9,109 research outputs found

    Automatic Population of Structured Reports from Narrative Pathology Reports

    Get PDF
    There are a number of advantages for the use of structured pathology reports: they can ensure the accuracy and completeness of pathology reporting; it is easier for the referring doctors to glean pertinent information from them. The goal of this thesis is to extract pertinent information from free-text pathology reports and automatically populate structured reports for cancer diseases and identify the commonalities and differences in processing principles to obtain maximum accuracy. Three pathology corpora were annotated with entities and relationships between the entities in this study, namely the melanoma corpus, the colorectal cancer corpus and the lymphoma corpus. A supervised machine-learning based-approach, utilising conditional random fields learners, was developed to recognise medical entities from the corpora. By feature engineering, the best feature configurations were attained, which boosted the F-scores significantly from 4.2% to 6.8% on the training sets. Without proper negation and uncertainty detection, the quality of the structured reports will be diminished. The negation and uncertainty detection modules were built to handle this problem. The modules obtained overall F-scores ranging from 76.6% to 91.0% on the test sets. A relation extraction system was presented to extract four relations from the lymphoma corpus. The system achieved very good performance on the training set, with 100% F-score obtained by the rule-based module and 97.2% F-score attained by the support vector machines classifier. Rule-based approaches were used to generate the structured outputs and populate them to predefined templates. The rule-based system attained over 97% F-scores on the training sets. A pipeline system was implemented with an assembly of all the components described above. It achieved promising results in the end-to-end evaluations, with 86.5%, 84.2% and 78.9% F-scores on the melanoma, colorectal cancer and lymphoma test sets respectively

    Building a semantically annotated corpus of clinical texts

    Get PDF
    In this paper, we describe the construction of a semantically annotated corpus of clinical texts for use in the development and evaluation of systems for automatically extracting clinically significant information from the textual component of patient records. The paper details the sampling of textual material from a collection of 20,000 cancer patient records, the development of a semantic annotation scheme, the annotation methodology, the distribution of annotations in the final corpus, and the use of the corpus for development of an adaptive information extraction system. The resulting corpus is the most richly semantically annotated resource for clinical text processing built to date, whose value has been demonstrated through its use in developing an effective information extraction system. The detailed presentation of our corpus construction and annotation methodology will be of value to others seeking to build high-quality semantically annotated corpora in biomedical domains

    ACI-BENCH: a Novel Ambient Clinical Intelligence Dataset for Benchmarking Automatic Visit Note Generation

    Full text link
    Recent immense breakthroughs in generative models such as in GPT4 have precipitated re-imagined ubiquitous usage of these models in all applications. One area that can benefit by improvements in artificial intelligence (AI) is healthcare. The note generation task from doctor-patient encounters, and its associated electronic medical record documentation, is one of the most arduous time-consuming tasks for physicians. It is also a natural prime potential beneficiary to advances in generative models. However with such advances, benchmarking is more critical than ever. Whether studying model weaknesses or developing new evaluation metrics, shared open datasets are an imperative part of understanding the current state-of-the-art. Unfortunately as clinic encounter conversations are not routinely recorded and are difficult to ethically share due to patient confidentiality, there are no sufficiently large clinic dialogue-note datasets to benchmark this task. Here we present the Ambient Clinical Intelligence Benchmark (ACI-BENCH) corpus, the largest dataset to date tackling the problem of AI-assisted note generation from visit dialogue. We also present the benchmark performances of several common state-of-the-art approaches

    Designing an automated clinical decision support system to match clinical practice guidelines for opioid therapy for chronic pain

    Get PDF
    Abstract Background Opioid prescribing for chronic pain is common and controversial, but recommended clinical practices are followed inconsistently in many clinical settings. Strategies for increasing adherence to clinical practice guideline recommendations are needed to increase effectiveness and reduce negative consequences of opioid prescribing in chronic pain patients. Methods Here we describe the process and outcomes of a project to operationalize the 2003 VA/DOD Clinical Practice Guideline for Opioid Therapy for Chronic Non-Cancer Pain into a computerized decision support system (DSS) to encourage good opioid prescribing practices during primary care visits. We based the DSS on the existing ATHENA-DSS. We used an iterative process of design, testing, and revision of the DSS by a diverse team including guideline authors, medical informatics experts, clinical content experts, and end-users to convert the written clinical practice guideline into a computable algorithm to generate patient-specific recommendations for care based upon existing information in the electronic medical record (EMR), and a set of clinical tools. Results The iterative revision process identified numerous and varied problems with the initially designed system despite diverse expert participation in the design process. The process of operationalizing the guideline identified areas in which the guideline was vague, left decisions to clinical judgment, or required clarification of detail to insure safe clinical implementation. The revisions led to workable solutions to problems, defined the limits of the DSS and its utility in clinical practice, improved integration into clinical workflow, and improved the clarity and accuracy of system recommendations and tools. Conclusions Use of this iterative process led to development of a multifunctional DSS that met the approval of the clinical practice guideline authors, content experts, and clinicians involved in testing. The process and experiences described provide a model for development of other DSSs that translate written guidelines into actionable, real-time clinical recommendations.http://deepblue.lib.umich.edu/bitstream/2027.42/78267/1/1748-5908-5-26.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/2/1748-5908-5-26.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/3/1748-5908-5-26-S3.TIFFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/4/1748-5908-5-26-S2.TIFFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/5/1748-5908-5-26-S1.TIFFPeer Reviewe

    Language modelling for clinical natural language understanding and generation

    Get PDF
    One of the long-standing objectives of Artificial Intelligence (AI) is to design and develop algorithms for social good including tackling public health challenges. In the era of digitisation, with an unprecedented amount of healthcare data being captured in digital form, the analysis of the healthcare data at scale can lead to better research of diseases, better monitoring patient conditions and more importantly improving patient outcomes. However, many AI-based analytic algorithms rely solely on structured healthcare data such as bedside measurements and test results which only account for 20% of all healthcare data, whereas the remaining 80% of healthcare data is unstructured including textual data such as clinical notes and discharge summaries which is still underexplored. Conventional Natural Language Processing (NLP) algorithms that are designed for clinical applications rely on the shallow matching, templates and non-contextualised word embeddings which lead to limited understanding of contextual semantics. Though recent advances in NLP algorithms have demonstrated promising performance on a variety of NLP tasks in the general domain with contextualised language models, most of these generic NLP algorithms struggle at specific clinical NLP tasks which require biomedical knowledge and reasoning. Besides, there is limited research to study generative NLP algorithms to generate clinical reports and summaries automatically by considering salient clinical information. This thesis aims to design and develop novel NLP algorithms especially clinical-driven contextualised language models to understand textual healthcare data and generate clinical narratives which can potentially support clinicians, medical scientists and patients. The first contribution of this thesis focuses on capturing phenotypic information of patients from clinical notes which is important to profile patient situation and improve patient outcomes. The thesis proposes a novel self-supervised language model, named Phenotypic Intelligence Extraction (PIE), to annotate phenotypes from clinical notes with the detection of contextual synonyms and the enhancement to reason with numerical values. The second contribution is to demonstrate the utility and benefits of using phenotypic features of patients in clinical use cases by predicting patient outcomes in Intensive Care Units (ICU) and identifying patients at risk of specific diseases with better accuracy and model interpretability. The third contribution is to propose generative models to generate clinical narratives to automate and accelerate the process of report writing and summarisation by clinicians. This thesis first proposes a novel summarisation language model named PEGASUS which surpasses or is on par with the state-of-the-art performance on 12 downstream datasets including biomedical literature from PubMed. PEGASUS is further extended to generate medical scientific documents from input tabular data.Open Acces

    An informatics consult approach for generating clinical evidence for treatment decisions.

    Get PDF
    BACKGROUND: An Informatics Consult has been proposed in which clinicians request novel evidence from large scale health data resources, tailored to the treatment of a specific patient. However, the availability of such consultations is lacking. We seek to provide an Informatics Consult for a situation where a treatment indication and contraindication coexist in the same patient, i.e., anti-coagulation use for stroke prevention in a patient with both atrial fibrillation (AF) and liver cirrhosis. METHODS: We examined four sources of evidence for the effect of warfarin on stroke risk or all-cause mortality from: (1) randomised controlled trials (RCTs), (2) meta-analysis of prior observational studies, (3) trial emulation (using population electronic health records (N = 3,854,710) and (4) genetic evidence (Mendelian randomisation). We developed prototype forms to request an Informatics Consult and return of results in electronic health record systems. RESULTS: We found 0 RCT reports and 0 trials recruiting for patients with AF and cirrhosis. We found broad concordance across the three new sources of evidence we generated. Meta-analysis of prior observational studies showed that warfarin use was associated with lower stroke risk (hazard ratio [HR] = 0.71, CI 0.39-1.29). In a target trial emulation, warfarin was associated with lower all-cause mortality (HR = 0.61, CI 0.49-0.76) and ischaemic stroke (HR = 0.27, CI 0.08-0.91). Mendelian randomisation served as a drug target validation where we found that lower levels of vitamin K1 (warfarin is a vitamin K1 antagonist) are associated with lower stroke risk. A pilot survey with an independent sample of 34 clinicians revealed that 85% of clinicians found information on prognosis useful and that 79% thought that they should have access to the Informatics Consult as a service within their healthcare systems. We identified candidate steps for automation to scale evidence generation and to accelerate the return of results. CONCLUSION: We performed a proof-of-concept Informatics Consult for evidence generation, which may inform treatment decisions in situations where there is dearth of randomised trials. Patients are surprised to know that their clinicians are currently not able to learn in clinic from data on 'patients like me'. We identify the key challenges in offering such an Informatics Consult as a service

    An informatics consult approach for generating clinical evidence for treatment decisions

    Get PDF
    Background: An Informatics Consult has been proposed in which clinicians request novel evidence from large scale health data resources, tailored to the treatment of a specific patient. However, the availability of such consultations is lacking. We seek to provide an Informatics Consult for a situation where a treatment indication and contraindication coexist in the same patient, i.e., anti-coagulation use for stroke prevention in a patient with both atrial fibrillation (AF) and liver cirrhosis. // Methods: We examined four sources of evidence for the effect of warfarin on stroke risk or all-cause mortality from: (1) randomised controlled trials (RCTs), (2) meta-analysis of prior observational studies, (3) trial emulation (using population electronic health records (N = 3,854,710) and (4) genetic evidence (Mendelian randomisation). We developed prototype forms to request an Informatics Consult and return of results in electronic health record systems. // Results: We found 0 RCT reports and 0 trials recruiting for patients with AF and cirrhosis. We found broad concordance across the three new sources of evidence we generated. Meta-analysis of prior observational studies showed that warfarin use was associated with lower stroke risk (hazard ratio [HR] = 0.71, CI 0.39–1.29). In a target trial emulation, warfarin was associated with lower all-cause mortality (HR = 0.61, CI 0.49–0.76) and ischaemic stroke (HR = 0.27, CI 0.08–0.91). Mendelian randomisation served as a drug target validation where we found that lower levels of vitamin K1 (warfarin is a vitamin K1 antagonist) are associated with lower stroke risk. A pilot survey with an independent sample of 34 clinicians revealed that 85% of clinicians found information on prognosis useful and that 79% thought that they should have access to the Informatics Consult as a service within their healthcare systems. We identified candidate steps for automation to scale evidence generation and to accelerate the return of results. // Conclusion: We performed a proof-of-concept Informatics Consult for evidence generation, which may inform treatment decisions in situations where there is dearth of randomised trials. Patients are surprised to know that their clinicians are currently not able to learn in clinic from data on ‘patients like me’. We identify the key challenges in offering such an Informatics Consult as a service

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 130, July 1974

    Get PDF
    This special bibliography lists 291 reports, articles, and other documents introduced into the NASA scientific and technical information system in June 1974

    Table-to-Text: Generating Descriptive Text for Scientific Tables from Randomized Controlled Trials

    Get PDF
    Unprecedented amounts of data have been generated in the biomedical domain, and the bottleneck for biomedical research has shifted from data generation to data management, interpretation, and communication. Therefore, it is highly desirable to develop systems to assist in text generation from biomedical data, which will greatly improve the dissemination of scientific findings. However, very few studies have investigated issues of data-to-text generation in the biomedical domain. Here I present a systematic study for generating descriptive text from tables in randomized clinical trials (RCT) articles, which includes: (1) an information model for representing RCT tables; (2) annotated corpora containing pairs of RCT table and descriptive text, and labeled structural and semantic information of RCT tables; (3) methods for recognizing structural and semantic information of RCT tables; (4) methods for generating text from RCT tables, evaluated by a user study on three aspects: relevance, grammatical quality, and matching. The proposed hybrid text generation method achieved a low bilingual evaluation understudy (BLEU) score of 5.69; but human review achieved scores of 9.3, 9.9 and 9.3 for relevance, grammatical quality and matching, respectively, which are comparable to review of original human-written text. To the best of our knowledge, this is the first study to generate text from scientific tables in the biomedical domain. The proposed information model, labeled corpora and developed methods for recognizing tables and generating descriptive text could also facilitate other biomedical and informatics research and applications
    • …
    corecore