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Abstract

We study class-based n-gram and neural network language models for very large vocab-
ulary speech recognition of two morphologically rich languages: Finnish and Estonian.
Due to morphological processes such as derivation, inflection and compounding, the mod-
els need to be trained with vocabulary sizes of several millions of word types. Class-based
language modelling is in this case a powerful approach to alleviate the data sparsity and
reduce the computational load. For a very large vocabulary, bigram statistics may not
be an optimal way to derive the classes. We thus study utilizing the output of a morpho-
logical analyzer to achieve efficient word classes. We show that efficient classes can be
learned by refining the morphological classes to smaller equivalence classes using merging,
splitting and exchange procedures with suitable constraints. This type of classification
can improve the results, particularly when language model training data is not very
large. We also extend the previous analyses by rescoring the hypotheses obtained from a
very large vocabulary recognizer using class-based neural network language models. We
show that despite the fixed vocabulary, carefully constructed classes for word-based lan-
guage models can in some cases result in lower error rates than subword-based unlimited
vocabulary language models.
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1. Introduction

The conventional solution for language modelling in large vocabulary continuous
speech recognition has for long time been a statistical n-gram model trained over words.
The frequency estimates are smoothed to improve robustness and assign probabilities to
word sequences that are not present in the training corpus [1]. Even though different
neural network approaches for language modelling have been known already for some
time [2, 3], they have only become commonplace in recent years. Modern large vocabu-
lary language models need to be trained using large text corpora to achieve reasonable
vocabulary coverage and modelling accuracy. The computational cost in training and
applying the models has been inhibitory until the development of parallelization us-
ing graphical processing units (GPUs). Nevertheless, in most cases a statistical n-gram
model is applied on the first recognition pass and neural network language models are
used to rescore hypotheses stored in a n-best list or a recognition lattice. For a survey
on applying recurrent neural networks (RNNs) to language modelling, see [4].

The problems in training language models are in many ways pronounced for morpho-
logically rich languages. For example Finnish and Estonian, the languages studied in this
work, are known to have 26 [5] and 28 [6] grammatical noun cases, respectively. However,
due to clitic particles, irregularities and other phenomena, estimating the morphological
generativeness of the languages is more complex. Already the non-inflected and non-
compounded Finnish nouns can have 150 paradigmatic forms and appear in as many
as 2000 different forms [7]. Also for Estonian, the possibility of over 400 noun patterns
has been observed in some sources [8]. As forming compound words is common for both
the languages, the vocabulary sizes are further increased. For a practical assessment of
the morphological generativeness of the languages, we have estimated the type-to-token
ratios for some agglutinative and other languages in Figure 1 for the Wikipedia corpus.

Even though the Wikipedia corpora for the different languages are, due to possible
cultural and other factors, only approximately comparable, we may still observe that the
agglutinative Uralic languages (Finnish, Estonian, Hungarian) and the major Dravid-
ian languages (Tamil, Telugu, Malayalam, Kannada) are among the languages with the
highest vocabulary growth rates. For example the Turkic languages and Arabic can also
exhibit high vocabulary sizes, but at least as estimated from the Wikipedia corpus, the
type-to-token ratios are somewhat lower than for the Uralic and Dravidian languages.
We thus expect the models and evaluations in this work to be representative of at least
the languages in the Uralic and Dravidian language families, but likely useful for many
other languages as well.

For these languages, a very large vocabulary is thus required to achieve a sufficiently
small ouf-of-vocabulary (OOV) rate, and even large text corpora are sparse for training
accurate n-gram models. Training neural network language models over words is hard
and computationally expensive thanks to the data sparsity and the normalization step
in the softmax output layer. Approaches such as noise contrastive estimation [9] and
hierarchical softmax [10] can be used to speed up training of word-based NNLMs. A
recent study on Finnish and Estonian conversational ASR [11] compared these approaches
to class-based NNLMs. In that work, the class-based NNLMs were mostly more accurate
and faster to train, even though there may naturally be possibilities for improving the
NCE and hierarchical softmax -approaches.

For agglutinative languages, building the language models over subword units such as
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Figure 1: Vocabulary growth rates estimated from Wikipedia articles

statistical morphs has proven to be a solid choice [12, 13, 14]. Consequently, probabilities
may be assigned to word forms which are not covered by the training corpus. With
subword models, it is possible to opt either for unlimited vocabulary speech recognition
[15] or a limited vocabulary that is easy to expand with new word forms [16]. In some
cases, subwords also provide better n-gram estimates with the same vocabulary [17].

Studies of Hungarian [18] and Finnish [16] have shown that carefully implemented
word-based n-grams can produce competitive error rates compared to the subword ap-
proach. This requires an ASR decoder that is capable of effectively handling a vocabulary
of millions of word forms and large n-gram models. In addition, a large training corpus
is needed for sufficient coverage of word forms and robust n-gram estimates.

The class n-gram model is a traditional approach for alleviating the data sparsity is-
sues [19, 20]. In an early work [21], variable-length category n-grams over part-of-speech
tags were trained and evaluated in English speech recognition. Using automatically de-
rived classes and thus increasing the number of classes was found to give larger improve-
ments when interpolated with word n-grams [22]. For languages with more generative
morphology, class n-grams trained over automatically derived classes have been found to
improve language modelling for Russian [23]. In a study on Lithuanian language mod-
elling [24], up to 13% perplexity reductions were reached by a linear interpolation with a
class n-gram using automatically derived classes. In another study on Czech and Slovak
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language modelling [25], linear interpolation with morphological class n-grams improved
perplexities by around 10% for a large corpus. Larger improvements were reached using
a smaller training corpus. The size of the vocabulary has varied in these experiments,
the largest being 430,000 words in the Russian language modelling experiments [23] and
1.2 million words in the Lithuanian language modelling experiments [24].

In this work, we study class-based language modelling for Finnish and Estonian speech
recognition with very large vocabulary sizes. As the size of the vocabulary grows, the
importance of the word clustering methods is expected to increase. Despite the potential
of the class based models for the speech recognition of morphologically rich languages,
there have been few studies of this topic.

Class n-gram models have been evaluated (for instance) in English speech recognition
tasks in [26] and [27]. In the former work, a 2.2% relative improvement in word error rate
was obtained in lattice rescoring experiments in a broadcast news task. The vocabulary
size in this experiment was 65,000 words. In the latter, a 3.7% relative improvement was
observed in the North American business news (NAB) task through lattice rescoring.
The vocabulary size in this experiment was 20,000.

Some results on Lithuanian speech recognition have been mentioned in [28]. In these
experiments, a larger vocabulary of 1.2 million words was used and the class n-gram inter-
polation improved the word-error rate by 5.2 percent relative using n-best list rescoring.
In addition, the word-based recognizer was compared to a recognizer utilizing a particle
(subword) recognition approach. The word-based recognizer outperformed the subword
approach with a large margin of 8 percent absolute. This differs from the results reported
for Finnish and Estonian speech recognition tasks, in which the subword recognizers have
provided state-of-the-art accuracy [12, 29, 15]. Therefore, it is possible that the Lithua-
nian language is not particularly well suited to subword language modelling approaches
in speech recognition.

More recent experiments used a class-based output layer for NNLMs for English lan-
guage modelling and automatic speech recognition on the Switchboard conversational
telephone speech corpus [30]. The word error rate was improved by around 2% absolute
compared to the baseline result using Kneser-Ney smoothed 5-gram model. Neural net-
work language models trained over classes have also been evaluated for conversational
Finnish and Estonian speech recognition in [11]. In the context of language modelling
using the so-called Model M [31], it was shown that optimizing the classes directly for the
Model M criterion [32] improved the modelling accuracy in English speech recognition
tasks.

In this work, we propose and evaluate a novel approach for training morphologically
motivated word classes using open source morphological analyzers for both Finnish [33]
and Estonian [34]. We use an expectation-maximization training procedure [35] for
training morphological classes and we use the model for tagging words that are not
covered by the analyzer lexicon. We further refine the resulting classes by a merging and
splitting procedure, followed by exchanges with different morphological constraints. The
use of merging and splitting of classes has previously been mentioned in [32] to overcome
possible local maxima of the bigram objective function. We are not aware of earlier
experiments where the morphological analyzer classes are refined using bigram statistics
to achieve more powerful classifications for language modelling. However, the results
show that at least some efficient solutions to the classification problem are closely related
to further processed part-of-speech equivalence classes. We show that using classes with
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morphological constraints improves the perplexities and word error rates, especially in
settings with less training data.

Given that Finnish and Estonian are agglutinative languages, the most common lan-
guage modelling approach for them has been to train the models over statistical morphs
or other subword lexical units [12, 29, 15]. The perplexities of subword-based and word-
based language models are not typically comparable because of the different OOV rates,
so their performance needs to be evaluated in a speech recognition task. Due to our re-
cent improvements in the decoder design [16], we are able to compare subword language
models to word-based language models with a very large vocabulary size. An interpola-
tion of a large word-based n-gram model and a class n-gram model is used as a language
model in the first recognition pass. To ensure accurate decoding, we use a class bigram
model for language model look-ahead during decoding [36].

We also evaluate the accuracy of the recognizers using NNLMs for rescoring n-best
lists that were obtained from the decoder in the first recognition pass. For this purpose,
either class-based or subword-based NNLMs could be utilized. In our experiments, the
subword-based models appear to be more powerful of the two. However, in most cases,
interpolating with both types of neural network models improves the results further.
The type of word classifications can also have a significant impact on the recognition
accuracy with class-based NNLMs. The morphologically motivated classes provide better
accuracy compared to classes inferred purely using the exchange algorithm based on
bigram statistics, especially with less training data. Compared to rescoring the output
of an unlimited vocabulary recognizer, we show that in some cases better results are
reached. In this work, the class-based modelling approach is used in all phases of a
traditional ASR system: in a look-ahead language model during decoding, in interpolated
language model component during the first recognition pass, and in a component model
for rescoring the hypotheses with NNLMs.

2. Methods

In this section, we first define the class-based language models that are used in subsec-
tion 2.1. Inferring classes using bigram statistics and the exchange algorithm is described
in subsection 2.2. The main methodological contribution of the work, a morphologically
motivated class inference, is described in subsection 2.3. In the experiments, we com-
pare the class-based models to subword-based language models, which are discussed in
subsection 2.4. Decoding the very large vocabularies and language models is discussed
in subsection 2.5.

2.1. Class-based Language Models

In this work, we use the following popular type of a class n-gram model [19, 20]:

P (wi|wi−1
i−(n−1)) = P (wi|ci)× P (ci|ci−1i−(n−1)), (1)

where the words w are clustered into equivalence classes c. The word history is denoted
by wi−1

i−(n−1) and the corresponding class history by ci−1i−(n−1). After the classification, the

class membership probabilities P (wi|ci) and the class n-gram component P (ci|ci−1i−(n−1))

are typically estimated as given by the maximum likelihood estimates:
5



P (w|c) =
f(w)∑

v∈C(w) f(v)
(2)

P (ci|ci−1i−(n−1)) =
f(ci−(n−1), .., ci)

f(ci−(n−1), .., ci−1)
, (3)

where f(w) denotes the frequency of the word w, C(w) the class of the word w, and
f(ci−(n−1), .., ci) the frequency of a class sequence.

We also evaluate class-based neural network language models. These models utilize
long short-term memory (LSTM) layers [2] and highway layers with tanh activations [37].
We train the NNLMs over class sequences and use a class-based output layer. The class
membership probabilities are estimated by the formula 2 similarly to the class n-gram
models.

2.2. Exchange Algorithm.

The so-called exchange algorithm for forming statistical word classes with bigram
statistics was given in [19]:

Algorithm 1: Exchange algorithm

1 compute initial class mapping
2 sum initial class based counts
3 compute initial perplexity
4 repeat
5 foreach word w of the vocabulary do
6 remove word from its class
7 foreach class k do
8 tentatively move word w to class k
9 compute perplexity for this exchange

10 move word w to class k with minimum perplexity

11 until stopping criterion is met

The algorithm operates by iterating over all the words, evaluating all possible class
exchanges for each word, and then choosing the exchange that provides the largest im-
provement for the likelihood. Later work discussed efficient implementations using the
word-class and class-word statistics, as well as extension to trigram clustering [27]. While
trigram statistics may provide improvements for a small number of classes, they often
result in overlearning, and the best performance is normally obtained with bigram clus-
tering [27, 38]. The evaluation step may be parallelized for each word [38].

2.3. Morphologically Motivated Classes

We extend our previous work on class language models [39] by more detailed exper-
iments with morphologically motivated classes. For both of our target languages, there
are open source morphological analyzers available. For Finnish, we used the Omorfi
[33] package (version 0.4-20190511) and for Estonian the Estnltk [34] package (version
1.4.1). The Omorfi analyzer is able to analyze 82 percent of the word types found in
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our training data. For Estnltk and our Estonian corpus the coverage was 77 percent.
There are some considerations and challenges in utilizing the output of the morphological
analyzer in forming word classes for language modelling. First, to prevent the increase of
the OOV rate of the language model, word forms that are not recognized by the analyzer
need to be tagged. Second, for some surface word forms, the output of the analyzer will
contain multiple ambiguous analyses, and a decision needs to be made about whether
only one or more lexical entries are included in the model. In many cases, there is a thin
line between whether some analyses for a word are really distinct or if they are simply
due to the very fine-grained output of the analyzer. In our initial experiments, training
language models over fully disambiguated entries resulted in worse speech recognition
accuracy compared to the standard approach of adding only one entry per surface word
form. Third, the classifications given by the morphological analyzer are not optimal for
use with a class-based language model as such. On the one hand, the output is some-
times very fine-grained, which leads to ambiguity and possible data sparsity. On the
other hand, the largest classes consist of hundreds of thousands of words and for those
the modelling accuracy inevitably suffers.

We thus suggest and evaluate an approach in which we use the morphological analyzer
output to initialize a class-based model, which allows multiple classes per word [35, 21].
The model is trained using the expectation-maximization algorithm, as in [35], but we
use the distribution marginalized over words, as in [21]. In the final training iterations,
the words that are not covered in the morphological analyzer lexicon are tagged. To
further refine the classes by a merging and splitting procedure, we also limit the number
of classes per word to one. The training procedure makes it possible to ”freeze” the words
to the most likely class. This limitation does not incur a penalty, at least as evaluated
by the model likelihood. This allows us to refine the classes using bigram statistics to
reach more powerful classifications for language modelling.

2.3.1. Expectation-maximization Training

We use a generalization of the class n-gram model, which allows the words to belong to
more than one class [35, 21]. The model has three types of parameters: class generation
probabilities, the n-gram parameters and the class membership probabilities. In this
work, we concentrate on the following model:

P (wi|wi−1
i−(n−1)) =

∑
j

P (wi|cji)×
∑
s

P (cji|s)×
i−1∏

k=i−(n−1)

P (csk|wk)


Here j denotes a possible class for the word wi and s are the different class sequences
generated by the word history wi−1

i−(n−1). This model assumes that the classes in the

word history are generated independently of the other classes. We believe this to be
a reasonable approximation considering that the n-gram term in the model is context-
dependent. Moreover, the large vocabulary sizes that we apply in this work would pose
challenges for more complex modelling of the class generation.

To train the model, we need a text corpus and a morphological analyzer that has
a reasonable coverage for the corpus. The text corpus does not need to be tagged.
Because many words have multiple possible analysis, the morphological disambiguation is
modelled with alternate classes. A morphological analyzer is not required to disambiguate
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the words because it is an inherent part in the class n-gram model training. In the later
training iterations, the remaining unanalyzed words may be tagged to the classes. For
this purpose, we used the n-gram probabilities to estimate the most probable classes in
the sentence context.

In the following, we derive the expectation-maximization algorithm for training the
model parameters. The EM-training approach was used in [35], but their task did not
marginalize the model over word sequences. In the earlier work on the category n-gram
models [21], a different approach was used for training the model. The notation that
we use here follows the derivation of the expectation-maximization algorithm for the
Hidden Markov models [40]. The EM algorithm starts with some initial selection for the
model parameters, which are denoted by θold. In the E step, these parameter values
are used to find the posterior distribution of the latent variables p(Z|X,θold). This
posterior distribution is then used to evaluate the expectation of the logarithm of the
complete-data likelihood function, as a function of the parameters θ, to give the function
Q(θ,θold) defined by:

Q(θ,θold) =
∑
Z

p(Z|X,θold) ln p(X,Z|θ), (4)

where X denotes the training observations and Z the latent variables (classes). The
summation is over all of the sequences of the latent variables.

To some extent, the derivation of the expectation-maximization training scheme
builds on the possibility of writing the log likelihood of one class sequence as a sum
of three separate terms, where the model parameters appear separately. By a class se-
quence, we mean the class sequence for the whole training corpus, where sentence break
markers are added between all sentences to cover the n-gram order. If the label sequence
was known, then the parameters would have closed form solutions. We can thus deduce
that the correct label sequence is the only hidden variable.

The joint probability of the latent variables and observations for the model under
consideration may be written as:

p(X,Z|θ) =

N∏
t=1

p(zt−1t−(n−1)|x
t−1
t−(n−1),A)p(zt|zt−1t−(n−1),B)p(xt|zt,C),

=

N∏
r=1

r−1∏
u=r−(n−1)

p(zu|xu,A)

N∏
s=1

p(zs|zs−1s−(n−1),B)

N∏
t=1

p(xt|zt,C),

(5)

where n is the n-gram context length, N the number of words in the training corpus with
special words appended between the sentences, A the class generation probabilities, B
the class n-gram probabilities, C the class memberships, xt the observation at position t
and zt corresponds to a binary state vector of the latent variables (classes) at position t.
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Substituting this into formula 4 gives:

Q(θ,θold) =
∑
Z

p(Z|X,θold)

N∑
r=1

r−1∑
u=r−(n−1)

ln p(zu|xu,A)

+
∑
Z

p(Z|X,θold)

N∑
s=1

ln p(zs|zs−1s−(n−1),B)

+
∑
Z

p(Z|X,θold)

N∑
t=1

ln p(xt|zt,C)

(6)

We notice that the three parameter types appear in separate terms, so each of the
terms may be optimized independently. Introducing a suitable Lagrange multiplier and
solving for the zero of the derivative will give these closed form solutions for the maxi-
mization step of each EM iteration:

p(c|w) =

∑N
t=1 γ(ztwc)∑N

t=1

∑
k γ(ztwk)

(7)

p(w|c) =

∑N
t=1 γ(ztwc)∑N

t=1

∑
v∈V γ(ztvc)

(8)

p(ci|ci−(n−1), .., ci−1) =

∑N
t=1 ξ(h, c)∑N

t=1

∑
k ξ(h, k)

, (9)

where γ and ξ are shorthand notations for the expected statistics collected in the E-step.
For the definitions and the full derivation see the Appendix A.

In practice, sufficient statistics may be collected using a dynamic programming ap-
proach with tokens representing one sequence of classes in a training sentence. We
applied a global likelihood beam for pruning unlikely class sequences and to further limit
the number of tokens by histogram pruning. Standard ARPA-format backoff language
models were used for the n-gram term. Witten-Bell smoothing [41] was applied in the
training phase because it naturally supports fractional counts for different class sequence
hypotheses and is implemented in the SRILM toolkit [42]. Kneser-Ney smoothing may
also be generalized for fractional counts [43], although there are no publicly available
implementations. We did not observe major differences compared to the unsmoothed
estimates in the training phase, and the backoff approach was selected for practical rea-
sons.

We used the following procedure to train the model. The word classes were initialized
from the analysis output of the morphological analyzers. For words with multiple anal-
yses, the class generation probabilities p(c|w) were initialized evenly. The initial class
membership probabilities p(w|c) were obtained by applying the Bayes’ formula as:

p(w|c) =
p(c|w)× f(w)∑
v p(c|v)× f(v)

(10)

The training was started with unigram statistics and the n-gram order was increased
to two and three in the subsequent iterations. The class generation and membership
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probabilities were kept constant in the first iterations and were only updated when the
n-gram order was increased to three. Tagging of new words was done in the later training
iterations using the n-gram probabilities. In the final steps of the training, we observed
that the number of classes per word could be reduced to one with only a minor loss in
perplexity. This may at first appear counter-intuitive, but allowing multiple classes was
more important during the training phase and to allow multiple hypotheses while tagging
new words. By allowing only one class membership per word, the further processing of
the classes by merging and splitting is simplified. These steps are explained in the next
subsection.

2.3.2. Refining Classes by Merging and Splitting

The morphological word classes are not optimal for use with a class language model.
For some words, the classes are too fine-grained, whereas the largest word classes consist
of hundreds of thousands of words, leading to inaccurate modelling. To overcome these
problems and to reach more efficient word classes, we further process the classes by a
merging and splitting procedure. We first merged morphological classes with the smallest
loss in training data bigram likelihood. A predefined number of randomly sampled class
pairs were evaluated and the merger with the smallest loss in likelihood was performed.
We constrained the class mergers to operate within the same major part-of-speech tag (i.e.
nouns, adjectives, verbs etc.). As a result of this procedure, the classes typically contain
words that have the same major part-of-speech tag and sharing similar morphological
properties.

To improve the modelling accuracy, we proceeded by splitting the classes using bigram
statistics. We evaluated the splitting of a predefined number of classes with the highest
token count. For these classes, the words were split to two separate classes. One iteration
of exchange algorithm was then run locally between these classes; that is, only for the
words belonging to these classes and limiting the exchanges only to the other class. The
split with the highest improvement in likelihood was performed.

After the splitting phase, the exchange algorithm was run to further improve the
classifications. However, we evaluated different types of constraints for the exchanges
that the algorithm was allowed to perform.

• In the unconstrained setting, the exchange algorithm was run normally as defined in
Algorithm 1. The morphologically motivated classes acted thus as an initialization.

• In the second setting, the exchanges were constrained to classes, which shared the
same major POS tag (i.e. nouns, adjectives, verbs and other classes).

• In the most constrained setting, the exchanges were constrained to the superclass
created during the merge phase; that is, in addition to the major POS class con-
straint, the words are sharing other morphological traits

The number of classes after the merging phase was selected to optimize the likelihood
after running the full training (i.e. merging, splitting and exchange procedures).

2.4. Subword Language Models

A popular approach for tackling the OOV and the data sparsity problems for ag-
glutinative languages has been to train the statistical language models over morphs or
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other subword units. By combining the subword units of the lexicon, it is possible to
assign probabilities to word forms that do not occur in the training corpus. If the lex-
icon includes (for example) all individual letters or syllables of the language, then the
resulting vocabulary of the recognizer is unlimited [15]. However, because some units
are short, a high-order n-gram model is required to get the full benefit from the subword
modelling [29].

Statistical approaches for learning the units have given good results on many lan-
guages [12, 18]. A popular method is Morfessor Baseline [44], which uses the minimum
description length (MDL) criterion to find a balance between the cost of storing the model
and encoding the training corpus with the model. Morfessor Baseline encodes the corpus
with a unigram model. Another segmentation approach is the Greedy unigrams method
[45], which also infers a unigram-based model but which does not include a cost for
coding the subword lexicon in the optimization criterion. It has been shown to improve
the accuracy in some cases compared to Morfessor Baseline, especially if well-matching
and reasonably large training corpus is available. In this work, for each evaluated ASR
corpus, we trained both one Morfessor Baseline model and one Greedy unigrams model.
The Morfessor Baseline model had a lexicon size of 8000 optimized using word types,
whereas the Greedy unigrams model had a vocabulary size of 10000 and was trained
using the word counts. The better of the two was used for the unlimited vocabulary
baseline result and as a component model in the interpolated word-based results. Mor-
fessor Baseline was the better choice in the Finnish 10M word and Estonian 100M word
conditions, whereas Greedy unigrams was better in Finnish 100M word and Estonian
10M word conditions. It is possible that the vocabulary was reasonably well-matching
in the Estonian 10M word condition, but in the Estonian 100M condition the increased
vocabulary size eased the modelling of some of the remaining OOV words in the case of
Morfessor Baseline. In this case the results were quite close: whereas in the cases where
Greedy unigrams provided better results, the marginal was larger.

In subword-based speech recognition, the word boundaries need to be modelled ex-
plicitly. The different possibilities for word boundary modelling were evaluated in WFST-
based speech recognition in [46], where the dedicated word boundary symbol and mod-
elling the boundaries redundantly both in the leftmost subword and rightmost subword
provided the best results. We have also evaluated the word boundary modelling with
mostly similar results. For Finnish, the dedicated word boundary symbol [47, 15] has so
far been the most effective approach, whereas for Estonian, using the redundant approach
has sometimes resulted in a small improvement. For the experiments in this work, the
dedicated word boundary symbol was used because it provided the best or equal results
in all cases.

2.5. Decoding

Speech recognition decoders can broadly be categorized into static and dynamic de-
coders [48]. In a static decoder, all data sources are included in the search network;
whereas in a dynamic decoder, the language model probabilities are applied separately
during the decoding. The most common type of a static decoder is based on the use of
the weighted finite state transducers (WFST) [49]. The most typical dynamic decoder
codes the recognition vocabulary using a lexical prefix tree [50] and performs the search
using the token-passing procedure [51]. In this work, we follow the dynamic decoding ap-
proach. An important property for this work is that large and long-span n-gram models
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may be efficiently applied with a dynamic decoder. The interpolation with the class n-
gram models is also relatively straightforward to do in the first decoding pass. Standard
techniques required for the decoding include the beam search, hypothesis recombination,
language model look-ahead [52] and the cross-word modelling [53].

In this work, we use a modified version of the decoder in the AaltoASR package
[54] 1. The decoder was initially developed for the unlimited vocabulary morph-based
recognition task [55, 56]. The recognition graph for the subword decoding needs a special
construction to correctly handle the intra-word and the inter-word unit boundaries and to
allow cross-word pronunciation modelling. The decoder is also able to handle long-span
n-gram models [29]. According to an error analysis, only a small part of the recognition
errors originate from the search [57].

The word-based recognition is potentially a simpler task than the unlimited vocabu-
lary recognition because the possible word sequences are more constrained. There are,
however, some practical challenges. Even if the graph is minimized by tying the suffixes,
the graph size will be large, increasing different book-keeping costs. The look-ahead
model is also very important for the recognition accuracy because the word labels are
more unevenly located in the graph. Recent studies have shown that very large vocabu-
laries may be efficiently decoded using large n-gram models [58, 16].

Because the perplexities for the word-based and the subword-based models are not
directly comparable due to the different OOV rates, we compare their performance in a
speech recognition task. The same recognizer implementation is applied for both models,
but the recognition graph is constructed differently. Silence and cross-word modelling
in the graphs are identical for the same word sequences. An important operation in
the decoding is the so-called hypothesis recombination. If there are several tokens in
the same graph node and in the same n-gram model state, then only the best token
is kept and the rest discarded. The hypothesis recombination is extended for the class
n-gram interpolation by applying the recombination on n-gram and class n-gram state
tuples. This allows the class n-grams to be applied without additional approximations
to the beam search. Following [36], we use a bigram look-ahead model with the subword
n-grams and a class bigram look-ahead model with the word n-grams.

3. Experiments

3.1. Experimental Setup

To train the Finnish-language models, we used the CSC Kielipankki corpus [59]. The
corpus contains text from Finnish newspapers, magazines and books. The size of the full
corpus was 139M word tokens with 4.1M word types. The Estonian-language models were
trained on a corpus of Estonian newspaper articles and news articles from the web [60].
The perplexity evaluations were performed using text both from the newspaper articles
and the web articles. For the ASR evaluation, only the newspaper articles were used for
language modeling because that provided a lower OOV rate and improved recognition
accuracy. For domain adaptation experiments in the section 3.5, we used subtitles from
the Opensubtitles [61] corpus.

1available in https://github.com/aalto-speech/wdecoder
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For acoustic modelling, we used a speaker-independent deep neural network model
[62] trained using the Tensorflow [63] package. Phonetic alignments and triphone state
tying was obtained using the AaltoASR [54] package. We used a multi-layer perceptron
(MLP) network with hidden layer size of 2000. As input features, seven neighboring
frames of 39-dimensional Mel-frequency cepstral coefficients (MFCC) with delta and
delta-delta features were spliced to form a 585-dimensional input vector. For Finnish,
the model had six hidden layers and for Estonian it had five hidden layers. Stochastic
gradient descent (SGD) optimizer was used to train the network. We increased the
batch size during the training as mentioned in [62], which improved convergence in our
experiments.

The earlier work [39] used speech from the Speecon database [64] for the acoustic
model training. A 31-hour set of clean dictated wideband speech from 310 speakers was
used for training from the Speecon corpus. We were able to significantly improve the
recognition result by adding speech also from the Finnish parliament corpus [65, 66]. For
training, we used 170 hours of parliament speech from 4 years with a total of 355 speakers.
Adding more training data improved the recognition result compared to [39] by around
11% relative or 3% absolute. Switching from GMM to DNN backend improved the result
by a further 4 % relative. The surprisingly small improvement from the DNN-based
acoustic model may result from some specifics of the Finnish corpora or that the GMM
modelling in the AaltoASR package has been developed mostly using Finnish corpora.

Estonian acoustic models were trained on a 30 hour set of broadcast news recordings
[60]. Compared to the earlier result [39], switching from the GMM to DNN backend
improved the result by 18% relative. Also, compared to [39], the training corpus for the
language models is larger in the experiments with 100M word tokens.

The speech recognition experiments were performed in a broadcast news task for both
Finnish and Estonian. For Finnish, the development set consisted of 5.38 hours of audio
with 35 439 word tokens and the evaluation set 5.58 hours of audio with 37 169 word
tokens. For Estonian, the development set consisted of 2.13 hours of audio with 15 691
word tokens and the evaluation set 2.03 hours of audio with 15 335 word tokens.

3.2. Language Models

To infer the word classes, we implemented optimized software 2 for the expectation-
maximization algorithm over the classes, class merging with morphological restrictions,
class splitting with local exchanges, and the standard exchange algorithm with the op-
tional morphological constraints, as described in subsection 2.3.2. The implementation
of the exchange algorithm used the word-class and class-word statistics [27] and multi-
threading [38]. The number of classes was in most perplexity evaluations 1000 for both
Finnish and Estonian, with the exception of morphological classes after the expectation-
maximization step and the merging phase. The number of classes after the merging
phase was optimized by evaluating the accuracy after subsequent splitting and exchange
phases. The perplexities for the class-based models would naturally improve by increas-
ing the number of classes. However, we evaluated that for the interpolated word-based
n-gram model and class-based n-gram model, the perplexity did not improve much by
increasing the number of classes from 1000. Larger number of classes, 5000 for Finnish

2available in https://github.com/aalto-speech/morphological-classes
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and 10000 for Estonian, were used for the rescoring using class NNLMs, as the result
was slightly improved with the higher number of classes.

All of the evaluated n-gram language models used the modified Kneser-Ney smoothing
[67] with three discounts per order [1]. The models were trained using the growing and
pruning algorithm as implemented in the VariKN toolkit [68]. A development set of
17,000 sentences was used to optimize the discount parameters. The maximum n-gram
order of the baseline word n-gram model was set to 3 because of the large size of the
vocabulary. For the class-based n-gram models, a 4-gram model was used. The subword
n-gram models were limited to 8-grams for Finnish and 6-grams for Estonian. These were
the optimal n-gram orders as evaluated on the development set. In some cases, a minimal
improvement in recognition accuracy could have been achieved by further increasing the
n-gram order.

The neural network language models over class sequences were trained using the
TheanoLM language modelling toolkit [69]. We used a configuration of a projection layer
followed by a long short-term memory (LSTM) layer [2] and a highway layer with tanh
activations [37]. We did not perform an exhaustive study on the NNLM architectures as
our main goal was to compare the different classifications. This configuration has been
successfully used also in experiments on conversational speech recognition in [69, 11], and
it provides a good tradeoff between training time and accuracy. The size of the hidden
layers was varied with the size of the used training corpus subset. The configuration
for the smallest training corpus size was 250 − 500 − 500 and the configuration for the
largest training corpus sizes was 1000−2500−2500. For training regularization, we used
dropout with a rate of 0.2 for all the hidden layers.

All of the model combinations were done by a linear interpolation. The optimal
interpolation weight for the perplexity evaluation was searched by modifying the weight
in steps of 0.05. For the speech recognition experiments, the interpolation weight was
optimized on the development set in steps of 0.05.
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3.3. Class language model perplexities for different training corpus sizes

In this section, we analyze the perplexities for class n-gram and neural network mod-
els trained over the different classifications for different training corpus sizes for both
Finnish and Estonian. The models included the morphological EM-trained classes and
the models, where the morphological classes were further processed by the merging and
splitting procedure. We also analyzed four different classifications for which the training
utilized the exchange algorithm. This included a frequency initialized model, which did
not use the morphological analyses. Three different models were initialized using the
morphological classes, but different constraints were used when running the exchange
algorithm. One model was not constrained in any way and used the morphologically mo-
tivated classes only for initialization. We experimented also with a classification, which
constrained the exchanges to only within the same major part-of-speech class (i.e. nouns,
verbs, adjectives etc.). In the most constrained model, the exchanges were restricted to
the superclass created during the merge phase; that is, imposing additional constraints
from the morphological classes in addition to the major part-of-speech class constraint.

3.3.1. Finnish

Corpus size 1M 5M 10M 20M 50M

OOV rate 13.59 7.19 5.38 4.0 2.68

Model Perplexity
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EM model 2980/2271 3555/2566 3711/2615 3805/2608 3887/2654

EM/merge 3102/2339 3751/2800 3960/2970 4109/3073 4269/3176

EM/merge/split 2920/1716 2903/1808 2905/1800 2900/1794 2776/1734

Exchangea, morph. init 2952/1708 3076/1773 2832/1751 2807/1711 2655/1666

Exchangeb, morph. init 3226/1967 2930/1895 2850/1822 2762/1752 2580/1632

Exchange, morph. init 3292/2166 2886/1905 2773/1777 2659/1684 2477/1572

Exchange, freq. initc 3441/2661 3139/2138 2939/1960 2773/1816 2540/1636

Table 1: Class n-gram model and class-based neural network language model perplexities on the Kieli-
pankki corpus for different training corpus sizes and class training approaches. The perplexity for a class
n-gram model is on the left-hand side and for a class NNLM is on the right-hand side.

aExchange algorithm with major part-of-speech tag and merge tree superclass constraint
bExchange algorithm with major part-of-speech tag constraint
cMost common words initialized to own classes

The results for the Finnish corpus are given in Table 1 The size of the corpus
subset varied for Finnish from 1 million words to 50 million words. The correspond-
ing out-of-vocabulary rates varied from 13.59% to 2.68%. The results show that the
frequency-trained classes are powerful compared to the morphological classifications af-
ter the expectation-maximization phase, mostly reaching much better perplexity values.
However, in all cases the results could be improved by using the analyses provided by
the Omorfi analyzer. For the corpus sizes 5M and upwards, initializing the exchange
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classes with morphological analyses without further constraints in most cases resulted in
the most efficient classes. For the corpus size of 1M words, constraining the exchanges to
the superclass created in the merge phase improved the NNLM result. However, for the
n-gram model, directly using the classes after the merge and split phases was the most
effective approach. In this case, the difference in perplexity compared to the frequency-
based classes was around 500 perplexity points for n-gram models and around 900 per-
plexity points for the NNLMs. Running the exchange algorithm without constraints
degraded the results drastically. This is caused by the very sparse data compared with
respect to the large vocabulary size. One may also observe that for the small corpus
sizes, the perplexity increases when increasing the training corpus sizes. This is caused
by the lower OOV-rate, and consequently more infrequent words being predicted in the
perplexity computation.

3.3.2. Estonian

Corpus size 1M 5M 10M 20M 50M

OOV rate 9.15 4.53 3.28 2.35 1.47

Model Perplexity
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EM model 2583/2081 3237/2439 3203/2528 3336/2577 3330/2566

EM/merge 2590/2094 3088/2471 3233/2577 3372/2647 3413/2642

EM/merge/split 1778/1207 1678/1128 1553/1078 1405/1008 1041/956

Exchangea, morph. init 1779/1190 1630/1061 1487/1001 1322/933 981/865

Exchangeb, morph. init 1843/1314 1633/1111 1471/1024 1313/933 970/864

Exchange, morph. init 1862/1390 1612/1129 1443/1017 1291/924 948/835

Exchange, freq. init.c 2030/1627 1699/1225 1502/1084 1339/970 999/872

Table 2: Class n-gram model and class-based neural network language model perplexities on the Estonian
news corpus for different training corpus sizes and class training approaches. The perplexity for a class
n-gram model is on the left-hand side and for a class NNLM is on the right-hand side.

aExchange algorithm with major part-of-speech tag and merge tree superclass constraint
bExchange algorithm with major part-of-speech tag constraint
cMost common words initialized to own classes

The results for the Estonian corpus are given in Table 2. The size of the corpus
subset was varied similarly as for Finnish, upwards from 1 million words to 50 million
words. For Estonian, the OOV rates varied from 9.15 % to 1.47 %. Similarly to Finnish,
we see that even though the original morphological classifications were not so powerful
as such: the results could be much improved by refining the morphological classes. The
unconstrained but morphologically initialized exchange classification performed well for
larger training corpus sizes, even though the difference to the frequency-initialized classes
was not so large. The most constrained exchange classification, in which the exchanges
were constrained to the superclass created in the merge phase gave good results for
smaller training corpus sizes.

16



By interpolating the class language models trained using the frequency-based classes
and classes utilizing a morphological analyzer, the perplexity can in most cases improved
by over 10% relative. The word classifications thus tend to differ quite much between
the frequency-based and morphologically motivated approaches for the class inference.
For the morphological classes, the perplexity is especially improved for the rare words
and in sentence contexts containing rare words.

3.4. Perplexities for interpolated word n-gram and class-based language model

In this section, we analyze perplexities for an interpolation of a word n-gram model
and either a class n-gram model or class neural network model. The classifications and
training corpora are the same as in the previous subsection 3.3.

3.4.1. Finnish

Corpus size 1M 5M 10M 20M 50M

OOV rate 13.59 7.19 5.38 4.0 2.68

Model Perplexity

Word n-gram 2887 2850 2633 2518 2015
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+ EM model 2185/1770 2168/1723 2034/1610 1949/1528 1624/1306

+ EM/merge 2213/1808 2200/1812 2070/1735 1984/1670 1657/1423

+ EM/merge/split 2278/1498 2114/1431 1960/1340 1862/1276 1541/1088

+ Exchangea, morph. init 2294/1488 2147/1414 1941/1320 1835/1242 1515/1070

+ Exchangeb, morph. init 2375/1684 2145/1513 1959/1375 1834/1285 1508/1069

+ Exchange, morph. init 2399/1804 2138/1528 1942/1361 1810/1255 1480/1057

+ Exchange, freq. initc 2601/2104 2250/1669 2010/1462 1849/1327 1500/1079

Table 3: Word n-gram and class n-gram model or class-based neural network language model interpolated
perplexities on the Kielipankki corpus for different training corpus sizes and class training approaches.
The perplexity for a class n-gram model interpolation is on the left-hand side and for a class NNLM
interpolation is on the right-hand side.

aExchange algorithm with major part-of-speech tag and merge tree superclass constraint
bExchange algorithm with major part-of-speech tag constraint
cMost common words initialized to own classes

The interpolated perplexity results for the Finnish corpus are given in Table 3. The
perplexity for a word-based n-gram model is much lower compared to the perplexities for
the class-based models. For comparison, see Table 1. However, by linearly interpolating
the word-based and class-based models, much lower perplexities were reached both in
the case of a class n-gram and a class NNLM. For frequency initialized classes, the
improvement in perplexity ranged from 9.9 % to 26.6 % for class n-grams and from
27.1 % to 47.3 % for class NNLMs. For the best morphologically motivated classes,
the improvement in perplexity ranged from 24.3 % to 28.1 % for class n-grams and
from 47.5 % to 50.7 % for class NNLMs. In the case of frequency initialized classes, the
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improvement from using class-based models was relatively smaller with a smaller training
corpora, whereas larger improvements were evaluated with a larger training corpora. The
morphologically motivated classes improved results especially in the case of a smaller
training corpus, helping to bridge this gap in the relative perplexity improvements. The
perplexities could not be much improved by increasing the number of classes for class
n-grams, where for class NNLMs the perplexities would still improve by increasing the
number of classes. However, in this analysis, the main motivation was to study the
relative differences between the different classifications. For the best morphologically
motivated classes for each training corpus subset, the conclusions are fairly similar as the
results in Table 1. For smaller training corpora, more constrained classes work better;
whereas using the morphological classes as initialization is the best approach for larger
training corpora.

3.4.2. Estonian

Corpus size 1M 5M 10M 20M 50M

OOV rate 9.15 4.53 3.28 2.35 1.47

Model Perplexity

Word n-gram 1679 1374 1112 930 521
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+ EM model 1454/1271 1221/1088 1003/903 841/759 487/452

+ EM/merge 1454/1278 1219/1092 1004/909 842/767 488/455

+ EM/merge/split 1396/978 1122/782 919/655 746/543 426/345

+ Exchangea, morph. init 1402/969 1103/757 902/631 730/524 418/330

+ Exchangeb, morph. init 1438/1052 1119/790 910/648 732/528 418/334

+ Exchange, morph. init 1455/1099 1119/810 906/650 730/530 416/332

+ Exchange, freq. init.c 1531/1239 1153/851 923/677 738/543 419/337

Table 4: Word n-gram and class n-gram model or class-based neural network language model interpolated
perplexities on the Estonian news corpus for different training corpus sizes and class training approaches.
The perplexity for a class n-gram model interpolation is on the left-hand side and for a class NNLM
interpolation on the right-hand side.

aExchange algorithm with major part-of-speech tag and merge tree superclass constraint
bExchange algorithm with major part-of-speech tag constraint
cMost common words initialized to own classes

The interpolated perplexity results for the Estonian corpus are given in Table 4.
For frequency initialized classes, the improvement in perplexity ranged from 8.8 % to
20.6 % for class n-grams and from 26.2 % to 41.6 % for class NNLMs. For the best
morphologically motivated classes, the improvement in perplexity ranged from 16.8 % to
21.5% for class n-grams and from 36.7 % to 44.9 % for class NNLMs. As for Finnish, the
more constrained morphological classes worked better for small training corpus. With the
largest training corpus, the difference between the morphologically constrained classes
and the morphologically initialized exchange algorithm -based classes was small.
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3.5. Domain adaptation experiments

As evaluated in the previous subsections, the morphologically motivated classes reached
improved perplexities, especially in the case of less training data. We thus evaluated the
performance of the different class-based models in a domain adaptation experiment,
where a small in-domain corpus was available. For the background language model, we
utilized the models trained using the 50M word subset of the Kielipankki corpus for
Finnish and the news corpus for Estonian. We adapted the models then for the Open-
subtitles corpus [61] using a one million word corpus of subtitles from the corpus. The
perplexities were evaluated on a held-out set of subtitles consisting of three million words.
As vocabulary, we used all unique words from both the background model and the adap-
tation model. The OOV rates using only the one million word adaptation data would
have been 11.19 % for Finnish and 7.86 % for Estonian. For the combined vocabulary
with both the background model and the adaptation model, the OOV rates decreased to
3.46 % for Finnish and 2.19 % for Estonian.

Model combination Perplexity
Word n-grams 626
Interpolated class n-grams
without morphological analyzer

564

Interpolated class n-grams
with morphological analyzer

543

Interpolated class NNLMs
without morphological analyzer

486

Interpolated class NNLMs
with morphological analyzer

448

Table 5: Domain adaptation experiments for Finnish

The results for the Finnish domain adaptation experiment are given in Table 5. The
baseline perplexity for the interpolated background and adaptation word n-grams was
626. For comparison, the perplexity for a n-gram model trained from the combined
background and adaptation data was 1122, which was clearly worse compared to all the
results obtained by interpolation. For this baseline result, two language models were
interpolated. For all of the other results, the perplexity was acquired as a combination
of in total four language models; that is, word n-grams for both background and adap-
tation data and class-based models for both the background and the adaptation data.
For the results with a morphological analyzer, we selected the best perplexity from all
combinations using the morphological analyzer. Interpolating with a class n-gram model
improved the perplexity by 9.9 % relative for the frequency-based classes and 13.3 %
for the morphologically motivated classes. Interpolating with a class-based neural net-
work language model improved the perpexity by 22.4 % relative for the frequency-based
classes and 28.4 % for the morphologically motivated classes. According to paired sample
t-test, the improvement in perplexity obtained by using morphological analyzer was for
the class n-grams (from 564 to 543) statistically significant with the p-value 8e−11 and
for the class NNLMs (from 486 to 448) statistically significant with the p-value 4e−13.

The results for the Estonian domain adaptation experiment are given in Table 6. The
baseline perplexity for interpolated word n-grams was 392. Also for Estonian, combining
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Model combination Perplexity
Word n-grams 392
Interpolated class n-grams
without morphological analyzer

360

Interpolated class n-grams
with morphological analyzer

350

Interpolated class NNLMs
without morphological analyzer

297

Interpolated class NNLMs
with morphological analyzer

273

Table 6: Domain adaptation experiments for Estonian

the background and adaptation data to one corpus provided a significantly worse per-
plexity of 678. Interpolating with a class n-gram model improved the perplexity by 8.2
% relative for the frequency-based classes and 10.7 % for the morphologically motivated
classes. Interpolating with a class-based neural network language model improved the
perpexity by 24.2 % relative for the frequency-based classes and 30.4 % for the mor-
phologically motivated classes. According to paired sample t-test, the improvement in
perplexity obtained by using morphological analyzer was for the class n-grams (from 360
to 350) statistically significant with the p-value 5e−13 and for the class NNLMs (from
297 to 273) statistically significant with the p-value 8e−12. As in the experiments in
subsections 3.3 and 3.4, the perplexity values were somewhat lower for Estonian than
for Finnish. The relative improvements were slightly lower in the case of class n-grams,
whereas in the case of class-based NNLMs, the relative improvements were even higher
for Estonian than for Finnish.

3.6. Speech recognition results in a broadcast news task

We evaluated the different model combinations in broadcast news speech recognition
tasks for Finnish and Estonian. The results for the experiments are given in Table 7 for
two subsets—10 million and 100 million words—of the language model training corpus.
As a baseline result, we use an unlimited vocabulary recognizer with subword based n-
gram models. The n-gram language model used in the decoding was fairly large and the
result was not improved by increasing the model size further. We use a subword-based
bigram model as the look-ahead language model in the decoding.

In a second recognition pass, the result was rescored using an interpolation of the
n-gram model and a subword-based neural network language model. For the second-pass
recognition results with NNLMs, a N-best list with a maximum of 2000 hypotheses and
the average ranging from 1200 to 1650 hypotheses per sentence, depending on the corpus
subset, was generated for each sentence. For Finnish, the rescoring improved the result
for 15 % relative for the subset of 10 million words and 17.2 % relative for the 100 million
word corpus. The corresponding results for Estonian were 22.0 % relative for the subset
of 10 million words and 20.9 % relative for the 100 million word corpus.

We experimented both with frequency-trained classes and morphologically motivated
classes. The class-based recognition uses the interpolation of a large word n-gram and
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Language Finnish Estonian
Corpus size 10M 100M 10M 100M
OOV rate 5.36 2.55 2.48 1.18

Model Word error rate

Subword n-gram 28.65 25.59 13.44 10.95

+ Rescoring with interpolated
subword n-gram and subword NNLM

24.35 21.18 10.48 8.66

Word n-gram 31.23 27.13 14.29 11.81
Classes without morphological analyzer

+ Class n-gram 29.61 25.30 13.55 11.05
++ Subword n-gram 29.34 25.05 13.13 10.77
+++ Rescoring with interpolated

word n-gram and class NNLM
27.21 22.24 11.93 9.39

+++ Rescoring with interpolated
word n-gram and subword NNLM

26.58 21.36 10.90 8.60

+++ Rescoring with interpolated
word n-gram, subword NNLM

and class NNLM

26.30 21.16 10.64 8.34

Classes with morphological analyzer
+ Class n-gram 29.39 25.16 13.32 11.07
++ Subword n-gram 29.36 24.95 13.01 10.78
+++ Rescoring with interpolated

word n-gram and class NNLM
26.44 22.15 11.22 9.02

+++ Rescoring with interpolated
word n-gram and subword NNLM

26.28 21.56 10.89 8.58

+++ Rescoring with interpolated
word n-gram, subword NNLM

and class NNLM

25.79 21.22 10.38 8.40

Table 7: Speech recognition results in a broadcast news task for Finnish and Estonian. The best result
using a word-based recognizer is shown in bold for each training corpus.

a class n-gram model in the first recognition pass. A class bigram model is used as the
look-ahead language model during the recognition [36] to ensure accurate decoding.

In the case of Finnish 10M word corpus, the baseline unlimited vocabulary recognizer
was better in both the first and second recognition passes. This is mainly due to the
high OOV rates, and thus the capability of modelling some of the OOV words with the
unlimited vocabulary recognizer proved important. However, the difference compared to
the word-based models was still below 1% absolute in the first pass and little above 1%
absolute in the rescored results. In this case, it can be seen that using the morphologically
motivated classes can improve the results reasonably well, especially in the class NNLM
rescoring. Even though the improvement obtained by using morphological analyzer was
smaller in the first recognition pass, according to the paired sample t-test the improve-
ment (from 29.61 to 29.39 WER) was statistically significant with the significance level
p ≤ 0.05 with the p-value of 0.047 when evaluated block-wise.
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In the experiments with Finnish 100M word corpus, slightly improved result could be
reached in the first recognition pass using a word-based recognizer and a roughly equal
result in the second pass. The OOV rate was quite much lowered by the increase in the
training corpus size. In this case, using morphologically motivated classes improved the
results only slightly and mostly in the first recognition pass. Consequently, the training
corpus size was large enough to reach efficient classifications by the frequency-initialized
exchange algorithm.

With the Estonian 10M word corpus, the result in the first recognition pass using a
word-based recognizer improved over the baseline by 3.2% relative. However, this im-
provement was achieved only if the subword n-gram model is incorporated in the inter-
polated model and morphologically motivated classes were utilized. With the frequency-
derived classes, the improvement was 2.3% relative. As in the case of Finnish, rescoring
the results with NNLMs provides large improvements. In particular, the subword-based
NNLM is powerful in both cases. As for Finnish, the result for the class-based NNLM
was clearly better when the morphologically motivated classes were used. Considering
the improvement obtained by using morphologically motivated classes in the first recog-
nition pass, according to the paired sample t-test the improvement (from 13.55 to 13.32
WER) was statistically significant with the significance level p ≤ 0.05 with the p-value
of 0.014 when evaluated block-wise.

The Estonian task with the 100M word corpus was the only evaluated combination, in
which we got improved results using a word-based recognizer both in the first and second
recognition passes. The result with NNLM rescoring improved from the 8.66 WER to
8.34 WER for a relative improvement of 3.7 %. This improvement was, according to
paired sample t-test, statistically significant with the significance level p ≤ 0.05 with the
p-value of 0.029 when evaluated utterance-wise. As for Finnish, with the larger corpus
size, the frequency-trained classes provided almost as good results as the morphological
classes.

4. Discussion

In this work, we studied class-based language models for the very large vocabulary
speech recognition of Finnish and Estonian. For morphologically rich languages such as
Finnish and Estonian, a very large vocabulary is required to achieve a reasonably low
out-of-vocabulary rate in applications such as transcribing, dictation, or broadcast news
recognition. This aggravates the data sparsity issues of the word-based n-gram models.
As the vocabulary size grows, it is more likely that class-based language models and
different word clustering schemes can provide improvements.

Our earlier experiments [39] showed that class-based n-gram models could be effi-
ciently applied to the first recognition pass for morphologically rich languages, tackling
some earlier challenges of scaling the class inference and decoding to a very large vocabu-
lary. Compared to a baseline subword-based unlimited vocabulary recognizer, improved
results were reached for Finnish and equal results were reached for Estonian. We have also
recently studied the combination of word-based, class-based and subword-based n-gram
models in the first recognition pass and introduced a class-based look-ahead language
model approach that ensures high decoding accuracy with faster recognition times [36].
With these advances, the proposed system outperformed the baseline for Estonian, and
further small improvements were achieved for Finnish.
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In this work, we continued on similar themes for applying class-based and subword-
based approaches for very large vocabulary speech recognition of morphologically rich
languages. As a new contribution, we proposed and evaluated different approaches for
inferring morphologically motivated classes. We used an expectation-maximization algo-
rithm for training classes using the output from a morphological analyzer. The classes
were further processed by a merging and splitting procedure, followed by an exchange
algorithm with varying level of constraints. In the least constrained case, we utilized the
inferred classes as an initialization for the exchange algorithm. In the most constrained
case, the classes shared the POS tag and also more detailed morphological traits. The
different constraints provided the necessary means to analyze the performance of differ-
ent classifications with different datasets in more detail. The morphological constraints
provided extra robustness to the class inference, especially in cases where less training
data was available. The difference decreased in the case of larger training corpus. Thus,
it seems that at least some efficient solutions to the class inference problem are closely re-
lated to part-of-speech classes, which have been further processed to smaller equivalence
classes.

The improvement from using morphological classes can be attributed to at least three
distinct reasons: 1) the degradation of bigram statistics in cases with little training data
compared to the vocabulary size, 2) improved optimization of the bigram class likelihood
criterion, and 3) different complementarity effects in the model combination with a word-
count based n-gram model. It seems that the degradation of bigram statistics is by far
the most important factor to consider, especially in the limited data scenarios.

Considering morphologically rich minority languages, such as Sami and the small
Uralic languages, it is often the case that large text corpora for training language models
are rare. However, the Giellatekno project [70] has been able to construct morphological
dictionaries and analyzers for many dialects of the Sami language. The morphologically
motivated classes that are evaluated in this work have the potential to improve language
modelling in this type of case. As has been evaluated in [71], utilizing analogous analyzer
entries can substantially speed up the expansion of the analyzer’s coverage. In addition
to the scenario with a less-resourced language, this approach is also relevant in language
model adaptation for those cases where a limited corpus of in-domain data is available.
We evaluated the approaches also in this type of a LM adaptation scenario, and obtained
improved perplexities compared to classes inferred using only word frequencies.

The class-based models were evaluated in Finnish and Estonian ASR tasks. Inter-
polated class n-gram models were used in the first recognition pass and interpolated
class NNLMs were applied through n-best list rescoring in the second pass. In the first
recognition pass, the subword-based unlimited vocabulary approach was better in the
Finnish 10M word corpus setting that has over 5% OOV rate. In all other settings,
improved results could be achieved by using a word-based recognizer, especially when
using both class and subword-based n-gram models. In the second pass, rescoring with
neural network language models provided large improvements in word error rates in all
cases. Subword-based NNLMs outperformed class-based NNLMs both when rescoring
unlimited vocabulary recognition and word-based recognition. Nevertheless, class-based
NNLM rescoring also improved the results in all cases, and the model could be used
as another component in the rescoring phase, yielding additional improvements. Di-
rectly training the NNLMs over words would be prohibitive in terms of computational
complexity and other requirements.
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Even though the word-based recognizer was often better in the first recognition pass,
it proved to be harder to improve over the unlimited vocabulary recognition rescored
with a subword NNLM. It is possible that the hypotheses generated by the unlimited
vocabulary recognizer are more suitable for the powerful subword-based NNLMs. As
previously, the unlimited vocabulary approach yielded the lowest score in the Finnish
10M setting. In the Finnish 100M setting and Estonian 10M corpus setting, equal results
could be achieved. In the Estonian 100M word corpus setting, where the OOV rate was
the lowest, we were able to reach a 3.7 % relative improvement compared to the unlimited
vocabulary baseline.

Achieving good results with word-based approaches is valuable because there are ben-
efits in having a limited vocabulary. For instance, grammatically incorrect or very rare
word forms can be avoided. In our experiments, we used existing corpora for training
the models, and no active measures were taken to improve the OOV rates or training
coverage. This was mainly to ensure level comparison to the unlimited vocabulary base-
line and to avoid overly optimizing for the evaluation tasks. Despite fairly large corpora
being available, it is likely that the modelling could still be improved, such as by crawl-
ing more data from the web. The lower OOV rate with the possibility of combining
subword-based and class-based modelling approaches could potentially turn the results
more favorable for the word-based recognizers. More accurate pruning of the vocabu-
lary entries and improved pronunciation modelling for foreign proper names (FPNs) are
other possibilities that could potentially improve the word-based recognition accuracy.
Data selection and better modelling of FPNs are also possible in the case of unlimited
vocabulary recognition, and further study would be required to see the final impact for
the recognition accuracy in both cases.

5. Conclusion

In this work, we evaluated class-based language models for very large vocabulary
speech recognition of Finnish and Estonian. We extended the analysis from our previous
work by analyzing morphologically motivated classes initialized from the morphological
tags obtained from a morphological analyzer. We further refined the resulting classes
using a merging-and-splitting approach and running the exchange algorithm with dif-
ferent levels of morphological constraint. The morphologically motivated classes proved
efficient, especially in cases where less training data is available. This is important in
both less-resourced language modelling scenarios and in cases where class-based language
models are adapted with a limited amount of in-domain training data. We utilized the
class-based models in all phases of a traditional ASR system; that is, as a look-ahead
language model during decoding, interpolated class n-gram model during the first recog-
nition pass and class NNLMs for rescoring. Improved results compared to a subword-
based unlimited vocabulary recognizer were obtained in the first recognition pass, with
the exception of a low-resource setting with a high OOV rate. In the second recognition
pass, it was harder to improve over the unlimited vocabulary recognizer. Significant im-
provements were only obtained in a case with a large training corpus and fairly low OOV
rate. However, the word-based approach offers many practical possibilities for further
improving the recognition result.
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A. Derivation of the Expectation-Maximization Training Parameter Esti-
mates

A.1. Class generation probabilities

∑
Z

p(Z|X,θold)

N∑
r=1

r−1∑
u=r−(n−1)

ln p(zu|xu,A)

=
∑
w

N∑
t=1

t−1∑
r=t−(n−1)

K∑
k=1

γ(zrwk) lnAwk

(11)

By recalling the constraint
∑

w Awk = 1 for each w, we solve the parameters Awk using
Lagrange multipliers:

∂

∂Awk

∑
w

N∑
t=1

t−1∑
r=t−(n−1)

K∑
k=1

γ(zrwk) lnAwk + µ(
∑
k

Awk − 1)

 = 0 (12)

Taking the derivative:
N∑
t=1

t−1∑
r=t−(n−1)

γ(zrwk)

Awk
+ µ = 0 (13)

Substituting in
∑

k Awk = 1:

−
∑
k

N∑
t=1

t−1∑
r=t−(n−1)

γ(zrwk)

µ
= 1 (14)

solves µ:

µ = −
∑
k

N∑
t=1

t−1∑
r=t−(n−1)

γ(zrwk) (15)

and further Awk:

Awk =

∑N
t=1

∑t−1
r=t−(n−1) γ(zrwk)∑

k

∑N
t=1

∑t−1
r=t−(n−1) γ(zrwk)

=

∑N
t=1

∑t−1
r=t−(n−1) γ(zrwk)∑N

t=1

∑t−1
r=t−(n−1) γ(zrw)

(16)

Here we assume that special symbols, which belong to an own class, are added between the
training sentences to cover the n-gram order. The estimate thus simplifies:

Awk =

∑N
t=1 γ(ztwk)∑N
t=1 γ(ztw)

(17)

A.2. n-Gram probabilities

∑
Z

p(Z|X,θold)

N∑
t=1

ln p(zt|zt−1
t−(n−1),B)

=

N∑
t=1

K∑
k=1

K∑
h(t−1)=1

· · ·
K∑

h(t−(n−1))=1

ξ(h, k) lnBhk,

(18)
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where ξ(h, k) is a shorthand notation:

ξ(h, k) = E[ztk, z
(t−1)(h−1)

(t−(n−1))(ht−(n−1))
] =

∑
z

γ(z)[ztk, z
(t−1)(h−1)

(t−(n−1))(ht−(n−1))
] (19)

By recalling the constraint
∑

k Bhk = 1 for each h, we solve the parameters Bhk using
Lagrange multipliers:

∂

∂Bhk

 N∑
t=1

K∑
k=1

K∑
h(t−1)=1

· · ·
K∑

h(t−n+1)=1

ξ(h, k) lnBhk + µ(
∑
k

Bhk − 1)

 = 0 (20)

Taking the derivative:
N∑
t=1

ξ(h, k)

Bhk
+ µ = 0 (21)

Substituting in
∑

k Bhk = 1:

−
∑
k

N∑
t=1

ξ(h, k)

µ
= 1 (22)

solves µ:

µ = −
∑
k

N∑
t=1

ξ(h, k) (23)

and further Bhk:

Bhk =

∑N
t=1 ξ(h, k)∑

k

∑N
t=1 ξ(h, k)

(24)

A.3. Class membership probabilities

∑
Z

p(Z|X,θold)

N∑
t=1

ln p(xt|zt,C),

=
∑
w

N∑
t=1

K∑
k=1

γ(ztkw) lnCkw,

(25)

where index k is over all classes at position t. The γ term is a shorthand notation for the
conditional probability ztkw = 1:

γ(ztkw) = E[ztkw] =
∑
z

γ(z)ztkw, (26)

where γ(z) is the posterior probability for one sequence of latent variable state vectors z and
ztkw the binary value of state k and word w at position t on that sequence.

By recalling the constraint
∑

w Ckw = 1 for each k, we solve the parameters Ckw using
Lagrange multipliers:

∂

∂Ckw

[∑
w

N∑
t=1

K∑
k=1

γ(ztkw) lnCkw + µ(
∑
w

Ckw − 1)

]
= 0 (27)

Taking the derivative:
N∑
t=1

γ(ztkw)

Ckw
+ µ = 0 (28)
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Substituting in
∑

w Ckw = 1:

−
∑
w

N∑
t=1

γ(ztkw)

µ
= 1 (29)

solves µ:

µ = −
∑
w

N∑
t=1

γ(ztkw) (30)

and further Ckw:

Ckw =

∑N
t=1 γ(ztkw)∑

w

∑N
t=1 γ(ztkw)

=

∑N
t=1 γ(ztkw)∑N
t=1 γ(ztk)

(31)
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