3,633 research outputs found

    Structural Learning of Attack Vectors for Generating Mutated XSS Attacks

    Full text link
    Web applications suffer from cross-site scripting (XSS) attacks that resulting from incomplete or incorrect input sanitization. Learning the structure of attack vectors could enrich the variety of manifestations in generated XSS attacks. In this study, we focus on generating more threatening XSS attacks for the state-of-the-art detection approaches that can find potential XSS vulnerabilities in Web applications, and propose a mechanism for structural learning of attack vectors with the aim of generating mutated XSS attacks in a fully automatic way. Mutated XSS attack generation depends on the analysis of attack vectors and the structural learning mechanism. For the kernel of the learning mechanism, we use a Hidden Markov model (HMM) as the structure of the attack vector model to capture the implicit manner of the attack vector, and this manner is benefited from the syntax meanings that are labeled by the proposed tokenizing mechanism. Bayes theorem is used to determine the number of hidden states in the model for generalizing the structure model. The paper has the contributions as following: (1) automatically learn the structure of attack vectors from practical data analysis to modeling a structure model of attack vectors, (2) mimic the manners and the elements of attack vectors to extend the ability of testing tool for identifying XSS vulnerabilities, (3) be helpful to verify the flaws of blacklist sanitization procedures of Web applications. We evaluated the proposed mechanism by Burp Intruder with a dataset collected from public XSS archives. The results show that mutated XSS attack generation can identify potential vulnerabilities.Comment: In Proceedings TAV-WEB 2010, arXiv:1009.330

    Morphologically motivated word classes for very large vocabulary speech recognition of Finnish and Estonian

    Get PDF
    We study class-based n-gram and neural network language models for very large vocabulary speech recognition of two morphologically rich languages: Finnish and Estonian. Due to morphological processes such as derivation, inflection and compounding, the models need to be trained with vocabulary sizes of several millions of word types. Class-based language modelling is in this case a powerful approach to alleviate the data sparsity and reduce the computational load. For a very large vocabulary, bigram statistics may not be an optimal way to derive the classes. We thus study utilizing the output of a morphological analyzer to achieve efficient word classes. We show that efficient classes can be learned by refining the morphological classes to smaller equivalence classes using merging, splitting and exchange procedures with suitable constraints. This type of classification can improve the results, particularly when language model training data is not very large. We also extend the previous analyses by rescoring the hypotheses obtained from a very large vocabulary recognizer using class-based neural network language models. We show that despite the fixed vocabulary, carefully constructed classes for word-based language models can in some cases result in lower error rates than subword-based unlimited vocabulary language models.We study class-based n-gram and neural network language models for very large vocabulary speech recognition of two morphologically rich languages: Finnish and Estonian. Due to morphological processes such as derivation, inflection and compounding, the models need to be trained with vocabulary sizes of several millions of word types. Class-based language modelling is in this case a powerful approach to alleviate the data sparsity and reduce the computational load. For a very large vocabulary, bigram statistics may not be an optimal way to derive the classes. We thus study utilizing the output of a morphological analyzer to achieve efficient word classes. We show that efficient classes can be learned by refining the morphological classes to smaller equivalence classes using merging, splitting and exchange procedures with suitable constraints. This type of classification can improve the results, particularly when language model training data is not very large. We also extend the previous analyses by rescoring the hypotheses obtained from a very large vocabulary recognizer using class-based neural network language models. We show that despite the fixed vocabulary, carefully constructed classes for word-based language models can in some cases result in lower error rates than subword-based unlimited vocabulary language models.Peer reviewe

    Improving the performance of Hierarchical Hidden Markov Models on Information Extraction tasks

    Get PDF
    This thesis presents novel methods for creating and improving hierarchical hidden Markov models. The work centers around transforming a traditional tree structured hierarchical hidden Markov model (HHMM) into an equivalent model that reuses repeated sub-trees. This process temporarily breaks the tree structure constraint in order to leverage the benefits of combining repeated sub-trees. These benefits include lowered cost of testing and an increased accuracy of the final model-thus providing the model with greater performance. The result is called a merged and simplified hierarchical hidden Markov model (MSHHMM). The thesis goes on to detail four techniques for improving the performance of MSHHMMs when applied to information extraction tasks, in terms of accuracy and computational cost. Briefly, these techniques are: a new formula for calculating the approximate probability of previously unseen events; pattern generalisation to transform observations, thus increasing testing speed and prediction accuracy; restructuring states to focus on state transitions; and an automated flattening technique for reducing the complexity of HHMMs. The basic model and four improvements are evaluated by applying them to the well-known information extraction tasks of Reference Tagging and Text Chunking. In both tasks, MSHHMMs show consistently good performance across varying sizes of training data. In the case of Reference Tagging, the accuracy of the MSHHMM is comparable to other methods. However, when the volume of training data is limited, MSHHMMs maintain high accuracy whereas other methods show a significant decrease. These accuracy gains were achieved without any significant increase in processing time. For the Text Chunking task the accuracy of the MSHHMM was again comparable to other methods. However, the other methods incurred much higher processing delays compared to the MSHHMM. The results of these practical experiments demonstrate the benefits of the new method-increased accuracy, lower computation costs, and better performance

    Context based mixture model for cell phase identification in automated fluorescence microscopy

    Get PDF
    BACKGROUND: Automated identification of cell cycle phases of individual live cells in a large population captured via automated fluorescence microscopy technique is important for cancer drug discovery and cell cycle studies. Time-lapse fluorescence microscopy images provide an important method to study the cell cycle process under different conditions of perturbation. Existing methods are limited in dealing with such time-lapse data sets while manual analysis is not feasible. This paper presents statistical data analysis and statistical pattern recognition to perform this task. RESULTS: The data is generated from Hela H2B GFP cells imaged during a 2-day period with images acquired 15 minutes apart using an automated time-lapse fluorescence microscopy. The patterns are described with four kinds of features, including twelve general features, Haralick texture features, Zernike moment features, and wavelet features. To generate a new set of features with more discriminate power, the commonly used feature reduction techniques are used, which include Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), Maximum Margin Criterion (MMC), Stepwise Discriminate Analysis based Feature Selection (SDAFS), and Genetic Algorithm based Feature Selection (GAFS). Then, we propose a Context Based Mixture Model (CBMM) for dealing with the time-series cell sequence information and compare it to other traditional classifiers: Support Vector Machine (SVM), Neural Network (NN), and K-Nearest Neighbor (KNN). Being a standard practice in machine learning, we systematically compare the performance of a number of common feature reduction techniques and classifiers to select an optimal combination of a feature reduction technique and a classifier. A cellular database containing 100 manually labelled subsequence is built for evaluating the performance of the classifiers. The generalization error is estimated using the cross validation technique. The experimental results show that CBMM outperforms all other classifies in identifying prophase and has the best overall performance. CONCLUSION: The application of feature reduction techniques can improve the prediction accuracy significantly. CBMM can effectively utilize the contextual information and has the best overall performance when combined with any of the previously mentioned feature reduction techniques

    Deep Learning for Decision Making and Autonomous Complex Systems

    Get PDF
    Deep learning consists of various machine learning algorithms that aim to learn multiple levels of abstraction from data in a hierarchical manner. It is a tool to construct models using the data that mimics a real world process without an exceedingly tedious modelling of the actual process. We show that deep learning is a viable solution to decision making in mechanical engineering problems and complex physical systems. In this work, we demonstrated the application of this data-driven method in the design of microfluidic devices to serve as a map between the user-defined cross-sectional shape of the flow and the corresponding arrangement of micropillars in the flow channel that contributed to the flow deformation. We also present how deep learning can be used in the early detection of combustion instability for prognostics and health monitoring of a combustion engine, such that appropriate measures can be taken to prevent detrimental effects as a result of unstable combustion. One of the applications in complex systems concerns robotic path planning via the systematic learning of policies and associated rewards. In this context, a deep architecture is implemented to infer the expected value of information gained by performing an action based on the states of the environment. We also applied deep learning-based methods to enhance natural low-light images in the context of a surveillance framework and autonomous robots. Further, we looked at how machine learning methods can be used to perform root-cause analysis in cyber-physical systems subjected to a wide variety of operation anomalies. In all studies, the proposed frameworks have been shown to demonstrate promising feasibility and provided credible results for large-scale implementation in the industry

    Online topology free Gaussian HMM parameter estimation based on clustering

    Get PDF
    Tese de Mestrado Integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 201
    corecore