4 research outputs found

    Applications of interpretability in deep learning models for ophthalmology

    Get PDF
    PURPOSE OF REVIEW: In this article, we introduce the concept of model interpretability, review its applications in deep learning models for clinical ophthalmology, and discuss its role in the integration of artificial intelligence in healthcare. RECENT FINDINGS: The advent of deep learning in medicine has introduced models with remarkable accuracy. However, the inherent complexity of these models undermines its users' ability to understand, debug and ultimately trust them in clinical practice. Novel methods are being increasingly explored to improve models' 'interpretability' and draw clearer associations between their outputs and features in the input dataset. In the field of ophthalmology, interpretability methods have enabled users to make informed adjustments, identify clinically relevant imaging patterns, and predict outcomes in deep learning models. SUMMARY: Interpretability methods support the transparency necessary to implement, operate and modify complex deep learning models. These benefits are becoming increasingly demonstrated in models for clinical ophthalmology. As quality standards for deep learning models used in healthcare continue to evolve, interpretability methods may prove influential in their path to regulatory approval and acceptance in clinical practice

    Automatic detection of microaneurysms in colour fundus images for diabetic retinopathy screening.

    Get PDF
    Regular eye screening is essential for the early detection and treatment of the diabetic retinopathy. This paper presents a novel automatic screening system for diabetic retinopathy that focuses on the detection of the earliest visible signs of retinopathy, which are microaneurysms. Microaneurysms are small dots on the retina, formed by ballooning out of a weak part of the capillary wall. The detection of the microaneurysms at an early stage is vital, and it is the first step in preventing the diabetic retinopathy. The paper first explores the existing systems and applications related to diabetic retinopathy screening, with a focus on the microaneurysm detection methods. The proposed decision support system consists of an automatic acquisition, screening and classification of diabetic retinopathy colour fundus images, which could assist in the detection and management of the diabetic retinopathy. Several feature extraction methods and the circular Hough transform have been employed in the proposed microaneurysm detection system, alongside the fuzzy histogram equalisation method. The latter method has been applied in the preprocessing stage of the diabetic retinopathy eye fundus images and provided improved results for detecting the microaneurysms

    Automatic exudate detection with improved Naïve-Bayes classifier

    No full text

    Automatic Screening and Classification of Diabetic Retinopathy Eye Fundus Image

    Get PDF
    Diabetic Retinopathy (DR) is a disorder of the retinal vasculature. It develops to some degree in nearly all patients with long-standing diabetes mellitus and can result in blindness. Screening of DR is essential for both early detection and early treatment. This thesis aims to investigate automatic methods for diabetic retinopathy detection and subsequently develop an effective system for the detection and screening of diabetic retinopathy. The presented diabetic retinopathy research involves three development stages. Firstly, the thesis presents the development of a preliminary classification and screening system for diabetic retinopathy using eye fundus images. The research will then focus on the detection of the earliest signs of diabetic retinopathy, which are the microaneurysms. The detection of microaneurysms at an early stage is vital and is the first step in preventing diabetic retinopathy. Finally, the thesis will present decision support systems for the detection of diabetic retinopathy and maculopathy in eye fundus images. The detection of maculopathy, which are yellow lesions near the macula, is essential as it will eventually cause the loss of vision if the affected macula is not treated in time. An accurate retinal screening, therefore, is required to assist the retinal screeners to classify the retinal images effectively. Highly efficient and accurate image processing techniques must thus be used in order to produce an effective screening of diabetic retinopathy. In addition to the proposed diabetic retinopathy detection systems, this thesis will present a new dataset, and will highlight the dataset collection, the expert diagnosis process and the advantages of the new dataset, compared to other public eye fundus images datasets available. The new dataset will be useful to researchers and practitioners working in the retinal imaging area and would widely encourage comparative studies in the field of diabetic retinopathy research. It is envisaged that the proposed decision support system for clinical screening would greatly contribute to and assist the management and the detection of diabetic retinopathy. It is also hoped that the developed automatic detection techniques will assist clinicians to diagnose diabetic retinopathy at an early stage
    corecore