committee.

vii



TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 1

1.1 Overview of Related Work 	  1

1.2 TEXPROS and Previous Work 	 8

1.3 TEXPROS and KABIRIA 	 11

1.4 Document Retrieval vs. Document Browsing 	  15

1.5 Motivation 	  16

1.5.1 Challenge in Document and Information Retrieval 	  17

1.5.2 Knowledge-Based Retrieval 	  17

1.6 Scope of Dissertation 	  18

2 DOCUMENT RETRIEVAL PLATFORM 	 19

2.1 The Dual Model 	 19

2.2 Three-Level Document Repository 	 21

2.3 Knowledge Base 	 24

2.4 Knowledge-Based Evaluation Engine 	 25

3 KNOWLEDGE-BASED DOCUMENT RETRIEVAL 	 27

3.1 Information and Document Retrieval 	 27

3.2 Knowledge-Based Technique 	 28

3.3 Knowledge-Based Document Retrieval 	  31

3.3.1 Knowledge-Based Document Retrieval Architecture 	 31

3.3.2 Knowledge-Based Document Retrieval Workflow 	 33

4 DOCUMENT QUERY LANGUAGE 	 36

4.1 Query Language Requirements 	 36

4.2 Keyword Search vs. Predicate-Based Query Language 	 37

4.3 Predicate-Based Query Language 	 38

viii



TABLE OF CONTENTS
(Continued)

Chapter	 Page

4.4 Discussion 	 41

5 KNOWLEDGE-BASED QUERY PROCESSING AND SEARCH ENGINE 	 44

5.1 Query Parser and Optimizer 	 44

5.2 Knowledge-Based Document Search Engine 	 45

5.2.1 Search Strategy 	 45

5.2.2 Algorithms 	 49

5.2.3 Knowledge-Based Predicate Evaluation Engine for Document Retrieval 	 52

5.2.4 Query Cache 	 54

5.2.5 Theorem and Proof 	 56

5.2.6 Performance Analysis 	 57

5.2.7 Search Engine Workflow 	 58

5.3 Example 	 61

6 INTELLIGENT SEARCH TOOL: GUIDED SEARCH 	 66

6.1 Question Base 	 67

6.1.1 Question Sub-Base I 	 67

6.1.2 Question Sub-Base II 	 68

6.2 Rule Base 	 74

6.3 Inference Engine 	 76

6.4 Intelligent Question Generator 	 77

6.5 Query Composer 	 77

6.6 Example 	 77

7 CONCLUSIONS AND FUTURE WORK 	 82

REFERENCES 	 87

ix



LIST OF FIGURES

Figure 	 Page

1.1 TEXPROS architecture at component level 	  14

2.1 (a) An original email (b) Frame template for the email type

(c) Frame instance of the email 	  20

2.2 Three-level document repository 	  23

2.3 Knowledge-based predicate evaluation engine for filing 	  26

	

3.1 Architecture of Knowledge-Based Document Retrieval   34

3.2 Workflow of knowledge-based document retrieval 	  35

5.1 Knowledge-based predicate evaluation engine for retrieval 	  53

5.2 Workflow of knowledge-based document search engine 	 60

5.3 A document hierarchy for academic office environment 	  64

5.4 A folder organization for a NJIT office environment 	  65

6.1 Knowledge base of the example 	  80

6.2 Question sub-base II of the example 	  81



CHAPTER 1

INTRODUCTION

Today, a typical office generates hundreds of thousands of documents. With the boom of

Internet technologies, documents in electronic formats have increased dramatically. Such

a phenomenon has a huge impact on offices of the government, businesses and home.

Efficient and accurate document storage and retrieval are becoming more imposing and

difficult. Researchers from all over the world have been investigating various aspects of

document automation to simplify the process of tedious document processing and to

improve the office work environment. Many document processing systems and

methodologies have been developed. This chapter will introduce briefly some of the

related research work.

1.1 Overview of Related Work

Some information storage and retrieval research is focused on document image retrieval.

Printed documents including newspapers and business letters are often scanned (for

archiving or in an attempt to move toward a paperless office) and stored as images. In

order to make full use of the capabilities of traditional database indexing and retrieval

techniques, a full conversion of the document may be required. There are many factors,

however that may prohibit complete conversion -- including its high cost, insufficient

document quality, or the fact that parts of the document simply cannot be adequately

represented in a converted format. Methods have been developed to access document

images without relying on complete and accurate conversion.

For example, J. F. Cullen, J. J. Hull and P. E. Hart [11] built a system that uses

texture to retrieve and browse images stored in a large document image database. A

method of graphically generating a candidate search image is used that shows the visual

layout and content of a target document. All images similar to this candidate are returned

1



2

so that they may be browsed or for further inquiry. The system is accessed using a Web

browser.

A. F. Smeaton and A. L. Spitz [49] developed a method that makes

generalizations concerning the images of characters first, and then performs classification

and agglomerates the resulting character shape codes into word tokens based on character

shape coding. They are specific in their representation of the underlying words to allow

reasonable performance of retrieval.

Y. He, Z. Jiang, B. Liu and H. Zhao [22] proposed an index method based on

stroke density code to retrieve Chinese document images. This method firstly segments

the document image to get all the Chinese character images, then calculates stroke

density of each Chinese character image, and finally, obtains a stroke density code of the

character image. The index method has the advantage of speed and robustness to noise.

B. W. Stalcup, P. W. Dennis and R. B. Dydyk[51] developed the Imaged

Document Optical Correlation and Conversion System (IDOCCS) that provides a total

solution to the problem of managing and retrieving textual and graphic information from

imaged document archives. IDOCCS can be used to rapidly search for keywords or

phrases within the imaged document archives, as well as to automatically compare an

input document with the archived database to determine if it is a duplicate.

A few systems and methods have been developed to process multimedia

documents including audio, video and images. STRETCH [2] developed a system for

storing and retrieving imaged multimedia document by content. The core of STRETCH

system is a powerful archiving and retrieval Engine, based on a structured document

representation and capable of activating appropriate methods to characterize and

automatically index heterogeneous documents with variable layout and subsequently

retrieve them by answering complex queries.

ToCAI [1] proposed a framework for indexing and retrieval of multimedia

documents, which presents the ToCAI (Table of Content-Analytical Index) description



3

scheme for content description of audio-visual documents. The original idea comes from

the structure used for technical books. One may easily understand a book sequential

organization by looking at its table of contents to quickly retrieve elements of interest by

means of the analytical index. This description scheme provides a hierarchical description

of the time sequential structure of a multimedia document, suitable for browsing, together

with an "Analytical Index" (AI) of audio-visual objects of the document, suitable for

effective retrieval.

L. Wilcox and J. Boreczky [56] proposed a method for indexing and retrieval of

multimedia audio and video data based on annotation and segmentation. Annotation

refers to the association of text data with particular time locations of the media.

Segmentation is the partitioning of continuous media into homogenous regions. Retrieval

is performed over segments of the media using the annotations associated with the

segments.

W. W. Chu, C. C. Hsu, A. F. Cardenas, and R. K. Taira [10] developed a

knowledge-based approach to retrieve medical images by feature and content with spatial

and temporal constructs. Selected objects of interest in a medical image (e.g., x-ray, MR

image) are segmented, and contours are generated from these objects. Features (e.g.,

shape, size, texture) and content (e.g., spatial relationships among objects) are extracted

and stored in a feature and content database. Knowledge about image features are

expressed as a hierarchical structure called a Type Abstraction Hierarchy (TAH). A

knowledge-based spatial temporal query language (KSTL) was developed to support

approximate matching of feature and content, conceptual terms, and temporal logic

predicates.

P. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel and Z. Protopapas[27]

developed a method to retrieve medical tumors that are similar to a given pattern from a

large medical database. It used a natural similarity function for shape-matching, based on

concepts from mathematical morphology, and it can be lower-bounded by a set of shape



4

features for safely pruning candidates, thus giving fast and correct output. These features

were organized in a spatial access method, leading to fast indexing for range queries and

nearest-neighbor queries.

E. Ozkarahan [45] proposed an integrated conceptual representation scheme for

multimedia documents. It developed the necessary abstractions for the conceptual model

and extensions to the RM/T relational model used as the search structure. It then

developed a retrieval model in which the database search space is first narrowed down,

based on user query, by an associative search. The associative search is followed by

semantic and media-specific searches. A query language called SQLX is introduced to

formulate these searches directly from the conceptual model.

Much research work has been contributed to text-based document retrieval.

CONCERTO [4] is a comprehensive document processing system that supports indexing,

querying and retrieval of digital documents. A. Celentano, M. Fugini, and S. Pozzi[5]

proposed a distributed client/server architecture that supports the classification, filing and

retrieval of documents and the maintenance of system knowledge.

P. O'Neil [43] proposed a method that provides for an automatic representation of

text data by vectors that can then be manipulated to categorize and organize data.

Information can be retrieved without knowledge of the underlying process. The user can

ask for information using normal discourse.

R. M. Rohrer, J. L. Sibert and D. S. Ebert [42] proposed a shape-based visual

interface for text retrieval and interactive exploration. The exploratory system uses

procedurally generated shapes coupled with an underlying text retrieval engine.

Traditional text-based queries and summarization are enhanced with a visual interface

based on 3D shapes (glyphs). This interface allows visualizing multidimensional

relationships among documents and perceiving more information than with conventional

text-based interfaces.



5

R. Baeza-Yates and G. Navarro [3] focused on the issue of reducing the space

overhead when indexing large text database as the text collections grow in size. They

studied the space overhead and retrieval times as functions of the block size and found

that, under reasonable assumptions, it is possible to build an index that is simultaneously

sub-linear in space overhead and in query time.

R. Marega and M. T. Pazienza [38] developed an information retrieval using

semantic information, which can be automatically acquired by applying natural language

processing (NLP) techniques to texts. The information is represented using conceptual

graphs. The problem of synonyms and homonyms is addressed in the system by using a

model based on the interpretation of conceptual graphs extracted from texts. The

detection of contextual roles of words allows an improvement in retrieval precision over

traditional IR technologies. Ranking, based on document relevance, is obtained by

extending the vector space model into an oblique space and taking into account the

relevance among different word couples.

H. Chen [7] presented research on the design of knowledge-based document

retrieval systems. A semantic network structure was adopted to represent subject

knowledge, classification scheme knowledge, modeled experts' search strategies and user

modeling capability as procedural knowledge. These functionalities were incorporated

into a prototype knowledge-based retrieval system. This system was able to create a user

profile, identify task requirements, suggest heuristics-based search strategies, perform

semantic-based search assistance, and assist online query refinement.

Increasing amounts of research work has been done to address specific issues

concerned with the World Wide Web. The Web is currently a distributed mass of simple

hypertext documents. The languages we currently use to associate metadata with Web

resources are insufficient to satisfy all the requirements necessary to support precise,

flexible and scalable knowledge representation and information retrieval. P. Martin and

P. W. Eklund[39] explored the requirements for metadata languages to support



6

knowledge representation and retrieval on the Web. They also presented a new tool,

WebKB that interprets semantic statements stored in Web-accessible documents.

The World Wide Web is a world of great richness, but finding information on the

Web is also a great challenge. In order to clarify the ambiguity of the short queries given

by users, C. Chang and C. Hsu [6] proposed the idea of concept-based relevance

feedback for Web information retrieval. The idea is to have users give two to three times

more feedback in the same amount of time that would be required to give feedback for

conventional feedback mechanisms. Under this design principle, they apply clustering

techniques to the initial search results to provide concept-based browsing.

M. Ortega-Binderberger, S. Mehrotra, K. Chakrabarti and K. Porkaew [44]

focused on using an integrated textual and visual search engine for Web documents.

Query refinement is supported to enable cross-media browsing in addition to regular

searches.

D. Skuce [52] proposed a prototype system, IKARUS, with the potential of

integrating Web-based documents, shared knowledge bases, and information retrieval for

improving knowledge storage and retrieval. As an example, this paper discussed how to

implement both a user manual and an online help system as one system. The following

technologies are combined: a Web-based design, a frame-based knowledge engine, use of

an advanced full-text search engine, and simple techniques to control terminology.

A considerable amount of research is focused on applying and incorporating

artificial intelligent technologies to document retrieval. Classical methods such as

Boolean searches, the vector space model and probabilistic retrieval have been applied to

the field of document retrieval. However, these methods cannot handle the increasing

demands of end-users in satisfying their needs.

M. Cutler, H. Deng, S. S. Maniccam, W. Meng [12] developed a methodology

using the structures and hyperlinks of HTML documents and a genetic algorithm to

improve the effectiveness of retrieving HTML documents. This methodology partitions



7

the occurrences of terms in a document collection into classes according to the tags in

which a particular term appears (such as Title, H1 -H6, and Anchor). The rationale is that

terms appearing in different structures of a document may have different significance in

the identification of a document. The weighting schemes of traditional information

retrieval were extended to include class importance values. A genetic algorithm was

implemented to determine a 'best so far' class importance factor combination. The

experiments indicate that using this technique the retrieval effectiveness can be improved

by 39.6% or higher.

S. C. Hui and A. Goh [26] focused on how to apply neural networks and fuzzy

logic for document retrieval. In particular, the Fuzzy Kohonen Neural Network (FKNN)

is used as an example to illustrate the versatility of fuzzy neural networks as applied to

the document-retrieval process. The issues of training, pattern recall, ranking, relevance

feedback and performance issues of the FKNN document-retrieval process are discussed.

S. Chen and Y. Horng [8] developed a new method for fuzzy query processing for

document retrieval based on extended fuzzy concept networks. In an extended fuzzy

concept network, there are four kinds of fuzzy relationships between concepts, i.e., fuzzy

positive association, fuzzy negative association, fuzzy generalization, and fuzzy

specialization. An extended fuzzy concept network is modeled as a relational matrix and

a relevance matrix, where the elements in a relational matrix represents the fuzzy

relationships between concepts, and the elements in a relevance matrix indicate the

degrees of relevance between concepts. The implicit fuzzy relationships between

concepts are inferred by a transitive closure of the relation matrix. The implicit degrees of

relevance between concepts are inferred by a transitive closure of the relevance matrix.

This method allows the users to perform fuzzy queries in a more flexible and more

intelligent manner.

J. Horng and C. Yeh [23] proposed a novel approach to automatic retrieval of

keywords and then the uses of genetic algorithms to adapt the keyword weights.



8

This approach combines the Bigram model and PAT-tree structure to retrieve any type of

keywords, such as technical keywords and proper names. In comparison with the PAT-

tree based approach, this approach is more effective and faster. Genetic algorithms are

used to tune the weight of retrieved keywords.

1.2 TEXPROS and Previous Work

TEXPROS (TEXt PROcessing System) [37] is a comprehensive document management

system that provides a computerized environment for users to manage their personal

documents. The major components of TEXPROS include document classification and

extraction, document organization and filing, a document browser, and document

retrieval.

TEXPROS is built based on the dual-model approach, that makes TEXPROS

unique and standout from the other systems. The dual-model approach is a flexible,

dynamic office document modeling method that consists of a document type hierarchy

and a folder organization. The document type hierarchy is used to capture the layout, and

the logical and conceptual structures of documents. In TEXPROS, documents are

categorized into different classes. Each document class is represented by a frame

template, which describes the common properties of the class and is referred to the

document type. The frame templates define how documents should be abstracted and

interpreted. In addition to document type hierarchy, a folder organization is used to

mimic the real world structure for organizing and storing documents in an office

environment. Both document type hierarchy and folder organization is flexible and user-

oriented.

Document classification and extraction [29, 30, 31, 54, 55] is designed to find the

best-fit document type for a given document (and therefore, its associated frame template

is retrieved), and then to instantiate a frame instance of its type (represented by its frame

template) by filling in the underlying template with significant information of the



9

document pertinent to the user. This reduces the document size considerably without any

severe loss of content. Storage space and processing time are saved in many applications

by using frame instances instead of full documents. In the most recent work [31], an

automatic document classification and extraction system is developed to support a

complete procedure, which begins with the scanning of the paper document into the

system and ends with the output of an effective digital form of the original document. A

representation of document layout structure Labeled Directed Weighted Graph (LDWG)

and an algorithm of transforming document segmentation into LDWG representation are

proposed. To find a match between two LDWGs, string representation matching is

applied first instead of doing graph comparison directly, which reduces the time for

making the comparison. Applying artificial intelligence, the system is able to learn from

experiences and builds samples of LDWGs to represent each document type. This

document classification and extraction system is domain independent and can be adapted

easily to all kinds of application domains.

Document organization and filing [13, 15, 16, 17, 18, 19, 30, 57, 58] is designed

to organize documents in efficient ways and to find automatic approach building the

document base. In the most recent work [15, 16, 17, 18, 19], a knowledge-based

document filing system is presented. The document filing is predicate-driven process.

The user can specify filing criteria in terms of predicates. The two elements of the dual

model are incorporated by the three-level storage architecture. This storage architecture

supports efficient document and information retrieval by limiting the searches to those

frame instances of a document type within those folders that appear to be the most similar

to the corresponding queries. A knowledge base is presented to contain the knowledge

acquired during the document filing process, which is created and updated by a learning

agent.

The document browser [14, 35, 36, 53] provides an interactive Graphical User

Interface (GUI), through which users can browse documents stored in the system.



10

Users are required to fully participate in the browsing process by traversing the document

organization and repository from top to bottom. In [53], a three-layer architecture for the

document browser was proposed. At the top layer, the browsing process controller

conducts and monitors the browsing process and utilizes the services provided by the

service providers in the second layer. At the bottom layer, the storage management

system stores the document and frame instances and responses to the requests from the

service providers in the second layer. An infrastructure OP-Net was developed to

transform objects in the object network into the predicate-augmented information

repository. The predicate associated with each information repository governs the

relevant documents during the browsing process and is updated according to user's

query. A ranking model based on the signature of the documents and the user's query was

also developed. In [14], some improvements were made based on [53]. The user interface

is more friendly by adding functions such as "zoom in" and 'zoom out" as well as help,

which give users an easier way to view a large graph in one window and provide users

help during browsing. A reusable base that holds the basic components was developed to

speed up the retrieval.

The document retrieval subsystem is normally a query language based interface,

from which the user can specify and submit a query, and then wait for the search engine

to return documents that satisfy the user's search criteria. Document retrieval is a task-

oriented process. A user can enter a request to tell the system what he/she wants to

retrieve. The system processes the request and returns the result. The searching process

and details are totally hidden from the user. In [35, 36], an architecture with the capability

of processing incomplete and vague queries was proposed. A simple Structured Query

Language (SQL), Select-From-Where was developed for the retrieval. A thesaurus and an

object network were proposed to support incomplete and vague queries.

The TEXPROS system architecture at component level can be depicted in Figure.

1.1. At the input stage, upon the arrival of an original document, the document



11

classification and extraction classifies the document and, based on the document type,

generates its corresponding frame instance. Then the original document with its

corresponding frame instance are passed to the document organization and filing for

storing in their proper storage. That means, both will be stored in the document base.

During the phase of document classification and extraction, the document type hierarchy

gets updated if a new document type is found, whereas, the folder organization requires

to be updated, upon the insertion of the new document and its corresponding frame

instance into the file organization, during document organization and filing. To search

any documents stored in TEXPROS, users can use either document browser or document

retrieval component. The document browser provides users with interactive graphic

interfaces for browsing across the document base. Document retrieval provides a

language-based interface that allows users to retrieve documents by composing and

submitting a query.

1.3 TEXPROS and KABIRIA

This section discusses and makes comparisons between TEXPROS and other

comprehensive document management systems.

There are several document management systems that focused on text document

filing and retrieval. The recent work is the KABIRIA [5]. It is a knowledge-based

document filing and retrieval system that supports the classification, filing, and retrieval

of documents and the maintenance of system knowledge. A conceptual document model

and a document retrieval model are used to present the document structure and

operational meaning. The conceptual document model is used for document classification

and description and is concerned with the semantic aspects that are not directly and

explicitly contained the document text. Each document is modeled by means of a

conceptual structure for describing the semantic properties of the document. The

document retrieval model is built on the conceptual document model that attempts to



12

describe the role of a document in an office and its dependencies in the application

domain. The documents are then categorized into different classes. Documents with the

same structure, meanings and roles in offices are instances of a particular class.

Document classes are organized as an is-a hierarchy defining the refinement and

generalization relationships. At the input stage, incoming documents are passed to an

acquisition and classification module, where partial tree matching is carried out to

identify the possible matches in a given document class. Users must be involved in the

identification of the class to which an incoming document belongs. For a new document

type, the user must provide a description of the new document type, in order to create the

new conceptual structure and build links connecting the new document type within the

semantic network. The semantic network has two layers, namely class layer and instance

layer. The class layer contains the relationships between different types of documents,

and the instance layer contains the description of the environment within which the real

documents are embedded. A conceptual document is generated after recognizing the

incoming document type (class), and it is then passed to document filing. The conceptual

documents are organized based on their classes in the document organization and filing.

Original documents are stored in a document base. Classes and conceptual documents are

stored in the model base as nodes of the semantic network. The newly generated

conceptual document is inserted into the semantic network based on its document class.

Users are allowed to browse through the semantic network at either the class level

or the instance level. A query language KQL is provided to specify the search criteria for

the document class (type), conceptual structure, content and environment including role

and domain dependencies. The procedural knowledge concerning the relationships

among the documents and the related office components -- as well as the operational

properties -- is described in the document retrieval module. The procedural knowledge is

formalized by means of a network-based model which shows how documents are created

and accessed, how events trigger the procedures, and who executes the procedures.



13

The domain knowledge for a specific application is represented in terms of rules general

rules and navigation rules. The general rules concern the role of documents both in the

procedural context of office and in the context of laws and regulations of the application

domain. The navigation rules are used by the system for traversing the semantic network

during the search process.

TEXPROS has two major advantages over KABIRIA. The first advantage for the

TEXPROS is its document modeling. Combining the document type hierarchy,

TEXPROS allows users to create their own folder organization to model the document

organization in the same way as that in their real office environment. This gives

tremendous flexibility to users who may use the system for organizing, storing and

managing their own documents practically and conveniently, regardless of their

document types. However, KABIRIA provides the document type hierarchy only and

forces the documents to be organized according to their document types only. This model

is impractical to mimic the users' document filing systems with effective document

retrieval in the real world. The second advantage that TEXPROS has over KABIRIA is in

its knowledge management. TEXPROS has a knowledge base, including an object base

and a domain knowledge base, and a knowledge acquisition and learning mechanism.

This knowledge base accumulates knowledge automatically and dynamically (the

knowledge is kept up-to-date), which makes TEXPROS a domain independent system

and can be used in most kinds of office environments. However, although KABIRIA has

procedural knowledge and domain knowledge, its knowledge is managed in a static way,

which makes KABIRIA a domain dependent system and difficult to adapt to the

changing office environments.

KABIRIA provides a KQL query language to support document retrieval.

TEXPROS provides a strong platform to support more powerful query language-based

document retrieval, which is the research focus of this dissertation.



Figure 1.1 TEXPROS architecture at component level

14



15

1.4 Document Retrieval vs. Document Browsing

Both document retrieval and document browsing are user interfaces that enable users to

navigate and search documents stored in the system.

The document browser supports mainly explorative search. It provides facilities

that allow users to navigate the document system and find documents in which they are

interested. Normally, the browsing process is an iterative process, and requires full

participation from the users. It is usually used when a user has a vague search goal. For

users who know exactly what they are interested in, the browser is considerably time-

consuming and inefficient.

Document retrieval supports analytical search. It provides users with an interface

for specifying their search criteria. A query is then sent to the search engine, which will

return the result, if any, to the users. For document retrieval, the query definition and

search are separated processes. The users are only involved in defining the query. Upon

the arrival of the well-defined query, the system begins to search for a collection of

documents that are of interest. Because of this limited participation of the users, the

document retrieval process works best for the users when they have a specific search

goal.

Document browsing is a process, which is more or less similar to someone going

into a library to find something to read. Without knowing exactly what is wanted, he/she

starts from the index or search tools, reads the abstract, then goes to the bookshelf and

glances over the items of potential interest. This process may be repeated as his/her

interest changes, and finally, he/she finds some desired items, which could have nothing

to do with his/her initial goal.

Document retrieval is a process that is similar to someone going to a library and

asking the librarian for what he/she seeks (by either completing a request form or



16

answering the librarian's questions). Then the librarian handles the request and brings the

items to the user.

Document browsing and document retrieval are complementary and should be

interwove, in order to improve the effectiveness and efficiency of a process of retrieving

documents.

1.5 Motivation

The users who use TEXPROS to search for documents can be divided into two groups:

the one who has vague search goals and the other one who has explicit search goals. As

discussed in previous section, the document browser provides an interactive graphic

interface that allows users to traverse, perhaps with a vague search goal, the documents

stored in the system. For any user group, who has vague search goal, document browser

is the most appropriate vehicle to be used at their disposal. One of the disadvantages for

using document browser is that it requires the full participation from the users, and

therefore, it tends to be less efficient and time consuming for any user group with explicit

search goals. The ideal way to support this users group is to allow them specify their

requirements using a query language and then the system will return the documents

which meet their requirements. A language-based document retrieval is a necessary

component for TEXPROS to support its user group who has definitive and explicit search

goals. Thus, TEXPROS must have both the document browser and retrieval components

in order to meet the users' search needs.

Much research work has been carried out for TEXPROS and a handful of

evolutionary solutions have been proposed to make TEXPROS stand out from other peer

systems. However, little progress has been made in document retrieval since a simple

SQL-like (Select-From-Where) language was proposed in the early stage of TEXPROS

[35-37]. Even though, a thesaurus was proposed to support fuzzy keyword searches [53],

users are required to know more or less the detailed internal implementation of the



17

storage base of the system at a professional level. Furthermore, the underlining

components such as organization and document classification that support document

retrieval were in their early stage of development.

1.5.1 Challenge in Document and Information Retrieval

One of the major challenges in designing and developing a "good" document and

information retrieval subsystem is how to deal with the contradiction among its

efficiency, accuracy and ease of use. Retrieval using a simple language based query tends

to be more efficient and easy to use, but less accurate. Retrieval using a language with

more expressive power tends to be more accurate, but less efficient and more difficult to

use. Achieving the balance of these three factors becomes one of the major research

focuses in designing and developing a "good" document and information retrieval.

1.5.2 Knowledge-Based Retrieval

The research goal of this dissertation is to investigate and develop an approach that

supports efficient document retrieval using a more powerful query language. Both

efficiency and accuracy of this approach will be investigated. The basic foundation of this

approach is the use of the knowledge-based retrieval. It is our claim that, by incorporating

a knowledge base into the document retrieval process, the search efficiency and accuracy

can be improved tremendously.

Over the last five years, substantial improvements have been made in document

organizations and document classifications for TEXPROS. This presents a suitable

platform and test bed for studying the knowledge-based approach. The results of our

research development will be applied into TEXPROS.



18

1.6 Scope of Dissertation

The scope of this dissertation is to develop a completely new solution for document

retrieval with application to TEXPROS. In Chapter 2 the document retrieval platform

including the dual models, three-level document repository and knowledge base is

introduced. In Chapter 3, after discussing the knowledge-based technique and document

retrieval, the architecture for knowledge-based document retrieval is presented. In

Chapter 4 the document query language, which has much more expressive power to

support precise query specifications, is proposed. In Chapter 5 the knowledge-based the

document processing and search engine is presented. Using the dual model as well as the

knowledge collected during document filing, the search engine can efficiently and

effectively reduce the search space to a small set of documents, where documents that

match the query will be returned to the user. In Chapter 6 the guided search is proposed

to help users composing queries. Supported by an intelligent question generator and

inference engine, a question base and a predicate-based query composer, the guided

search collects the most important information know to a user to retrieve the documents

that satisfy user's particular interests. In Chapter 7 conclusions and future work are

discussed.



CHAPTER 2

DOCUMENT RETRIEVAL PLATFORM

As shown in Figure. 1.1, taking the dual model concept into consideration, the document

retrieval component is built upon the existing document organization and document

classification components. This chapter gives a brief introduction to the platform adopted

in this dissertation.

2.1 The Dual Model

TEXPROS employs a dual modeling approach for describing, classifying, categorizing,

filing and retrieving documents. This document model consists of two hierarchies: a

document type hierarchy and a folder organization.

Document type hierarchy depicts the structural organization of the documents. In

TEXPROS, documents are partitioned into different classes based on their common

properties. Each document class is represented by a frame template, which describes the

common properties in terms of attributes of the class and is referred to the document type.

The frame templates define how documents should be abstracted and interpreted. To

reduce the complexity of models and the redundancy in specifications, frame templates

that are related by specialization and generalization are organized as a document type

hierarchy.

Based on the document type hierarchy, documents are summarized from the

viewpoint of its frame templates into frame instances, which are synopses of the

underling documents. With structured format and relatively much smaller sizes, frame

instances can be processed much more efficiently than their original documents.

19



Date
Time

From
To
CC

Type

Subject

Date: Tue, 19 Sep 2000 15:30:12 -0400 (EDT)
From: Katherine Herbert <kherbert@homer.njit.edu >
To: phd@homer.njit.edu , CSfaculty@homer.njitedu
Cc: Katherine Herbert <kherbert@homer.njit.edu >,

Connie Perrin <perrin@homer.njit.edu>
Subject: CIS 791 Doctoral Seminar Webboard

Hello!

Recently a webboard was created for CIS 791 Doctoral Seminar. This
webboard is intended as a facility to help the PhD students throughout
their careers at NJIT. Hopefully, this webboard will become a place where
both the PhD students and faculty can meet and discuss their interests as
well as contain information pertinent to the completion of the CS Ph.D.
degree.

If you are interested in being a part of this webboard, please sign on to
it. It is located at http://webboard.njit.edu  under the Additional
Boards section.

Kathy Herbert

Figure 2.1 (a) An original email

Figure 2.1 (b) Frame template for the email type

Type Email
From Katherine Herbert
To Phd, CSfaculty
CC Katherine Herbert, Connie Perrin
Subject CIS 791 Doctoral Seminar Webboard
Date September 19, 2000
Time 15:30:12

Figure 2.1 (c) Frame instance of the email

20



21

In addition to a document type hierarchy, a folder organization is used to describe

how documents are managed and organized in a real-world office environment. The

folder organization is defined by a user corresponding to his/her view of the document

organization, which is obtained by repeatedly dividing documents for particular areas of

discourse into groups. Each folder has a user-defined criterion to govern the automatic

document filing. The folder organization provides efficient frame instance access by

limiting the search to those frame instances of a specific document type in a folder that

appears to be most relevant to queries in a collection of frame instances. Figure 2.1 shows

the frame template and frame instance of a viewgraph of an email.

Both the document type hierarchy and the folder organization are flexible and

user-oriented. With the user-oriented dual model, TEXPROS can interpret and organize

documents in the same way as users expected. This encourages users to provide more

useful information during retrieval, which will in turn improve the efficiency and

effectiveness.

2.2 Three-Level Document Repository

In this dissertation, a three-level architecture of a document repository [15, 17] is chosen

from previous proposed solutions to organize and store documents, which is depicted in

Figure 2.2.

The first level storage contains original documents, which are physically stored on

disks or any other storage media.

The second level storage contains frame instances, which are physically stored in

units of bookcases. Bookcases are organized based on the document type hierarchy. Each

frame template (i.e. a document type) can have a corresponding bookcase. Each bookcase

may contain multiple boxes. Each box contains all frame instances that satisfy certain

predicates. Analogous to the inverted indexing, each frame instance has a pointer to its



22

corresponding original document, and, also, it contains the most relevant information of

the document that is pertinent to the user.

The third level is the folder organization. Each folder is a virtual repository for a

set of frame instances that only store pointers to the frame instances at the second level.

Since the folder organization can be created using user-defined predicates, it is

flexible and user-oriented. The links between each level can be built automatically in

predicate-driven filing process. Also, in the process of creating the folder organization

and the three-level repository, a knowledge base is created containing the user's

knowledge of how the folders are organized as well as the objects involved in the domain

organization.

The advantages of adopting this three-level document repository architecture as

the document organization for document retrieval can be summarized as follows:

• It supports document retrieval based on both frame instance and frame template.

• It supports fast and efficient document retrieval by incorporating the dual models.

• It allows information about elements and their associations among them from

various levels of storage to be stored in the knowledge base to improve document

retrieval effectiveness.

• It supports predicate-based query language.



Figure 2.2 Three-level document repository

23



24

2.3 Knowledge Base

The knowledge base contains the knowledge of how to automatically organize and file

documents into the folder organization created by the user. The document filing is a self-

learned and automated process. Knowledge gathered and learned during the document

filing process is stored in the knowledge base.

The knowledge base plays a major role for filing documents in three ways.

Firstly, the information that is useful to find the documents is provided. This helps a user

write precise and efficient queries. Secondly, Folders that contain the user-wanted

documents can be searched and located. Locating the relevant folders, which possibly

contain the needed documents reduces the search space. Therefore, the knowledge base

could enhance the search efficiency. Finally, the knowledge base supports an automated

process for examining which documents satisfy the search criteria, and thus to prevent

irrelevant documents being returned, which in turn improves the effectiveness.

The knowledge base consists of a domain knowledge base and an object base. The

domain knowledge base contains the knowledge of the application domain. A domain

may consist of subdomains, and, in turn, a subdomain may have subdomains, and so on.

The subdomain knowledge is a collection of well-structured information of the

subdomains that an application domain has and of their relationships among these

subdomains is stored in the domain organization. In addition, a collection of well-

structured information of the properties of the subdomains and their relationships is

stored in the domain knowledge base as the property relations. Since the frame instances

are organized as a user-defined folder organization, the folder organization can be varied

from users to users. Different folder organizations have their own domain knowledge.

However, the domain knowledge for the domain knowledge base of a user-defined folder

organization can be extracted from the folder organization.



25

The object base contains a collection of well-structured information or facts about

the objects that appear in the user-defined predicates of their folder organization. The

object base is domain dependent. In different application domains, the object base deals

with different objects, and therefore, contains different knowledge. The object base

consists of a set of object pages. An object page is one-to-one associated with an object.

The object page for an object contains a collection of well-structured facts about the

object in terms of attributes (property names) and their values. Building an object base is

controlled by a learning agent using predefined learning topics and learning rules.

2.4 Knowledge-Based Evaluation Engine

To automate document filing, a knowledge-based predicate evaluation engine is

implemented to determine whether a frame instance satisfies a given predicate. The

engine is composed of a control module, two evaluation modules, an object base, a

domain knowledge base and an inference engine. The architecture of the knowledge-

based evaluation engine for filing can be depicted as in Figure. 2.3. First of all, the

incoming user-defined predicate is parsed and broken into predicate clauses and

constraints by the control module. This module also controls the other modules and

makes the final decision. The process of evaluating predicate clauses can be divided into

three stages. At the very first stage, the evaluation engine examines the first level

predicate clauses using information contained in the system catalog. At the second stage,

the evaluation engine II accesses the properties of objects from the object base and

information regarding the folder organization and its contents from the system catalog to

examine the second level predicate clauses. Any second level predicate clauses will be

passed to the third stage, whenever the evaluation engine II failed to evaluate them. At

the third stage, the inference engine carries out the further evaluation using any facts that

are related to their (i.e., predicate clauses) application domain and the properties of the

objects within their application domain.



Figure 2.3 Knowledge-based predicate evaluation engine for filing

26



CHAPTER 3

KNOWLEDGE-BASED DOCUMENT RETRIEVAL

In this chapter, the usage of artificial intelligent and knowledge-based techniques in

information and document retrieval is discussed. A knowledge-based document retrieval

architecture is presented to provide efficient and effective document retrieval for

TEXPROS.

3.1 Information and Document Retrieval

Indexing is a widely used technique in text-based search. The major problem of an

indexed search is the ineffectiveness. As the document base grows, the indexed search

tends to return more documents. It is very common that a typical keyword search over the

Internet identifies hundreds or even thousands of documents; some of these documents

are of interest to the user, but most of the these documents are of no interest to the user at

all. This sometimes makes a search ineffective, and even worse, the results obtained from

the search could be inapplicable, because it may not be practical or acceptable to users to

examine the returned documents one by one.

A solution for dealing with such a chaotic phenomenon is ranking the returned

documents according to their degree of significance or other factors. Many search tools

can be used for ranking the return documents based on pre-defined criteria. However, to

achieve an acceptable ranking, the search engine has to understand what the user is

looking for. Understanding what the user is looking for can be achieved, if the system

could provide users with a powerful query language that allows them to specify a more

precise query using feedback mechanism between the user and their system. The

keyword search is obviously insufficient. It is difficult for keyword search to verify

whether a document is related to a given keyword that does not appear in it. As a matter

27



28

of fact keywords are not the only information that users want to use for retrieving

documents.

However, the problem of efficiency of document retrieval, and of ease of use

could be arisen if the system adopts a powerful query language for users to define any

complex and precise queries. \A , ith knowledge of what a user is looking for, the search

engine also needs to analyze the returned documents in order to make an appropriate

ranking, which will decrease the efficiency when the result set is large. Also, composing

a complex and precise query using more powerful language may not be an easy job for

the average users.

A challenge in the information and document retrieval field is to achieve an

appropriate balance among the conflicting priorities of the search efficiency, the

effectiveness of retrieval, and the ease of use. A search using a simple query language --

with less expressive power -- tends to be more efficient and easy to use, but less accurate,

whereas a search using a complex language -- with more expressive power -- tends to be

more accurate and precise, but less efficient and more difficult to use. Finding a

methodology or an approach that provides the balance among the search efficiency and

effectiveness as well as the ease of use in order to give reasonably good solutions is the

major focus of this research.

One of the directions in dealing with this challenge is to adopt a sophisticated

language with reasonable expression power for ensuring the accuracy of document

retrieval, and apply artificial intelligent techniques, especially the knowledge-based

technique, in the information and document retrieval for improving the search efficiency.

3.2 Knowledge-Based Technique

With the advances of artificial intelligence, knowledge-based techniques began to play a

critical role in many research fields, including the field of information and document



29

retrieval. Knowledge-based techniques are used to support query processing, text and

image understanding, classification, categorization, etc.

In B. P. McCune, R. M. Tong, J. S. Dean and D. G. Shapiro [40], a research

prototype software system RUBRIC for conceptual information retrieval was developed.

The goal of the system is to provide more automated and relevant access to unformatted

textual databases. The approach is to use production rules from artificial intelligence to

define a hierarchy of retrieval subtopics, with fuzzy content expressions and specific

word phrases at the bottom. RUBRIC allows the definition of detailed queries starting at

a conceptual level, partial matching of a query and a document -- selecting only the

highest ranked documents -- for presentation to the user along with a detailed explanation

of how and why a particular document was selected. Initial experiments indicate that a

RUBRIC rule provides better matches to retrievals performed by human judgment than a

standard Boolean keyword expression, given equal amounts of effort in defining each.

In H. Chen [7], a research framework on the knowledge-based document retrieval

systems was presented. It adopted a semantic network structure to represent subject

knowledge and classification scheme knowledge. It also modeled experts' search

strategies and user modeling capability as procedural knowledge. A prototype

knowledge-based retrieval system METECAT was implemented based on the blackboard

architecture. It was able to create a user profile, identify task requirements, suggest

heuristics-based search strategies, perform semantic-based search assistance, and assist

online query refinement.

KABIRIA[4] takes into account the knowledge of a documents' environment,

including the roles of a document within an office and its dependence on law, regulations,

and habits of the application domain. A document retrieval model is proposed that is

based on the representation of knowledge describing the semantic contents of documents,

the way in which documents are managed by their procedures and by people in the office,

and the application domain where the office operates. The domain knowledge is



30

represented through rules including general rules and navigation rules, in order to relate

the components of the conceptual document model and the document retrieval model to

the rules and regulations that are held within a specific domain. The general rules are

related to the role of documents both in the procedural context of office and in the context

of laws and regulations of the application domain. The navigation rules are used by the

system to traverse the semantic network during the search process. A query language

KQL is proposed to specify the search criteria about the document class (type),

conceptual structure, content and application domain knowledge including the roles and

domain dependencies in a specific application domain.

In S. Chen and J. Wang [9], a knowledge-based approach dealing fuzzy

information retrieval is proposed, where interval queries and weighted-interval queries

are allowed for document retrieval. The knowledge is represented in a concept matrix.

The elements in a concept matrix represent relevant values between concepts. The

implicit relevant values between concepts are inferred by the transitive closure of the

concept matrix based on fuzzy logic.

In W. W. Chu, C. C. Hsu, A. F. Cardenas, and R. K. Taira [10], a knowledge-

based approach that retrieves medical images by feature and content with spatial and

temporal constructs is developed. Knowledge about an image's features is expressed as a

hierarchical structure called a Type Abstraction Hierarchy (TAH). The high-level nodes

in the TAH represent more general concepts than low-level nodes. Thus, traversing along

TAH nodes allows approximate matching by feature and contents if an exact match is not

available. In addition to TAH, a knowledge-based semantic image model is proposed that

consists of four layers (namely, the raw data layer, the feature and contents layer, the

schema layer and the knowledge layer) to represent the various aspects of an image

objects' characteristics. A knowledge-based spatial temporal query language (KSTL) is

developed that extends ODMG's OQL and supports approximate matching of feature and

content, conceptual terms, and temporal logic predicates.



31

3.3 Knowledge-Based Document Retrieval

TEXPROS provides a suitable platform and test bed for the research on knowledge-based

approaches to document retrieval. With the dual models and three-level storage

architecture, TEXPROS can support more powerful query language without necessarily

reducing efficiency. Using the knowledge collected during document filing, a query

preprocessing can be conducted to reduce the search space and focus the document

search on a small set of documents. Combined with classical text retrieval methods --

including indexing -- knowledge-based document retrieval can improve both efficiency

and effectiveness tremendously. Also, with the support of the dual models, the three-level

repository, the knowledge base, the system catalog and the predicate evaluation engine, a

user-friendly intelligent interface can be built to make the system easy to use. This

section introduces a knowledge-based document retrieval architecture that provides

efficient and effective document retrieval as well as ease to use user interface.

3.3.1 Knowledge-Based Document Retrieval Architecture

As depicted in Figure. 3.1, the knowledge-based document retrieval architecture is based

on the document retrieval platform described in Chapter 2.

In this architecture, a predicate-based query language is adopted for specifying

search criteria. The detailed description of this predicate-based document query language

will be given in Chapter 4. Since predicates have much more expressive power, users can

specify the search criteria and knowledge about the documents to be retrieved more

precisely and accurately. Since document filing in TEXPROS uses predicate-based

language for specifying filing criteria, a predicate-based query language allows the

document search engine to take advantage of the folder organization and the knowledge

collected during filing.



32

This architecture provides two kinds of user interface for naive users and

experienced users. Users can also specify queries using the proposed document retrieval

language and then submit them to the query processing and the search engine. For any

novice users, the guided search intelligent user interface provides a quick and easy

starting point. Instead of requiring users to compose queries, the guided search interface

collects information from users through a set of simple questions. The system will

automatically generate a predicate-based query after a user answers questions fully. The

user can then modify the query. It allows experienced users to use the guided search for

composing queries and then to modify them manually.

The guided search component includes a question base, a rule base, a question

generator, an inference engine, a predicate-based query composer, and the guided search

user interface. They work in a cooperated manner. The guided search begins the process

by asking simple questions about any document(s) a user wishes to locate. The question

base, generated dynamically based on knowledge of both the user-defined folder

organization and the knowledge base, contains all the questions whose answers may help

to improve the efficiency. The rule base contains the rules for governing the conversation

between the user and the interface. The rules determine which question, if the user knows

the answer, is the most important to speed up the retrieval in a particular scenario. The

rules also determine when the conversation should be ended if enough information has

been collected for improving the efficiency. The intelligent question generator and

inference engine, guided by the rules provided by the rule base, dynamically generates

subsequent questions from the question base depending on the answers given by the user

with respect to previous questions. The predicate-based query composer is used to

generate a query using predicate-based query language based on the information

collected from the user. The query can then be displayed to the user for evaluation and

modification.



33

The knowledge-based query processing and search engine includes a query parser

and an optimizer as well as a knowledge-based document search engine. The query parser

and optimizer are used to validate each element in the query, to normalize the query into

disjunctive normal form, and to sort the predicates. The optimization process guarantees

that the search engine processes the most important predicates in such a way for speeding

up the document retrieval. The knowledge-based search engine executes the query and

returns those documents that satisfy the search criteria.

The knowledge base, the system catalog, the dual-models and the three-level

repository, which are described in Chapter 2, provide support for the guided search

component and the search engine component.

3.3.2 Knowledge-Based Document Retrieval Workflow

The workflow of the knowledge-based document retrieval is shown in Figure 3.2. At the

input stage, a query using the predicate-based document query language must be

composed in order to identify to the system the desired documents. The experienced user

can compose the query using the query language directly. The novice user can use the

intelligent search tool to compose the query by answering simple questions. Then, the

query is submitted to the query parser and optimizer. The knowledge-based search engine

takes the optimized query and conducts the search. Finally, the documents that match the

user's search requirements are returned to the user.



34

Figure 3.1 Architecture of Knowledge-Based Document Retrieval



35

Figure 3.2 Workflow of knowledge-based document retrieval



CHAPTER 4

DOCUMENT QUERY LANGUAGE

One of the major objectives of this dissertation is to investigate and develop a

knowledge-based document retrieval approach with an application to TEXPROS. This

approach should be able to balance the three conflicting factors of efficiency,

effectiveness and ease of use to provide a good solution in document retrieval. In order to

allow the user to communicate with the system and tell the system his/her specific search

goal, a language is necessary to support the interactive and precise communications

between the user and the system. The user should be able to use the language, in a natural

and concise way, to specify the search criteria and the knowledge about the documents.

In this chapter, the predicate-based document query language is presented to support

accurate query specification for knowledge-based document retrieval.

4.1 Query Language Requirements

The query language is used to formalize users' search request in such a way that the

search engine can understand and process it. Generally speaking, the query language

must have enough expressive power to specify any search requests that the search engine

supports. In the mean time, the query language should be easy to use and understand.

More specifically in TEXPROS, the query language should be able to describe a

document to the extent that the document model can support. This allows users to search

a document based on any content that has been captured by the document model. In other

words, the query language should be powerful to express and to describe the dual models,

namely the document type hierarchy and the folder organization, which are defined by

the users.

36



37

In addition, the query language should be able to specify any knowledge of

document that is used in document filing. The folder organization organizes documents

into folders according to user-specified filing criteria, which helps to improve the

efficiency by allowing document search through a particular folder. Taking full

advantage of the folder organization, the query language should be powerful enough to

express and describe the user-defined folder organization including the document filing

criteria.

4.2 Keyword Search vs. Predicate-Based Query Language

Keyword search is the most common and easiest way to retrieve particular information

from data sources. Since a keyword search has very limited expressive power for

describing the search criteria and the search process is simply a string matching, its

results normally contain "noisy" information, namely most of the information is

irrelevant to users' interests. For example, a user is looking for a letter sent by a

professor. The user may get a lot of irrelevant documents, where the words "letter" and

"professor" appear as part of the content of each of the documents, if the user issues the

query using words "letter" and "professor" as the search keyword. This is because the

term "letter" and "processor" are conceptual information, not the content of the letter.

Keyword search is obviously insufficient to support sophisticate and precise document

search.

Comparing with the keywords, a predicate has much more expressive power to

describe the search criteria and users' knowledge about the documents precisely and

accurately. Upon receiving predicates specified by the predicate-based language, the

search can return results that satisfy users' particular interests to a greatest extent of

satisfaction. But the search process requires a more complicated platform to support its

use.



38

The TEXPROS platform consists of a three-level document repository, a

predicate-driven folder organization, a knowledge base, and the dual-model. The

predicate-based query language is expressive-powerful enough to describe this platform.

4.3 Predicate-Based Query Language

In this dissertation, a predicate-based language is adopted as the query language. The

main reason is that while predicate-based language has reasonable expressive power, it is

easy to use and understand due to its simple syntax. Another reason is that a predicate can

be easily translated into terms specified by the natural language. It is possible to develop

a more friendly user interface for inexperienced users and this interface is called the

guided search, which will be introduced in Chapter 6. In this section, the specification of

the predicate-based query language for knowledge-based document retrieval is presented.

A predicate-based language [15, 17] is used in document filing in TEXPROS for

specifying filing criteria. To keep all information consistent within the system, and, more

importantly, to take full advantages of the knowledge base and folder organization that

are created during document filing process, the predicate-based query language is defined

based on predicate-based filing language. Modifications and extensions are made to make

the predicate-based query language suitable for document retrieval.

Predicates are statements about objects. In this query language, two kinds of

objects are allowed to appear in predicates. One is the frame instance. The other is the

object that is relevant to the frame instance.

Definition 4.1 (Pattern) A pattern is a format that defines a specific way to convert a

string to another. The following symbols can be used for specifying a pattern:

? : one character

* : any number of characters

# : one character that can be ignored



39

- : any number of characters that can be ignored

Definition 4.2 (First Level Predicate Clause) A first level predicate clause has the format

p(FI, v[, r]) where

1. p is the name of the predicate clause and can be an attribute of the frame instanceFI;

2. FI is a frame instance, which is a reserved keyword by the system;

3. v is either a value or a variable;

4. If v is a variable, then r can be given as a pattern.

The first level predicate clauses are used to describe the characteristics of the

frame instance FI, which is defined based on its associated frame template stored in the

document type hierarchy. Each first level predicate clause represents a single

attribute/value pair. Therefore, a frame instance can be represented by a set of first level

predicate clauses. For example, Type (FI, Letter) is to denote the attribute Type of the

frame instance FI having the value Letter.

This definition is derived from the First Level Predicate Clause definition in

document filing language [15]. The difference is that the first parameter in the clause is a

reserved keyword, not an arbitrary variable. The purpose of this change is to make it

suitable for specifying queries to search for documents.

Definition 4.3 (Second Level Predicate Clause) A second level predicate clause has the

format p(x, v[, r]) where

1. p is the name of the predicate clause and can be a property name of the object x;

2. x is an object;

3. v is either a value or a variable;

4. If v is a variable, then r can be given as a pattern.



40

The second level predicate clauses are used to specify the properties of an object that

is related to a frame instance. Its definition is based on the structure of the knowledge

base. Each second level predicate clause represents a single property/value pair of a

given object. Considering the relation between an object and a frame instance, a second

level predicate clause also represents a piece of knowledge of a document. For example,

Occupation (Sender, Professor) denotes that the Occupation of the object Sender is

Professor. If it appears in a query, then the requested documents are sent from a

professor.

This definition is the same as the Second Level Predicate Clause definition in

document filing language [15]. If the second parameter in a first or second level

predicate clause is a value, the first or second level predicate clause is called a goal

predicate clause. If the second parameter in a first or second level predicate clause is a

variable, the first or second level predicate clause is called an assignment predicate

clause. A goal predicate is a true or false statement. An assignment predicate clause is to

assign a value to its second parameter, which makes the predicate clause true. The

pattern is used to specify particular matching needs. For instance, the first order

predicate clause Date (FI, v, ##/##/????) assigns the year of the value of the attribute

Date to the variable v by using pattern ##/##/???? as the third parameter.

Definition 4.4 (Predicate Constraint) A predicate constraint is a relation among variables

and values using the operators in {"=", "#", "<", ">r, "E", "0"}

This definition is derived from the Predicate Constraint definition in document

filing language [15]. The difference is that the "a" is added to make it a complete

operator set.



41

Definition 4.5 (Atomic Predicate) An atomic predicate is either a goal predicate or a n-

tuple (P1, P2, Pn), where Pi, 1 n, is either an assignment predicate clause or a

predicate constraint.

This definition is the same as the Atomic Predicate definition in document filing

language [15]. (Date(FI, v), v > 01/01/2000) is an example of atomic predicate, which

specifies that the attribute date of the frame instance is greater than 01/01/2000.

Definition 4.6 (Logical Operations) A logical operation is a relation among the TRUE,

FALSE and atomic predicates using operators in {A, v, where A stands for AND

operation; v stands for OR operation; stands for NOT operation.

Definition 4.7 (Predicate)

1. A truth value TRUE or FALSE is a predicate.

2. An atomic predicate is a predicate.

3. If P is a predicate, then P is a predicate.

4. If P and Q are predicates, the (P n Q) and (P v Q) are predicates.

As to the query discussed earlier in this section, it can be expressed with the

proposed document query language precisely as

(Type(FI, Letter) A Occupation(Sender, Professor))

4.4 Discussion

The document retrieval language is proposed for users to search for the documents stored

in the system. With this document retrieval language, users can specify both searching

criteria and their knowledge about the documents to be searched in a precise and accurate

manner, which is much better than simple keyword search. In designing this document

retrieval language, the balance between the characteristics of the language's simplicity

and its expressive power is taken into consideration. The more complex the language is,

the more difficult it is to use and the less efficient it will be to process.



42

However, the language has to be more complex than simple keywords in order to support

the effective document retrieval. The goal of designing the document retrieval language

is to preserve the language's simplicity without loosing its necessary expressive power

for formulating a precise query specification. To keep consistent with the document filing

language, this document retrieval language is based on the general First Order Predicate

Logic (FOPL). The limitation of FOPL is that the object can not be a predicate. Certain

modifications are made to tailor it for document retrieval purpose. In this section, a

summary about the major differences between the document retrieval language and

FOPL language is given.

One of the major differences is that the restrictions are enforced on the objects

involved in the predicate specification. Only the frame instances and the objects that are

related to the documents are valid objects. Also, the concepts of first order predicate

clause and second order predicate clause are introduced to describe the properties of the

frame instances and related objects respectively, which enhance the restriction on the

objects. In FOPL, any objects can be in the predicates. The evaluation of the predicate

requires redefining the knowledge of the involved the objects. The knowledge base and

the dual model, including the document type hierarchy and folder organization in

TEXPROS, contain the information about the frame instance and the object that related to

the documents only. The objects that are irrelevant to the documents are useless for the

document retrieval. So, restricting the objects involved in the predicates can simplify the

predicate specification and in turn speed up the query processing. Another major

difference is that the proposed document retrieval language has precise syntax including

the restrictions on which symbols can be used in specifying predicates. For example the

frame instance has to be expressed by using symbol "FI". The precise syntax can unify

the query specification and evaluation and in turn to speed up the document retrieval.

Also, it guarantees that only the facts that are relevant to document retrieval can be

expressed and the predicate can be understood within the application domain.



43

The third major modification is that only one object is allowed in each predicate clause.

The assignment of a predicate clause and the predicate constraints are used to present the

relationships among the frame instances and the objects that are related to the frame

instances. In FOPL, multiple objects appearing in a single atomic sentence are allowed,

which may make it ambiguous. Restricting FOPL to a single object helps the system to

interpret the predicate in the same way as users expected and in turn to improve the

search efficiency and effectiveness. The fourth major difference is that the concept of

attribute and value in the predicate specification is introduced. A predicate clause

describes a property of an object in terms of attribute-value pair. This simplifies the

predicate evaluation and, in turn, to reduce the occurrence of misinterpretations. The last

major difference is that the universal quantifier and existential quantifier are not allowed

in the proposed document retrieval language. Instead of the quantifier, variables in the

proposed predicate specification are defined by assignment predicate clauses. The

universal quantifier is rarely needed. Eliminating the use of quantifiers can simplify the

predicate evaluation and speed up the document retrieval process.



CHAPTER 5

KNOWLEDGE-BASED QUERY PROCESSING AND SEARCH ENGINE

As discussed in Chapter 3, with the dual models, three-level storage architecture and

knowledge base, TEXPROS can support precise query specifications using the proposed

predicate-based document retrieval language without necessarily affecting system

efficiency. The solution is a knowledge-based document retrieval approach. Using the

knowledge collected during document filing, the search space can be reduced

significantly. Combined with classical text-retrieval methods including indexing,

knowledge-based document retrieval can improve tremendously both efficiency and

effectiveness. In this chapter, algorithms, theoretical proofs, performance analysis and

workflow about the knowledge-based query processing and search engine are given.

5.1 Query Parser and Optimizer

As shown in Figure 3.1, there are two ways for users to compose a query that specifies

the search criteria and the knowledge about the documents to be retrieved. The

experienced user can compose a query using the proposed document query language

directly, while the new users can compose the query through the intelligent tool guided

search. Upon the arrival of a query specification, the query is passed to the query parser

and optimizer, which is used to validate each element in the query and to normalize the

query into disjunctive normal form as well as to optimize the query. The workflow is as

follows:

1. Scan the query by isolating operators and atomic predicates.

2. Validate all operators.

3. Validate all atomic predicates.

4. Normalize the query into disjunctive normal form.

44



45

5. Optimize the query by re-ordering the predicates in each conjunctive element

("AND" clauses) to make the first-level predicates preceding the second-level

predicates.

Since first-level predicates are used to specify the document type and other attributes

of frame instances, processing first-level predicates before second-level predicates can

more rapidly narrow the search space.

5.2 Knowledge-Based Document Search Engine

The knowledge-based document search engine is the core component in the proposed

knowledge-based document retrieval architecture. The normalized and optimized query is

the input of the knowledge-based document search engine. The output of the search

engine is the search results that satisfy the search requirements specified in the query.

The knowledge-based document search engine uses all the resources in the platform

namely, the document type hierarchy, the folder organization, the three-level document

repository, the knowledge base, the predicate evaluation engine and the system catalog in

order to provide the best match results to the user.

5.2.1 Search Strategy

Two most important criteria for measuring document retrievals are the efficiency and

effectiveness. More research in document retrieval has been focused on the search

efficiency. However, as the document base size grows, the search effectiveness becomes

more and more critical. It is very common that a typical keyword search over the Internet

gets hundreds or even thousands documents returned. This sometimes makes the search

useless, because it may not be practically or acceptable for users to examine the returned

documents one by one.

The goal of the document retrieval process in this dissertation is to improve both

efficiency and effectiveness. One of the reasons for the poor accuracy of document



46

retrieval is the lack of a powerful query language that allows users to specify more

precisely the desired documents. This was addressed in Chapter 4 with a predicate-based

query language, which allows users to specify their search criteria from various aspects

and levels. Another reason is that documents are returned when they are identified as

being related to the query. Although documents are usually ranked according to the

degree of query relevancy, users still face a large quantity of returned documents. A

direct way to improve the effectiveness is to examine each document against the query,

and eliminate any obtained documents that do not satisfy the query before return them to

the user. There are two major challenges to doing so. The first is the need for precision in

the query so that the search criteria can be effectively evaluated against each document

within the search space. In this dissertation, the knowledge base generated during

document filing is used as the knowledge base to support document retrieval. The second

challenge is the one of efficiency. Examining each document would slow down the

search process. To address this problem, a knowledge-based query preprocessing is

performed to reduce the search space to a small set of documents. With dual models,

generating a much smaller and complete set of relevant documents that match the search

criteria is possible.

There are two entries to reduce the search space. One is from the document type

hierarchy. Identifying the document type enables the search to be concentrated on

documents of the type only. Checking the system catalog with the information specified

in the query identifies the document type. Obviously, a deeper node (ideally a leave node)

in the document type hierarchy is preferred since it represents a smaller set of documents.

While users tend to remember a more general document type, it is important for the

search engine to identify the most specific document type based on the information

specified in the query. According to the document storage architecture, documents of the

same type are stored together. This makes it efficient to locate the documents once their

type is identified. With the help of document storage architecture, the search space can be



47

further reduced to a particular box, a subset of the document type, if the common feature

of the box holds according to the search criteria.

The other entry is from the folder organization. In the real world, documents are

organized into folders. Each of the folders contains documents related for a specific

purpose. Documents can be found quickly by looking at a specific folder, as long as the

right folder is identified. The folder organization is the users' perspective of document

organization. From users' point of view, documents are organized based on predefined

filing criteria. This makes the document search possible simply looking into a specific

folder. The key issue here is how to efficiently identify the smallest folder and a subset of

an identified folder that contains all the relevant documents. The process requires well-

structured information stored in the knowledge base and efficient evaluation process from

the predicate evaluation engine. The algorithm will be described in later sections. To

speed up the process of finding the smallest folder and a subset of an identified folder that

contains all the relevant documents, search criteria can be cached to avoid repeating the

processing for the same criteria.

Theoretically, the search space can be further reduced when both the document

type and the smallest folder are identified. Note that a folder can contain documents of

various types. Therefore, given a specific document type, a smaller subfolder containing

all the documents of the given document type can be obtained by applying the

intersection operator of the document types and the folders. Suppose T is the set of

documents identified by examining the document type hierarchy (could be a whole

bookcase or a box), and F be the folder identified when evaluating the folder

organization. The search can be done on the smaller of T and F, or on the intersection.

Which way is better depends on whether the intersection can be generated efficiently.

With the three-level document storage architecture that incorporates the dual models, it is

more efficient to search on the intersection of T and F. According to the document

storage architecture, frame instances are physically stored on second level based on



48

document type hierarchy. Folders, as logical storage, contain the pointers to the physical

locations of the frame instances on the second level. By looking at the pointers, one can

tell what document types and which boxes the frame instances are. Therefore, a single

scan on the pointers can generate the intersection of T and F. This is much more efficient

than document searching on the smaller of T and F, because examining the pointers is

much faster than examining documents.

After the search space is reduced to a small set of documents, documents will be

matched against the query. Only the documents that satisfy the search criteria will be

returned to users. This match process is needed because the preprocessing only

guarantees that the set of document candidates contains all the relevant documents. But

not all the documents in the set satisfy the query. The process can be knowledge-based or

content-based, depending on the criteria in the query. Keyword criteria require matching

the keyword in a specific part (attribute) of the documents. For single word matching,

indexing technique could be used to avoid runtime word matching. Because the frame

instances are structured text-based synopsis of the original documents, runtime word

matching is still needed for the part that is not indexed, or for evaluating exact sentence

or group of word criteria. If the query contains high-level criteria, knowledge-based

matching is required to evaluate whether a document satisfies the criteria.

For an efficient query, which contains necessary useful information to narrow

down the search space, the above strategy makes the search very efficient and effective.

A less efficient query, such as the one that contains only keyword criteria, will force the

search engine either return all the related documents with poor accuracy, or examine a

large set of documents which reduces the efficiency. Therefore, an efficient query should

contain not only the criteria that can identify the document wanted, but also information

that can help the search engine to quickly limit the search on a small set of documents.

Note that users define the folder organization and the document type hierarchy. It is

reasonable to assume that users can provide information or clue for determining which



49

folder should contains the relevant documents, and which document type they are looking

for. The issue is how to help users to specify such information. This topic will be

discussed in the next Chapter, which presents a guided search to help users to input

necessary and useful information about the documents they are looking for.

5.2.2 Algorithms

Algorithms are presented based on the search strategy, which constitute the most critical

part of the search engine. They can be divided into two groups. The first group of

algorithms included in Algorithms 5.1, 5.2 and 5.3 are used to narrow down the search

space to a set of frame instances. The second group of algorithms included in Algorithm

5.4 are used to search the original documents that exactly match the search requirements

in the narrowed search space (the set of frame instances) generated by the first group of

algorithms. In this section, the detailed description of the algorithms is given.

Algorithms 5.1 Let Q be a normalized and optimized query formula that is in disjunctive

normal form Q1 v ...v Qi v... v Qn, i =1..n

1. Generate a set of attributes FA by scanning the elements in query formula Q that

contains first level predicates;

2. Generate a set of document types T that contains all attributes in FA by scanning

the leaf level in the document type hierarchy;

3. Return T.

This algorithm is used to derive the document types from the query specified by a

user. Knowing the document type of documents to be retrieved can help to reduce the

search space quickly based on the three-level document repository. Since the attributes

specified in the query may not exactly match the attribute definitions in document type

hierarchy, the thesaurus in the system catalog and the well-structured information in the

knowledge base can be helpful in step 2 to find the document type.



50

Algorithm 5.2 Let Q be a normalized and optimized query formula that is in disjunctive

normal form Q1 v ...v Qi v...v Qn, i =1..n. For the given Qi,

1. Place the root of the folder organization into a stack called ST. Use F to record the

smallest folder ever placed in ST. Initialize F with the root.

2. While ST is not empty, do the following:

2.1 Pop up a folderffrom ST

2.2 For each child c off, Do

(a) If c is connected to folderfwith and-link, and has not been visited from all

the parent folders connected with and-links, mark c as visited from f. Go

to next child.

(b) Let P be the local predicate of c, check whether Qi→P holds. If yes, push

c into ST.

2.3 Compare F with the folder just pushed into ST. If the folder just pushed into

ST is smaller than F, then update F with the smaller one.

3. Return F

The target folder is identified as the smallest folder in the folder organization whose

global predicate can be inferred from the query. This algorithm is for finding the target

folder. The folder returned by this algorithm contains pointers to the frame instances of

the candidate original documents that the user searches for. In step 2.2 (b), the local

predicate P and Qi are submitted to the knowledge-based predicate evaluation engine for

evaluation, which will be addressed later in this chapter.

Algorithm 5.3 Let Q be a normalized and optimized query formula that is in disjunctive

normal form Q1 v ...v Qi v... v Qn, i =1..n

1. Identify the set of document types T = {Tj} by calling Algorithms 5.1;

2. For each conjunctive element Qi, do



51

2.1 Find the smallest folder Fj whose global predicate can be inferred from the

conjunctive formula Qi by calling Algorithm 5.2;

2.2 If the number of document types in T greater than a threshold, then set FIji

equals to Fj and then go to 2.3. Otherwise, For each document type Tj, Do

(a) Identify the bookcase BCj = (Tj, Pj, Bj) for the document type Tj;

(b) Generate a set of boxes whose common features contained in predicate Pj

can be inferred from conjunctive element qi, i.e.

(c) Generate a set of frame instances by selecting the frame instances from the

set of boxes that have pointers pointing to it from folder fj, i.e.

2.3 Generate a set of frame instances for conjunctive element Qi„ i.e.

3. Generate a set of frame instances for query Q, i.e.

4. Return FI

This is the main algorithm that narrows the search space to a set of frame instances

that contains all the candidates satisfying the search requirements specified in the

normalized and optimized query. Firstly, the Algorithm 5.1 is called to get the set of

document types. For each conjunctive element Qi, Algorithm 5.2 is called to get the

smallest folders, and then for each document type a set of frame instances is generated by

calculating the intersection between the set of folders and the frame instances in boxes at

the bookcase. Finally, a set of frame instances is generated and returned by calculating

the union of the frame instances generated for each conjunctive element.



52

Algorithm 5.4 Let Q be a normalized and optimized query formula that is in disjunctive

normal form Q1 v ...v Qi v...v Qn, i =1..n, and let FI to be the set of frame instances

returned by Algorithm 5.3, do

1. Initialize the result set DS to empty;

2. For each frame instance Fi in Ft. do

2.1 Check if the Fi satisfy any element Qi in Q;

2.2 If the answer of 2.1 is YES, then add Fi with the link to original document to

the result set DS;

2.3 If the answer of 2.1 is NO, go to 2

3. Return DS

This algorithm is used to find the original documents that exactly match the

search requirements specified in the query based on a narrowed search space i.e. a set of

frame instances generated by calling the first group of algorithms including Algorithm

5.3, and then 5.1 and 5.2. In step 2.1, the knowledge-based predicate evaluation engine is

called for evaluation.

5.2.3 Knowledge-Based Predicate. Evaluation Engine for Document Retrieval

As discussed, the Algorithm 5.2 calls the knowledge-based predicate evaluation engine in

step 2.2 with input of two predicates. One is the local predicate for the folder

organization. Another is the conjunctive element in the normalized and optimized query.

However, the inputs of the knowledge-based predicate evaluation engine developed in

[15, 17] are a predicate and a frame instance, because it is designed for document filing

purpose. Hence, it cannot be used by Algorithm 5.2 directly.

In order to enable the knowledge-based predicate evaluation engine handling both

kinds of inputs, the input preprocessor is added to the existing evaluation engine. The

algorithm for the input preprocessor is given as follows.



53

Figure 5.1 Knowledge-based predicate evaluation engine for retrieval



54

Algorithm 5.5 Let P be the predicate associated with a folder, Let Qi be the disjunctive

element Qi in the normalized and optimized query Q, do

1. Generate a set of first level predicates FP by identifying the first level predicate

clauses in Qi;

2. If FP is empty, set the frame instance Fj to be NULL, and set the predicate P to be P

v

3. If FP is not empty, then generate the frame instance Fj by assigning the values

contained in FP;

4. Return P and Fj

The architecture of the knowledge-based predicate evaluation engine for document

retrieval is shown in Figure 5.1. Two kinds of inputs are supported. One kind of input

consists of a predicate and a frame instance. Another kind of input consists of a local

predicate of a folder and a conjunctive element.

5.2.4 Query Cache

In order to get the ideal search results, the query refinements happen often after obtaining

the search results back from the search engine by submitting the initial query. It is quite

typical for an initial query to be too loose or too tight. Hence, the first refinement can be

too tight or too loose. This means that the query refinement activities can be repeated

several times. Since the initial query and refined queries tend to be similar, buffer the

intermediate results can reduce the search time dramatically. Therefore, the concept of

query cache is introduced in the search engine to store the intermediate search results of

queries that can, in turn, speed up the search for refined or similar queries. The query

cache in the search engine consists of a document type cache, a folder cache and a frame

instance cache. The details for each of these are given below.



55

The document type cache is organized in pairs of attribute set and document type

set. The element in the attribute set can be any variation of the formal attribute definition

in the document hierarchy. The element of the document type set is the formal document

type name in the document type hierarchy. The hit in document type cache is checked

right after step 1 in Algorithm 5.1. If a hit is found, Algorithm 5.1 returns the document

set immediately and skips step 2. If the hit is not found, Algorithm 5.1 moves to step 2.

Also, the document type cache is updated right after completing step 2 in Algorithm 5.1.

The folder cache is organized in pairs of a conjunctive formula and a folder. The

conjunctive formula is the element in the normalized and optimized query that is

converted from the user's specification. The folder is the smallest folder in the folder

organization whose global predicate can be inferred from the conjunctive formula. The

hit in the folder cache is checked before moving into step 2.1 in Algorithm 5.3. If the hit

is found, the Algorithm 5.3 loops into the next conjunctive formula in the query by

skipping step 2.1. If the hit is not found, the algorithm 5.3 moves to step 2.1. Also, the

frame instance cache is updated right after completing step 2.1 in Algorithm 5.3.

The frame instance cache is organized in pairs of a conjunctive formula along

with the document type, and a set of frame instances. The conjunctive formula is the

element in the normalized and optimized query that is converted from the user's

specification. The element of the set of frame instances is the actual frame instance

record in the bookcase. The hit in the folder cache is checked before moving into step 2.2

in Algorithm 5.3. If the hit is found, the Algorithm 5.3 loops into the next document type

in the document type set by skipping step 2.2 (a)(b)(c). If the hit is not found, the

algorithm 5.3 moves to step 2.2 (a). Also, the frame instance cache is updated right after

completing step 2.2 (c) in Algorithm 5.3.

An important issue along with the cache is the maintenance. The size of the cache

should be small in order to reduce the overhead by managing the cache. Also, the cache

needs to be refreshed periodically by removing the old data, in turn to improve the



56

performance. When changes happen to the system organization, e. g. changes in the

folder organization or in the document type hierarchy or in the knowledge base, the cache

must be flushed to guarantee the accuracy.

5.2.5 Theorem and Proof

In the proposed algorithms for the knowledge-based document search engine, Algorithms

5.2 plays critical role in narrowing down the search space to particular folders. A typical

concern is does this algorithm overlook any folders containing the references to the

documents that satisfy the user's query? In this section, a strict theoretical proof is given

to prove that the folder returned by this algorithm is complete with respect to the query.

Definition 5.1 A folder f is said to be complete with respect to a query Q if f is

guaranteed to contain all the documents in the document base that satisfy Q.

Theorem 5.1 Let Q be a query, and Pf be the global predicate of a folder f Folder f is

complete with respect to Q if and only if Q-3 Pf

Proof:

Let d be any document in the document base that satisfies Q. If Q 4 P, then d satisfies P.

According to the definition of the global predicate, d must be in the folder/. Therefore, f

is complete with respect to Q.

If Q -› P is not true, then there should be a document d such that d satisfies Q but does

not satisfy P. Therefore, d can not be in the folder/ According to Definition 5.1,f is not

complete with respect to Q.

Theorem 5.2 Let Q be a given query, then the folder f returned by the Algorithm 5.2 is

complete with respect to Q.



57

Proof:

Assume f is not complete to Q. Let f1 , f2, . . . fn, fl ' , 12 . . . fm ' be all the parent folders of

where (fi , f) (1 <= i <= n) are an "or" links, and (fi ',J) (1 <= i <= m) are an "and" links.

Let Pf, Pf1 , Pf2, . . . , Pfn, Pf1 Pf2 . . . , Pfm ' be the global predicates of folder f, f1 ,	 fn,

where δf is the local predicate of

f. According to Theorem 5.1, Q4 Pf does not hold. Since f is in ST, Q 4 4f holds.

does not hold. Hence, there should be a document d

is false. This means that d does not satisfy any of

Pf1 , Pfn, and all of Pf1	 Pfm ' . Therefore, none off], fn is complete to Q. And, at

least one of f1 . . . , fm ' is not complete to Q. According to the algorithm, f should not

have been visited. This violates the facts that f is in ST. Hence, f is complete to Q.

5.2.6 Performance Analysis

Let k be the number of folders in the folder organization. The complexity of Algorithm

5.2 depends on the number of folders that are visited by the program. In most cases, a leaf

folder and the folders along one of the filing path will be visited. In the worst case, all

folders may have to be visited. To determine if the local predicate of a folder can be

derived from Qi in step 2.2, the predicate evaluation engine will be invoked. Let d be the

average time needed by the predicate evaluation engine for evaluating a predicate.

According to [15, 17], d is 0(1). The complexity of Algorithm 5.2 is O(log k) on average

and 0(k) in the worst case.



58

For the Algorithm 5.3, the complexity of step 2.1 is O(log k) on average and 0(k)

in the worst case. The complexity of step 2.2(a) is 0(t) where t is the number of boxes in

the bookcase BC. Step 2.2(b) needs 0(n) time, where n is the number of frame instances

in the folder returned by Algorithm 5.2 . The step 2 has s iterations, where s is the

number of conjunction elements in the query Q. So the complexity is 0(s (log k + t + n))

on average and 0(s (k + t + n)) in the worst case. Assume that s and t are insignificant in

compare with the total number of the documents in the system, then the complexity will

be O(log k + n) on average and 0(k + n) in the worst case.

For Algorithm 5.4, step 2 repeat m times, where m is the number of frame

instances in FI. Hence, the complexity of step 2 is 0(m).

For the search engine, let C 1 be the complexity of Algorithm 5.3, C be the

complexity of search engine. In average, m is much smaller than n. So C = C1 + 0(m) =

(log k + n). In the worst case, C = C1 + 0(m) = O(k+n).

Based on the theoretical complexity analysis -above, we can conclude that the

proposed knowledge-based search engine is much more effective by supporting more

precise and accurate queries, and also very efficient with the complexity to the depth of

the folder organization plus the number of frame instances within a folder.

An intelligent interface guided search will be presented in next chapter, in an

effort to make the document search easier. Therefore, we can prove that the whole

architecture of the proposed knowledge-based document retrieval is a competitive and

appealing approach that balances nicely three contradictory factors: the effectiveness, the

efficiency and ease of use.

5.2.7 Search Engine Workflow

Figure 5.2 shows the search engine workflow. The input to the search engine is the

normalized and optimized query that is converted from the user's original specification.

The output of the search engine is a set of the frame instances along with their original



59

documents. To determine the possible document types of the desired documents,

Algorithm 5.2 is called and the document type cache is accessed.

After the set of document types is generated, the workflow moves to the two

levels of nested iterations. The outer level of iterations is for each of conjunctive element

in the normalized and optimized query. The folder cache is accessed. If no hit in the

folder cache, Algorithm 5.2 is called to find the smallest folders whose global predicate

can be inferred from the particular conjunctive element. The inner level of iterations is

for each document type in the set and the particular conjunctive element that the outer

loop iterated on. The frame instance cache is accessed within a single iteration at inner

level. After a single iteration at the inner level, a set of frame instances is generate by

calculating the intersection between the set of folders and the frame instances in boxes at

the bookcase. After completing the inner level of iterations, a set of frame instances that

most likely satisfies an element in the normalized and optimized query for all document

types in the set is generated by calculating the union of the frame instances generated in

each single iteration at the inner level. After completing the outer level of iterations, a set

of frame instances that most likely satisfies the normalized and optimized query for all

possible document types is generated by calculating the union of the frame instances

returned from the inner loops.

Finally, a set of frame instances along with their original documents is returned to

the user by examining each element in the candidate frame instance set and adding the

frame instances that satisfy the query only into the final search results.



Figure 5.2 Workflow of knowledge-based document search engine



61

5.3 Example

In this section, an example is given to illustrate the whole process from submitting a user-

specified query to returning the search results to the user through the knowledge-based

query processing and search engine.

The document type hierarchy for this example is shown in Figure 5.3, which is a

typical one for an academic work environment. The folder organization for this example

is shown in Figure 5.4, which is a typical one for the NJIT office environment. The boxes

in bookcase are organized by date on a monthly basis. The domain knowledge

corresponding to the folder organization in Figure 5.4 is shown is Figure 6.1. We further

assume that John Smith is a Ph.D. student in CIS department at NJIT, according to the

knowledge base.

Search goal:

Find the papers written by John Smith that were published in a conference.

Knowledge about the documents specified by the user:

The co-author of the paper is a faculty member in the CIS department at NJIT.

The subject of the paper is document management.

The conference date is January of 2000.

Knowledge contained in the knowledge base:

John Smith is a Ph.D. student in the CIS department at NJIT

Query in predicate-based query language:

Type (FI, "PAPER") A

Author (FI, "JOHN SMITH") A



62

Position (Author, FACULTY.CIS.NJIT)

Subject (FI, "DOCUMENT MANAGEMENT") A

ConferenceDate (FI, "01/#4/2000")

After composing the query as above, the query is submitted to the query parser

and optimizer for query normalization and optimization. The original query is already in

normal form. In the optimization, the first order predicates including Subject(FI,

"DOCUMENT MANAGEMENT") and ConferenceDate (FI, "01/0/2000") are moved

to proceed the second order predicate Position (Author, FACULTY.CIS.NJIT).

Normalized and optimized the query Q:

Type (FI, "PAPER") A

Author (FI, "JOHN SMITH") A

Subject (FI, "DOCUMENT MANAGEMENT") A

ConferenceDate (FI, "01/##/2000")

Position (Author, FACULTY.CIS.NJIT)

The normalized and optimized query Q is passed to the knowledge-based

document search engine. Firstly, the search engine narrows down the search space to a set

of frame instances that contains all the candidates of the search results. This process

follows the steps in Algorithm 5.3 that invokes Algorithm 5.1 to get the document types

and invokes Algorithm 5.2 to get the smallest folder. This process is described step by

step as below.

Step 1 in Algorithm 5.3:

The Algorithm 5.1 is invoked to generate the set of document types. At the step 1 of

Algorithms 5.1, a set of attributes is generated as A = {Type, Author, Subject,



63

ConferenceDate}. In step 2 of Algorithm 5.1, a set of document types is generated as T =

{ProceedingArticles} by scanning the leave of the document type hierarchy in Figure 5.

3, because the "ProceedingArticles" is the only document type that contains all elements

in the set of attributes A. Here, the thesaurus is used to find that there is a match between

the terms "Paper" and "Article". So, 1 = {PreceedingArticles} is returned.

Step 2 in Algorithm 5.3:

Since the query Q has only one conjunctive formula and the set of document types has

only one document type, the outer loop and the inner loop are executed only once. In the

outer loop, the Algorithm 5.2 is invoked to generate the smallest folder that can be

inferred from the query Q. In the Algorithm 5.2, the push and pop up operations are

carried out repeatedly. The predicate evaluation engine is called to check if the local

predicate associated with the child folder can be inferred from query Q. Knowledge base

is used to decide which child is pushed into the stack. At the end of Algorithm 5.2, the

"Document management" is found to be the smallest folder in the folder organization

(Figure 5.4). In the inner loop, the set of frame instances is generated by calculate the

intersection of the folder "Document management" and the box with date January 2000.

Step 3 and 4 in Algorithm 5.3:

Since the query Q has only one conjunctive formula, the set of frame instances for the

candidates of the results is the intersection of the folder "Document management" and the

box with date January 2000.

Final Step:

After generating the set of frame instances that most likely satisfy the query Q, Algorithm

5.4 is called to evaluate each element in the set and returns only the frame instances along

with the original documents that make Q true. The knowledge base is used for evaluation.



Figure 5.3 A document hierarchy for academic office environment



Figure 5.4 A folder organization for a NJIT office environment



CHAPTER 6

INTELLIGENT SEARCH TOOL: GUIDED SEARCH

A guided search is an intelligent user interface for document retrieval. A guided search is

used to compose a query through a brief conversation with the user. One of the purposes

of a guided search is to help new users who are not familiar with the query language and

who know little about the system. The experienced users can also use the guided search

as a tool to generate an initial query and then compose the final query based on it. With

the assistance of guided search, the experienced users can more easily specify their

explicit search goals and minimize the spelling errors.

Another reason for a guided search is to improve the efficiency and effectiveness

of document retrieval. In a database, how fast a SQL query can be returned not only

depends on database tuning, but also on the query itself. An efficient query can take

advantage of the database tuning, and therefore, give a faster return. The efficiency of

knowledge-based document retrieval depends on the information collected from the

users. Taking advantage of the knowledge base collected during document filing, the

guided search can tell users what information is most important for rapidly finding the

documents.

A guided search collects information from a user by asking simple questions, with

the most important one first. The following questions issued will depend on the user's

answer to the previous questions. This avoids redundant information being collected. The

more information collected, the more precise a query can be generated. Users can decide

when to stop asking questions. The system can also determine if enough information has

been collected.

The guided search component consists of an intelligent question generator, an

inference engine, a question base, a rule base and a predicate-based query composer. In

this chapter, the details about how the guided search works are given.

66



67

6.1 Question Base

The guided search uses simple questions as carrying tools for acquiring information and

knowledge about the requested documents. The question base contains all the questions

that can be asked to the user. All the questions are based on the dual model, which

consists of the document type hierarchy and the folder organization. As discussed in the

search strategy of the knowledge-based document search engine, the information

collected through these questions is the key for the search engine to quickly zoom in the

document type hierarchy and folder organization, and find the documents efficiently and

effectively. The question base can be categorized into two groups: one contains document

type related questions and another contains folder organization related questions.

In this section, the detailed descriptions about what questions are contained in the

question base and how they can be generated are given. Each question is accompanied by

a predicate template, which is used to generate a predicate based on the answer of the

question. The correlation between the question and the predicate template determines

how a question and a predicate are translated from one to the other.

6.1.1 Question Sub-Base I

The question sub-base I is focused on the document type hierarchy. It contains two

questions: one asks for document type, the other for content.

Question1: What is the document type?

Predicate template: Type (FI, "Value")

This question is always the first question that will be asked to the user. It permanently

appears in the interface. Each answer will be used to replace "Value" in the predicate

template to generate a predicate. A hierarchical drop down list is provided to allow users

to choose document type. It contains all the document types, organized according to the

document type hierarchy. The main drop down list includes the document types right



68

under the root in the document hierarchy. Each document type in the main drop down list

has its drop down lists that reflect the sub-tree under it, and so on. One or multiple

selections are allowed.

Question2: What is the content of the documents?

Predicate template: Attribute (FI, "Value")

Following the first question, the system asks user to describe what the document

contains. This question also permanently appears in the interface. This question is

provided with a frame template to allow the user to fill values to any attribute in the

template. The frame template will be updated accordingly whenever the user changes the

answer of the first question. Each attribute/value pair will generate a predicate by

replacing "Attribute" and "Value" in the predicate template accordingly.

6.1.2 Question Sub-Base II

The question sub-base II is focused on the folder organization. This group of questions is

dynamic. Questions are dynamically added, removed, or changed accordingly when the

folder organization is changed. Depending on the conversation scenario, only part of

questions in this group will be asked. Each question asks for a piece of knowledge about

an object related to the document. Whether or not a question is asked depends on whether

it helps to zoom in the folder organization. The questions are organized into question

trees. Each question tree contains questions related to a specific object. Each node in a

question tree represents a question. A link from a parent node to a child node denotes that

the question represented by the parent node should be asked before the one represented

by the child node. As an example, Figure 6.2 shows two question trees: one for the owner

of document, the other for document itself.

The question sub-base II is generated based on the knowledge base. As discussed in

Chapter 2, the knowledge base for a folder organization contains a set of domain



69

knowledge, one for each kind of object. The domain knowledge consists of a domain

organization and a set of property relations. The knowledge base is dynamically

generated and updated based on the folder organization [15]. Figure 6.1(a)(b)(c) shows

the domain knowledge generated based on the folder organization in Figure 5.4. Figure

Figure 6.1(a)(b) shows the domain knowledge of the Owner. Figure 6.1(a) shows the

domain organization. The domain Affiliation has a sub-domain Department. Figure

6.1(b) shows the property relations of the domain Department. The domain Department

has property (Position, EMPLOYEE), (Position, FACULTY), (Class, STUDENT),

(Program, PHD), and (Program, MS). The property relations tell that PHD and MS

students are STUDENTs of the Department (Says, Department of CIS) at NJIT, and also

FACULTY members are EMPLOYEEs of the Department (Says, Department of CIS) at

NJIT. Figure 6.1(c) shows the domain knowledge of the document. Subject of the

document can be DATABASE or NETWORK & COMMUNICATION. Also Subject

DOCUMENT MANAGEMENT is belong to the Subject DATABASE.

, The domain knowledge for an object describes what pieces of knowledge about the

object have been used in filing the documents. Therefore, answers of the questions asking

for the pieces of knowledge described in the domain knowledge can help the search

engine quickly zoom in the folder organization. In the rest of this section, how a question

tree is dynamically generated given a domain knowledge is discussed. First of all, a

question template is defined as follow, where property, object, domain, and value are

variables.

Question: What is the property of the object [in domain]

Predicate Template: property(object, value[.domain])

Selection list: a list of values.

Each question in question sub-base II has a selection list, which is used to provide a

list of possible answers. A question is created by replacing the property and object with

the real values. The variable domain will be replaced with the real value, which depends



70

on the conversation context between user and the guided search interface, when the

question is asked. The variable value will be replaced with the answer of the question to

generate a predicate. The process for generating a question tree from a given domain

knowledge starts from the root node of the domain organization. Given a domain

knowledge DK for object 0, a question is generated for each domain in the domain

organization and each property name in the property relations. Let D be a domain in the

domain organization. A question is created by replacing property and object with D and

0 respectively. The selection list contains all the values, also called domain instances, of

D. If D is the root of the domain organization, then the part in [...] in the question and the

predicate template will be removed. For each property name P in domain D, a question is

created by replacing property and object with P and 0 respectively. The selection list

contains all the values of property P.

The algorithms for generating a question tree for a given domain knowledge is

given as follow.

Algorithm 6.1 (Generate Question Tree) Let K be a domain knowledge for object 0 in

the knowledge base. Let DO be the domain organization of K. The question tree T

corresponding to domain knowledge K is generated as follow:

1 Initialize two queues: QUEUE1 and QUEUE2;

2 Visit the root Dp of DO. Call Algorithm 6.2 to create the question sub-tree Tp for

domain Dp. Let Qp be the root of Tp. Initialize T as Tp;

3 Add Dp into QUEUE 1, Qp into QUEUE2;

4 While QUEUE 1 and QUEUE2 are not empty,

4.1 Let Dp be the first element in QUEUE 1, Qp be the first element in

QUEUE2. Remove Dp and Qp from QUEUE1 and QUEUE2. Qp is the

question created regarding domain Dp.

4.2 For each sub-domain D of Dp, do



71

4.2.1	 Call algorithm 6.2 to create a question sub-tree Td for domain D.

Let Q be the root of Td;

4.2.2 Add D into QUEUE1, Q into QUEUE2;

4.2.3 Add Q into T as a child of Qp;

5 Return T.

Algorithm 6.2 (Generate a Question Sub-tree) ) Let K be a domain knowledge for object

0 in the knowledge base, DO be the domain organization of K. Let D be a domain in DO,

PR be the property relation of domain D. The following algorithm generates a question

sub-tree containing all the questions regarding the domain D and all the properties in D.

1	 Initialize question tree T;

2 Initialize two queues QUEUE 1 and QUEUE2;

3 If D is empty, create an empty question Q. Otherwise, instantiate a question Q using

the question template. Replace property and object with D and 0 respectively. Add

all the instances of D into the selection list. Add Q as the root of T;

4 Add D into QUEUE 1, Q into QUEUE2;

5 While QUEUE 1 and QUEUE2 are not empty, do

5.1 Let P be the first element in QUEUE 1, Q be the first element in QUEUE2.

Remove P and Q from QUEUE 1 and QUEUE2;

5.2 For each child Pi of P in PR, do

5.2.1 Let Ni be the property name, Vi be the value. If P is not equal to D and

Ni equals to the property name in P, then

• Add Vi into the selection list of Q;

• Add Q into QUEUE2;

Otherwise, if Pi has the same property name as its sibling Pj that has

already been visited, let Qj be the question created for Pj, then

• Add Vi into the selection list of Qj;



72

• add Qj into QUEUE2;

Otherwise,

• Instantiate a question Qi using the question template;

• Replace property and object with Ni and 0 respectively;

• Add the value of Vi into the selection list;

• Add Qi into QUEUE2;

• Add Qi into T as a child of Q;

5.2.2 Add Pi into QUEUE1;

6 Return T.

Figure 6.2 shows the question sub-base II generated automatically based on the

domain knowledge in Figure 6.1 using the Algorithm 6.1 and Algorithm 6.2. According

to the folder organization in Figure 5.4, knowledge of two different kinds of objects is

used in document filing. One is the owner (i.e., sender, receiver, author, etc.) of the

document. The other is the document itself. So Figure 6.1 shows domain knowledge for

owner and document. The question sub-base II in Figure 6.2 contains two question trees.

Figure 6.2(a) shows the question tree for owner of documents. Figure 6.2(b) shows the

question tree for documents. The relation between two trees can be defined in the rule

base, which will be addressed later.

In the remainder of this section, we go through the process of generating the

question tree for owner, shown in Figure 6.2(a), to illustrate Algorithm 6.1 and 6.2. The

questions in this question tree are numbered for illustration purpose. Algorithm 6.1

started from domain Affiliation. Algorithm 6.2 was called in step 2 of Algorithm 6.1 to

create a sub-tree for domain Affiliation.

Question 1, which is regarding domain Affiliation, was generated in step 3 of

Algorithm 6.2. Since domain Affiliation has no properties, a sub-tree with a single node

(i.e., the question 1) was returned.



73

In step 3 of Algorithm 6.2, the domain Affiliation and question 1 were added to

QUEUE 1 and QUEUE2 respectively. In the while loop (step 4), the domain Affiliation

and question 1 were removed from QUEUE1 and QUEUE2 in step 4.1. Step 4.2 then

visit each child of Affiliation. Algorithm 6.2 was called in step 4.2.1 to generate a sub-

tree for domain Department.

Algorithm 6.2 started from the root, which is the domain Department, of the

property relation in Figure 6.1(b). Question 2 was created in step 3. The domain

Department and question 2 were added to QUEUE 1 and QUEUE2 in step 4. In the while

loop (step 5), The domain Department and question 2 were removed from QUEUE1 and

QUEUE2 in 5.1. Step 5.2 visit each child of Department, which is (Position,

EMPLOYEE) and (Class, STUDENT). Question 3 and question 4 were created for

(Position, EMPLOYEE) and (Class, STUDENT) respectively. Both were added as

children of question 2. When step 5.2 finished, QUEUE1 contained (Position,

EMPLOYEE) and (Class, STUDENT). QUEUE2 contained question 3 and question 4. In

the second iteration of step 5, (Position, EMPLOYEE) and question 3 were removed

from QUEUE 1 and QUEUE2 in step 5.1. Step 5.2 visited the child of (Position,

EMPLOYEE), which is (Position, FACULTY). Because (Position, FACULTY) has the

same property name Position as (Position, EMPLOYEE), no question was generated.

Instead, the value FACULTY was added to the selection list of question 3. After step 5.2,

QUEUE 1 contained (Class, STUDENT) and (Position, FACULTY). QUEUE2 contained

question 4 and question 3. In the third iteration of step 5, (Class, STUDENT) and

question 4 were removed from QUEUE 1 and QUEUE2 in step 5.1. Step 5.2 visited the

two children (Program, PHD) and (Program MS). Question 5 was created for (Program,

PHD) and added to the sub-tree as a child of question 4. No question was created for

(Program, MS) because it has the same property name as its sibling. Instead, the value

MS was added to the selection list of question 5. After step 5.2, QUEUE1 contained

(Position, FACULTY), (Program, PHD), and (Program, MS). QUEUE2 contained



74

question 3, question 4 and question 5. Since none of the node in QUEUE1 has child,

Algorithm 6.2 returned a sub-tree that contains question 2, 3, 4, and 5, rooted with

question 2.

Back to Algorithm 6.1, question 2 was added to the question tree as a child of

question 1 in step 4.2.3. This also indirectly linked the other questions under question 2 to

the question tree. Because domain Department has no child, Algorithm ended by

returning a question tree as shown in Figure 6.2(a).

6.2 Rule Base

The rule base is used to maintain the rules for governing the conversation between user

and the guided search interface. The guided search interface has two parts. The fixed part

is for the question sub-base I. Two questions in question sub-base I appear in the

interface permanently. The dynamic part is for the question sub-base II. Questions from

question sub-base II chosen by the inference engine are asked one by one. In this section,

the detailed description about the rule base is given.

Rule 1: The questions in question sub-base I appear in the fixed part of the interface

permanently. The question about the document type in the question sub-base I is the

starting point of guided search. The question for the content of the documents follows.

Rule 2: The conversation in the dynamic part of the interface should not start until the

question about document type has been answered.

Rule 3: If the number of answers is greater than the threshold for the question about the

document type, then give warning that the query may be too general and provide choices

either continuing or switching to document browser.

The general rule 1, 2 and 3 are all related to the questions about the document

type and content in question sub-base I. As discussed in Chapter 5, the document type

plays the critical role in rapidly narrowing the search space. The question about the



75

document type is simple and straightforward, which is one of reasons to force it to be the

starting point of guided search.

Definition 6.1 (Switching point) A switching point is a question in a question tree, from

which the guided search tool switches to another tree for the next question.

Rule 4: The first question that the inference engine chooses from question sub-base II is

the question in the root of a question tree, whose object is the first object appears in the

filing criteria of the folder organization along the paths from root to leaves.

Rule 4 tells where the dynamic part of the conversation between user and the

guided search interface should begin. The rule tells the inference engine to check the

folder organization and find the first object that appears in the filing criteria from the root

to leaf folders. The conversation should start with the question tree of the object found.

This is because the knowledge about the object can help the search engine to zoom in the

folder organization to lower level of folders. Therefore, questions regarding the object

should be asked first. In real operation, there is no need for the inference engine to

dynamically check the folder organization. Instead, the question tree for the object is

marked when the question sub-base II was generated.

Rule 5: If question A from a question tree is asked and returned with valid answer, then

questions as children of A should be asked next.

Rule 6: If question A in a question tree is asked but returned with no valid answer, no

questions in the sub-tree rooted with question A should be asked.

Rule 5 and 6 tells what questions should be asked and in what order depending

on the conversation context.

Rule 7: If guided search reaches a switching point, then it leaves the current question tree

and moves to the root node in another tree.

Rule 7 tells when the conversation should switch to another a question tree. The

switch point is detected by finding two folders F and G, where F is the parent folder of G,



76

and the filing criteria of folder F and G are regarding difference objects. The switch point

tells the inference engine that when the conversation regarding the current object reaches

a specific level of detail, further knowledge of object will not help the document retrieval.

Therefore, the conversation should switch to another object.

Rule 8: If a question from question sub-base II contains a special attribute, the special

attribute should be replaced with a real attribute before the question is asked.

Rule 9: If a question contains a variable domain, the variable should be replaced by the

answers of questions regarding the domains in which the question is asked.

Rule 8 and 9 are used to finalize the question before they are asked. If a special

attribute of documents is used to represent an object, rule 8 says it should be replaced

with a real attribute, because the document type is known when the dynamic part of the

conversation starts. For example, in the folder organization shown in Figure 5.4, Owner

is a special attribute that represents Sender or Receiver of Letter types, Author of

publication types. When a question from question sub-base II is asked, the document type

should be known. Therefore, the special attribute owner can be replaced with the real

attribute. Most questions in question sub-base II contain variable domain. Before they are

asked, the rule 9 tells how the variable domain is replaced with a real value.

6.3 Inference Engine

The inference engine is used to determine which question is the next question to ask. In

order to make decisions, it needs to access several resources in the system including the

question base, rule base and folder organization. The inference engine will be called by

the intelligent question generator, right after the first two questions in the fixed part of the

interface have been answered properly. The inference engine uses rule 4, 5, 6, and 7 to

determine which question should be asked next depending on the conversation context. If

the previous question is a leaf node in the question tree, the inference engine checks the

folder organization to see if it is a switching point. If it is switching point, rule 7 applies.



77

Otherwise, the inference engine notifies the intelligent question generator that no more

questions to ask.

6.4 Intelligent Question Generator

The intelligent question generator acts as the central station for guided search. It handles

the interactive conversations with the users by asking questions and collecting answers. It

calls the inference engine to get the next question and make up the question in a user-

friendly way by using rule 8 and 9. It verifies the answers to see if they are valid or not

and calls the query composer with the predicate template and valid answers.

6.5 Query Composer

Query composer composes a predicate-based query based on the predicate templates of

questions and answers passed by the intelligent question generator. If a single answer is

passed, the query composer instantiates a predicate and replaces the "Value" in the

predicate template with the answer. If multiple answers are passed, multiple predicates

are instantiated and linked with operator 'OR'. Each predicate is in the same format as

the predicate template and having "Value" replaced by each of the answers. When the

intelligent question generator has no more questions to ask or the user decides to stop

answering question, the query composer finalizes the query by linking the predicate of

each question with "AND" operator and displays it to the user for verification and

modification by option. After this, the query will be submitted to the knowledge-based

document search engine to process.

6.6 Example

In this section, an example is given to illustrate how a query can be composed through

the guided search. Our search goal is to find the papers that were published in a

conference. Assume our knowledge about the papers is that the papers are authored by a



78

Ph.D. student in CIS department at NJIT, the papers are about document management,

and the conference date is in January 2000.

Guided search starts by asking the first question about document type. Being not

sure what to type for the document type, the user goes through the drop down list and

chooses ProceedingArticles. The query composer creates a predicate

Type (FI, ProceedingArticles) using the predicate template for the question. The frame

template of ProceedingArticles is then shown in the second question about the content. In

the value part for attribute ConferenceDate, the user types "January, 2000". A predicate,

ConferenceDate (FI, "01/0/2000"), is created using the predicate template for the second

question.

When the dynamic part of the conversation starts, the inference engine is called

to choose the first question. Because Owner is the first object appears in filing criteria in

the folder organization in Figure 5.4, the question tree in Figure 6.2(a) is chosen as the

starting point. So the question 1 is returned according to rule 4. At this point, the

document type is already known, which is ProceedingArticles. So the question generator

replaces the special attribute Owner in the question with Author. So a question "What is

the Affiliation of Author?" is asked. In the selection list, the user sees value NJIT. So the

user answers with NJIT, because the user knows that the papers are authored by a Ph.D.

student of CIS department at NJIT. A predicate, Affiliation(Author, "NJIT"), is then

created. According to rule 5, question 2 is chosen by the inference engine as the next

question. At this point, the question generator knows that question 2 is asked in domain

instance "NJIT". So a question "What is the Department of Author in NJIT" is asked.

After answering "CIS", a predicate, Department (Author, "CIS.NJIT"), is created. The

inference engine then chose question 3. Question "What is the Position of Author in CIS"

is asked. The selection list contains value "EMPLOYEE" and "FACULTY". The user

provides no answer because the user does not know. So the inference engine stops

looking at questions under question 3. In this particular case, question 3 has no children



79

to choose even the user answers it. So the inference engine chooses question 4 as the

next. The user is asked "What is the Class of Author in CIS.NJIT", and the user answers

with "STUDENT". The query composer knows that this question is asked in domain

instance CIS in NJIT. A predicate, Class(Author, "STUDENT.CIS.NJIT"), is then

created. Similarly, question 5 is asked next. A predicate, Program(Author,

"PHD.CIS.NJIT"), is created after answering "PHD". This is a switch point because the

folder CISPhD has a filing criterion Program(Owner, "PHD.CIS.NJIT"), and its child

folder PUBLICATION has criterion Type(FI, "PUBLICATION"). According to rule 7,

the inference engine switches to question tree in 6.2(b). The user is asked "What is the

Subject of Document". The selection list contains values "DATABSE", "DOCUMENT

MANAGEMENT" and "NETWORK & COMMUNICATION". So the user answers with

"DOCUMENT MANAGEMENT". A predicate, Subject(FI, "DOCUMENT

MANAGEMENT"), is created. Since no other questions found in the question tree. The

inference engine suggests the question generator to end the conversation. Finally, the

query composer put all the predicates created during the conversation together and

composes the following query:

Type (FI, "ProceedingArticles") A

ConferenceDate (FI, "01/0/2000") A

Affiliation (Author, "NJIT")

Department (Author, "CIS.NJIT")

Class (Author, "STUDENT.CIS.NJIT")

Program (Author, "PHD.CIS.NJIT")

Subject (FI, "DOCUMENT MANAGEMENT")



Figure 6.1 (c) Knowledge of the "Document"

Figure 6.1 Knowledge base of the example

80



Figure 6.2 Question sub-base II of the example

81



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This dissertation presents a knowledge-based document retrieval architecture with

application to TEXPROS. The architecture is based on a dual document model that

consists of a document type hierarchy and a folder organization. This architecture

provides two kinds of user interfaces. With the predicate-based query language,

experienced users can more precisely and accurately specify the search criteria and their

knowledge about the documents to be retrieved. To assist new users formulate queries, a

guided search was presented as part of an intelligent user interface. The guided search

component includes a question base, a rule base, a question generator and an inference

engine, a predicate-based query composer, as well as the guided search user interface.

The guided search collects information by asking simple questions about the documents

the user wishes to locate. The intelligent question generator and inference engine will

generate subsequent questions from the question base depending on the user's answers to

previous questions using rules from the rule base. The predicate-based query composer is

used to generate a particular query for the user using predicate-based query language

after the user finish answering questions. The query can then be displayed to the user for

evaluation and modification.

The retrieval architecture provides a query optimizer for normalizing and

optimizing the user queries. A knowledge-based search engine was presented for quickly

identifying documents that satisfy the user query. Taking advantage of the dual model,

the multi-level storage architecture as well as the knowledge base generated during

document filing, the search engine can process user queries very efficiently and

effectively.

82



83

The predicate-based query language was provided for users to search for the

documents stored in the system. With this document retrieval language, users can specify

both searching criteria and their knowledge about the documents to be searched for more

precisely and accurately than simple keyword search. In designing this document

retrieval language, much considerations and efforts were given to the question of how to

balance between the language's simplicity and its expressive power. While the language

has to be sophisticated enough in order to support effective document retrieval, the more

complex the language is, the more difficult it is to use and the less efficient it will be to

process. The goal of designing the document retrieval language is to preserve the

language's simplicity without loosing its necessary expressive power for formulating a

precise query specification. To keep consistent with document filing criteria, the

presented document retrieval language was based on the general First Order Predicate

Logic (FOPL). Certain modifications were made to tailor it for document retrieval

purpose.

The knowledge-based query processing includes query optimization and

knowledge-based document search. The query optimizer validates each element in the

query and normalizes the query into disjunctive normal forms. Predicates in each

disjunctive normal form are re-ordered to speedup the retrieval. The knowledge-based

search engine processes the query and returns those documents that satisfy the search

criteria. To achieve high efficiency, a knowledge-based query preprocessing is performed

first to reduce the search space to a small set of documents. The dual model and the

multi-level storage architecture make it possible to generate a much smaller and complete

set of relevant documents. There are two entries to reduce the search space. One is from

document type hierarchy. Identifying the document type enables the search to be

concentrated on documents of that type only. The other entry is from folder organization.

The search space is reduced by concentrating the search on a specific folder. The search

space can further be reduced by focusing on a specific document type in a specific folder.



84

The key issue is how to efficiently identify the smallest folder that contains all the

relevant documents. The process requires the help of the knowledge base and the

predicate evaluation engine. The algorithms were given and theoretically proved.

Performance analysis was also given.

After the search space is reduced to a small set of documents, documents will be

matched against the query. Only the documents that satisfy the search criteria will be

returned to users. This match process is needed because the preprocessing only

guarantees that the set of documents contains all the candidates that may satisfy the user

query. But, not all documents in the set are expected by the user. For the first level

predicates in the query, the match process is done by matching the content of the

documents with the query. For the second level predicates, the match process needs to

call the predicate evaluation engine for determining whether a document satisfying a

predicate. So the match process can be content-based or knowledge-based depending on

the search criteria.

The guided search was presented as an intelligent search tool for document

retrieval. Through guided search, a predicate-based query can be automatically generated

after answering a few questions. One of the purposes of a guided search is to help new

users who are not familiar with the query language and who know little about the system.

The experienced users can also use the guided search as a tool to generate an initial query

and then compose the final query based on it. With the assistance of guided search, the

experienced users can more easily specify their explicit search goals and minimize the

spelling errors.

Another reason of a guided search is to improve the efficiency and effectiveness

of document retrieval. In a database, how fast a SQL query can be returned not only

depends on database tuning, but also the query itself An efficient query can take

advantage of the database tuning, and therefore, help the database engine give a faster

return. The efficiency of knowledge-based document retrieval depends on the



85

information collected from the users. Taking advantage of the knowledge base collected

during document filing, the guided search can tell users what information is most

important to quickly find the documents.

Guided search collects information from user by asking simple questions, with the

most important ones first. The following questions will depend on the user's answer to

the previous question. This avoids redundant information being collected. The more

information collected, the more precise the query can be generated. Users can decide

when to stop asking questions. The system can also determine if enough information has

been collected.

Algorithms for dynamically generating the question base for a folder organization

were given. Rules are defined for governing the conversation between the user and the

guided search interface. Examples were given to illustrate how the question base was

generated and how guided search works.

The main contribution of this dissertation is the knowledge-based document

retrieval methodology that supports more precise queries without sacrificing efficiency

and ease of use. With the dual model, knowledge about how documents are organized in

office environment, as well as the conceptual structures of documents, are used in

document retrieval. The predicate-based language gives users more freedom to specify

what they know about the requested documents. So the search engine understands more

precisely what users want. This is a necessary requirement for improving the

effectiveness of document retrieval. The knowledge-based algorithms provide an efficient

solution for processing queries in the predicate-based language. For easy of use, a guided

search was developed to help users compose queries.

As a future work, the knowledge-based document retrieval methodology should

be implemented and integrated it into TEXPROS. As another direction of future work, a

more user-friendly language with the same expression power as the predicate-based

language should be investigated. So users can write queries more easily without having to



86

use the guided search. A more friendly language will encourage users to provide more

information they know about the desired documents, and therefore, help the search

engine find the documents more quickly. Finally, effort should be made to improve the

guided search interface. The guided search uses a set of dynamically generated simple

questions to collect information from user. The questions can be improved so users can

understand them more easily. A new style for the conversation between the user and the

system can also be investigated to make the interface more friendly.



REFERENCES

1. N. Adami, A. Bugatti, A. Corghi, R. Leonardi, P. Migliorati, L. A. Rossi and C.
Saraceno, "ToCAI: a Framework for Indexing and Retrieval of Multimedia
Documents", Proceedings of the 10th International Conference on Image Analysis
and Processing, Venice, Italy, pp.1027-1032, September 1999.

2. E. Appiani, L. Boato, S. Bruzzo, A.M. Colla, M. Davite and D. Sciarra, "STRETCH: A
System for Document Storage and Retrieval by Content", Proceedings of the 10th
International Workshop on Database & Expert Systems Applications, Florence,
Italy, pp. 588-592, September 1999.

3. R. Baeza-Yates and G. Navarro, "Block Addressing Indices for Approximate Text
Retrieval", Journal of the American Society for Information Science, vol. 51, no.
1, pp. 69-82, 2000.

4. E. Bertino, B. Catania, B. Black, J. McNaught, F. Rinaldi, A. Brasher, D. Deavin, A.
Persidis, V. Candela, F. Esposito, G. Semeraro and G. P. Zarri, "CONCERTO,
Conceptual Indexing, Querying and Retrieval of Digital Documents", Proceedings
of the IEEE International Conference on Multimedia Computing and Systems,
Florence, Italy, vol. 2, pp. 1106 - 1109, June 1999.

5. A. Celentano, M. Fugini, and S. Pozzi, "Knowledge-Based Document Retrieval in
Office Environments: The Kabiria System", ACM Transactions on Office
Information Systems, vol. 13, no. 3, pp. 237--268, July 1995.

6. C. Chang and C. Hsu, "Enabling Concept-Based Relevance Feedback for Information
Retrieval on the WWW", IEEE Transactions on Knowledge and Data
Engineering, Vol. 11, No. 4, pp. 595-609, July/August 1999.

7. H. Chen, "Knowledge-Based Document Retrieval: Framework and Design", Journal of
Information Science: Principles & Practice (Amsterdam), vol. 18, no. 4, pp. 293-
314, 1992.

8. S. Chen and Y. Horng, " Fuzzy Query Processing for Document Retrieval Based on
Extended Fuzzy Concept Networks", IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, vol. 29, no. 1, pp. 96-104, 1999.

9. S. Chen and J. Wang, "Document Retrieval Using Knowledge-Based Fuzzy
Information Retrieval Techniques", IEEE Transactions on Systems, Man and
Cybernetics, vol. 25, no. 5, pp. 793-803, May 1995.

10. W. W. Chu, C. C. Hsu, A. F. Cárdenas, and R. K. Taira, "Knowledge-Based Image
Retrieval with Spatial and Temporal Constructs", IEEE Transactions on

87



88

Knowledge and Data Engineering, Vol. 10, No. 6, pp.872-888,
November/December 1998.

11. J. F. Cullen, J. J. Hull and P. E. Hart, "Document Image Database Retrieval and
Browsing Using Texture Analysis", in Proceedings of the 4th International
Conference Document Analysis and Recognition (ICDAR '97), Ulm, Germany,
vol. 2, pp. 718-721, August 1997.

12. M. Cutler, H. Deng, S. S. Maniccam, W. Meng, "New Study on Using HTML
Structures to Improve Retrieval", in Proceedings of IEEE International
Conference on Tools with Artificial Intelligence (ICTAI '99), Chicago, IL, USA,
pp. 406-409, November 1999.

13. S. Doong, C. Wei, X. Fan, D. C. Hung and P. A. Ng, "A Folder Organization Model
in the Office Environment", in Proceedings of the 4th International Conference on
Information Systems Analysis and Synthesis, 1998.

14. Y. Dong, A More Efficient Document Retrieval Method for TEXPROS, PhD
dissertation, Department of Computer and Information Science, New Jersey
Institute of Technology, Newark, New Jersey, January 2001.

15. X. Fan, Knowledge-Based Document Filing for TEXPROS, PhD dissertation,
Department of Computer and Information Science, New Jersey Institute of
Technology, Newark, New Jersey, May 1998.

16. X. Fan, F. Sheng, X. Li, Z. Cheng and P. Ng, "A Scalable Automated System for
Document Management", in Proceedings of the Fifth World Conference on
Integrated Design and Process Technology, Dallas, Texas, June 2000.

17. X. Fan, Q. Liu and P. Ng, "An Automated Document Filing Systems", Journal of
Systems Integration, Vol. 9, No. 3, pp. 223-262, 1999.

18. X. Fan, F. Sheng, P. Ng, "DOCPROS: A Knowledge-based Personal Document
Management System", the 10th International Workshop on Database and Expert
Systems Applications (DEXA'99), Florence, Italy, pp. 527-531, September 1999.

19. X. Fan, F. Sheng, S. Doong, P. Ng and C. Wei, "A Process for Constructing a
Personal Folder Organization", in Proceedings of International Workshop on
Multimedia Database, Dayton, Ohio, pp. 20 — 27, August 1998.

20. L. Gravano, H. Garcia-Molina and A. Tomasic, "GIOSS: Text-Source Discovery
Over the Internet", ACM Transactions on Database Systems, vol. 24, No. 2, pp.
229-264, 1999.



89

21. X. Hao, Automatic Office Document Classification and Information Extraction, PhD
dissertation, Department of Computer and Information Science, New Jersey
Institute of Technology, Newark, New Jersey, August 1995.

22. Y. He, Z. Jiang, B. Liu and H. Zhao, "Content-Based Indexing and Retrieval Method
of Chinese Document Images", in Proceedings of the Fifth International
Conference on Document Analysis and Recognition (ICDAR'99), Bangalore,
India, pp. 685-688, September 1998.

23. J. Horng and C. Yeh, "Applying Genetic Algorithms to Query Optimization in
Document Retrieval", Information Processing and Management, vol. 36, no. 5,
pp. 737-759, 2000.

24. J. Hu, X. Li, S. Dong, D.C. Hung and P.A. Ng, "A Thesaurus Model for Document
Processing System: A TEXPROS Approach", in Proceedings of the Fifth World
Conference on Integrated Design and Process Technology, Dallas, Texas, June
2000.

25. J. Hu, Knowledge Management for TEXPROS, PhD dissertation, Department of
Computer and Information Science, New Jersey Institute of Technology, Newark,
New Jersey, May 1999.

26. S. C. Hui and A. Goh, "Incorporating Fuzzy Logic with Neural Networks for
Document Retrieval", Engineering Applications of Artificial Intelligence, vol. 9,
no. 5, pp. 551-560, 1996.

27. P. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel and Z. Protopapas,"Fast and
Effective Retrieval of Medical Tumor Shapes", IEEE Transactions on Knowledge
and Data Engineering, Vol. 10, No. 6, pp. 889-904, November/December 1998.

28. P. Lambrix and N. Shahmehri, "Towards Creating a Knowledge Base for World-
Wide Web Documents", Proceedings of the 1997 IASTED International
Conference on Intelligent Information Systems, Grand Bahama Island, Bahamas,
pp. 507-511, December 1997.

29. X. Li, Z. Cheng, F. Sheng, X. Fan and P. Ng, "A Document Classification and
Extraction System with Learning Ability", in Proceedings of the Fifth World
Conference on Integrated Design and Process . Technology, Dallas, Texas, June
2000.

30. X. Li, J. Hu, X. Fan, C. Y. Wang and P. A. Ng, "Automated Document Filing and
Retrieval System: An Overview", in Proceedings of the Third Biennial World
Conference on Integrated Design and Process Technology, Vol. 4, Berlin,
Germany, pp. 231-241, July 1998.



90

31. X. Li, Automatic Document Classification and Extraction System (ADoCES), PhD
dissertation, Department of Computer and Information Science, New Jersey
Institute of Technology, Newark, New Jersey, May 1999.

32. J. H. Lim, "Learning Visual Keywords for Content-Based Retrieval", Proceedings of
the IEEE International Conference on Multimedia Computing and Systems,
Florence, Italy, vol. 2, pp. 169-173, June 1999.

33. J. Lin, Collaborative Software Agents Support for the TEXPROS Document
Management System, PhD dissertation, Department of Computer and Information
Science, New Jersey Institute of Technology, Newark, New Jersey, January 2000.

34. J. Lin, H. Shen, T.M. Chu, S. Doong, R.Curtis, D.C. Hung and P.A. Ng, "Folder
Organization Query Language", in Proceedings of the Fifth World Conference on
Integrated Design and Process Technology, Dallas, Texas, June 2000.

35. Q. Liu, An Office Document System With the Capability of Processing Incomplete
and Vague Queries, PhD dissertation, Department of Computer and Information
Science, New Jersey Institute of Technology, Newark, New Jersey, August 1994.

36. Q. Liu and P. Ng, "A Browser of Supporting Vague Query Processing in an Office
Document System", Journal of Systems Integration, vol. 5, no. 1, pp. 61-82, 1995.

37. Q. Liu and P. Ng, Document Processing and Retrieval: Text Processing, Kluwer
Academic Publishers, Norwell, Massachusetts, 1996.

38. R. Marega and M. T. Pazienza, "CoDHIR: An Information Retrieval System Based
on Semantic Document Representation", Journal of Information Science, vol. 20,
no. 6, pp. 399-412, 1994.

39. P. Martin and P. W. Eklund, "Knowledge Retrieval and the World Wide Web", IEEE
Intelligent Systems, Vol. 15, No. 3, pp. 18-25, May/June 2000.

40. B. P. McCune, R. M. Tong, J. S. Dean and D. G. Shapiro, "RUBRIC: A System for
Rule-Based Information Retrieval", IEEE Transactions on Software Engineering,
vol. SE-11, no. 9, 1985.

41. M. Mechkour, P. Mulhem, F. Fourel, and E. F. C. Berrut, "PRIME-GC: A medical
information retrieval prototype on the Web", in Proceedings of the 7th
International Workshop on Research Issues in Data Engineering (RIDE '97),
Birmingham, UK, pp. 2-9, April 1997.

42. R. M. Rohrer, J. L. Sibert and D. S. Ebert, "A Shape-Based Visual Interface for Text
Retrieval", IEEE Computer Graphics and Applications, Vol. 19, No. 5, pp. 40-46,
September/October 1999.



91

43. P. O'Neil, "An Incremental Approach to Text Representation, Categorization, and
Retrieval", in Proceedings of the 4th International Conference Document Analysis
and Recognition (ICDAR '97), Ulm, Germany, vol. 2, pp. 714-717, August 1997.

44. M. Ortega-Binderberger, S. Mehrotra, K. Chakrabarti and K. Porkaew, "WebMARS:
A Multimedia Search Engine", in Proceedings of SPIE - The International Society
for Optical Engineering Proceedings of the 2000 Internet Imaging, San Jose, CA,
USA, pp. 314-321, January 2000.

45. E. Ozkarahan, "Multimedia Document Retrieval", Information Processing &
Management, vol. 31, no. 1, pp. 113-131, 1995.

46. U. Schiel, I. M. S. F. Sousa and E. Ferneda, "SIM - A System for Semi-Automatic
Indexing of Multilingual Documents", in Proceedings of the 10th International
Workshop on Database & Expert Systems Applications, Florence, Italy, pp. 577-
581, September 1998.

47. H. Shen, J.T. Lin, T.M. Chu, M.M. Tanic, R.Curtis, D.C. Hung and P.A. Ng,
"Automatic Authoring in HyTEXPROS," in Proceedings of the Fifth World
Conference on Integrated Design and Process Technology, Dallas, Texas, June
2000.

48. H. Shen, HyTEXPROS: A Hypermedia Information Retrieval System, PhD
dissertation, Department of Computer and Information Science, New Jersey
Institute of Technology, Newark, New Jersey, January 2000.

49. A. F. Smeaton and A. L. Spitz, "Using Character Shape Coding for Information
Retrieval", in Proceedings of the 4th International Conference Document Analysis
and Recognition (ICDAR '97), Ulm, Germany, vol. 2, pp. 974-978, August 1997.

50. P. J. Smith, S. J. Shute, D. Galdes and M. H. Chignell, "Knowledge-Based Search
Tactics for an Intelligent Intermediary System", ACM Transactions on Office
Information System, vol. 7, no. 3, 1989.

51. B. W. Stalcup, P. W. Dennis and R. B. Dydyk, "Automated Search and Retrieval of
Information from Imaged Documents Using Optical Correlation Techniques", in
Proceedings of SPIC - The International Society for Optical Engineering
Proceedings of the 1999 Algorithms, Devices, and Systems for Optical
Information Processing III, Denver, Co, USA, pp. 92-101, July 1999.

52. D. Skuce, "Integrating Web-Based Documents, Shared Knowledge Bases, and
Information Retrieval for User Help", Computational Intelligence, vol. 16, no. 1,
pp. 95-113, 2000.



92

53. C. Wang, An Intelligent Browser for TEXPROS, PhD dissertation, Department of
Computer and Information Science, New Jersey Institute of Technology, Newark,
New Jersey, May 1998.

54. C. Wei, Knowledge Discovering for Document Classification Using Tree Matching in
TEXPROS, PhD dissertation, Department of Computer and Information Science,
New Jersey Institute of Technology, Newark, New Jersey, May 1996.

55. C. Wei, Q. Liu, J. Wang, and P. Ng, "Knowledge Discovering for Document
Classification Using Tree Matching in TEXPROS", Information Sciences, vol.
100, no. 1-4, pp. 255--310, August 1997.

56. L. Wilcox and J. Boreczky, "Annotation and Segmentation for Multimedia Indexing
and Retrieval", Proceedings of the 31st Hawaii International Conference on
System Sciences (HICSS'98), Kohala Coast, HI, vol. 2, pp. 259-266, January
1998.

57. Z. Zhu, Q. Liu, J. McHugh, and P. Ng, "A Predicate Driven Document Filing
System", Journal of Systems Integration, vol. 6, no. 3, pp. 373-403, September
1996.

58. Z. Zhu, J. McHugh, J. Wang, and P. Ng, "A Formal Approach to Modeling Office
Information Systems", Journal of Systems Integration, vol. 4, no. 4, pp. 373-403,
December 1994.


	Knowledge-based document retrieval with application to TEXPROS
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgement
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Document Retrival Platform 
	Chapter 3: Knowledge-Based Document Retrieval 
	Chapter 4: Document Query Language 
	Chapter 5: Knowledge-Based Query Processing and Search Engine
	Chapter 6: Intelligent Search Tool: Guided Search
	Chapter 7: Conclusions and Future Work 
	References

	List of Figures

