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ABSTRACT 

Diabetic Retinopathy (DR) is a disorder of the retinal vasculature. It develops to 

some degree in nearly all patients with long-standing diabetes mellitus and can result in 

blindness. Screening of DR is essential for both early detection and early treatment. 

This thesis aims to investigate automatic methods for diabetic retinopathy detection and 

subsequently develop an effective system for the detection and screening of diabetic 

retinopathy.  

The presented diabetic retinopathy research involves three development stages. 

Firstly, the thesis presents the development of a preliminary classification and screening 

system for diabetic retinopathy using eye fundus images. The research will then focus 

on the detection of the earliest signs of diabetic retinopathy, which are the 

microaneurysms. The detection of microaneurysms at an early stage is vital and is the 

first step in preventing diabetic retinopathy. Finally, the thesis will present decision 

support systems for the detection of diabetic retinopathy and maculopathy in eye fundus 

images. The detection of maculopathy, which are yellow lesions near the macula, is 

essential as it will eventually cause the loss of vision if the affected macula is not treated 

in time.  

An accurate retinal screening, therefore, is required to assist the retinal screeners 

to classify the retinal images effectively. Highly efficient and accurate image processing 

techniques must thus be used in order to produce an effective screening of diabetic 

retinopathy. In addition to the proposed diabetic retinopathy detection systems, this 

thesis will present a new dataset, and will highlight the dataset collection, the expert 

diagnosis process and the advantages of the new dataset, compared to other public eye 

fundus images datasets available. The new dataset will be useful to researchers and 

practitioners working in the retinal imaging area and would widely encourage 

comparative studies in the field of diabetic retinopathy research. It is envisaged that the 

proposed decision support system for clinical screening would greatly contribute to and 

assist the management and the detection of diabetic retinopathy. It is also hoped that the 

developed automatic detection techniques will assist clinicians to diagnose diabetic 

retinopathy at an early stage.  
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1 INTRODUCTION 

Diabetic Retinopathy (DR) is one of the diabetes complications and is an important 

cause of visual disability and blindness. It is vital to have a regular eye examination for 

initial detection and early treatment. This thesis is about the development of a medical 

decision support system for automatic diabetic retinopathy screening and classification 

in eye fundus images.  

 

The scope of this research focuses on the Asian country of Malaysia. The research was 

sponsored by the Ministry of Higher Education in Malaysia and the Universiti Teknikal 

Malaysia Melaka (UTeM). In addition, the research also received support, particularly 

in the contribution of expertise, from the Department of Ophthalmology at the Melaka 

Hospital, Malaysia, under the Ministry of Health for Malaysia. 

  

In order to develop an accurate and efficient diabetic retinopathy screening system, the 

capabilities of image processing techniques are investigated in this research work. 

Several highly efficient image processing techniques are implemented and tested to 

evaluate the system performance. The main image processing techniques used in this 

research involve fuzzy image processing on eye fundus images, which has not been 

previously investigated. A more reliable screening system can be produced with fuzzy 

image processing capability and therefore enable the achievement of the screening 

general aim, which is the earlier detection of sight threatening problems to ensure 

prompt treatment for the prevention of vision loss.  

 

This chapter introduces diabetic retinopathy and its screening. It focuses on Malaysia 

and highlights some challenges faced by the Malaysian healthcare system in dealing 

with diabetic retinopathy screening. Section 1.2 presents the research aims and 

objectives. Section 1.3 explains the research motivation, alongside the contributions of 

the thesis. Finally, Section 1.4 presents the overview of the chapters of this thesis. 



 

2 

1.1 Diabetic Retinopathy Screening and the Challenges Faced 

by the Malaysian Government  
Diabetic Retinopathy (DR) is a diabetes mellitus complication, which also include 

stroke, cardiovascular disease, diabetic nephropathy and diabetic neuropathy. The 

retinal capillaries damage occurs in diabetes mellitus. Diabetic retinopathy can be 

visualised only in the retina (Taylor and Batey, 2012), which is a layer of tissue. 

Diabetic retinopathy happens through lasting of small blood vessels damage in the 

retina, which eventually results in blindness. Hence, an effective screening of diabetic 

retinopathy is important for early treatment, as well as an effective management of risk 

factor to prevent diabetic complications.  

 

The prevalence of diabetes globally presented by the World Health Organization 

(WHO), reported in 2014 was estimated to be 9% among adults aged 18 and above 

(2012a). Diabetes contributes to about one percent of global blindness (2012b). 

Globally, 4.8% of the 37 million blindness cases is caused by the diabetic retinopathy 

and approximately 366 million will be affected by diabetes mellitus worldwide in the 

year 2030 (World Health Organization, 2005). In addition, diabetes has also been 

predicted to be the seventh leading cause of death by the year 2030 (Mathers and 

Loncar, 2006). The initial National Health and Morbidity Survey I (NHMS I) for 

Malaysia was conducted in 1986. The survey reveals a prevalence of diabetes mellitus is 

6.3%. In the year 1996, the percentage in NHMS II had increased to 8.3% and, the 

newest NHMS III 2006 report shows that the total diabetes mellitus prevalence is 14.9% 

(Letchuman et al., 2010). 

 

Diabetes Mellitus (DM) is a complex disease resulting in severe complications in 

various parts of the body. Nevertheless, good control of DM will avoid or delay various 

complications, including diabetic retinopathy. The length of DM is associated with the 

diabetic retinopathy incidence, and it has been reported that more than 75% of diabetes 

patients have some diabetic retinopathy form after 20 years of the disease (World 

Health Organization, 2005). Thus, screening and early treatment can avoid significant 

loss of vision. Such efforts to control this enduring disease as well as the early 

complications detection such as diabetic retinopathy should be strengthened, because 

diabetic retinopathy is an asymptomatic condition in its initial stage (Taylor and Batey, 
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2012; Ministry of Health Malaysia, Malaysian Society of Ophthalmology and Academy 

of Medicine Malaysia, 2011).  It is also stated that diabetics are twenty-five times more 

likely to develop blindness compared to the general population (Health Technology 

Assessment Unit, Medical Development Division, Ministry of Health Malaysia, 2002). 

Considering these complications and the rising numbers of diabetic patients in 

Malaysia, a programme of diabetic retinopathy screening in the country must be 

complete, covering all people with DM in Malaysia. To achieve this, significant 

resources will be required for the management of the condition including human 

resources, to increase the current workload within the field of disease diagnostics. 

 

Diabetic retinopathy can only be identified through medical eye examination since it is 

asymptomatic in its initial stage. The diabetes management at the facilities of the 

Ministry of Health Malaysia (MOHM) is presently being performed in health clinics, in 

addition in polyclinics, specialised clinics as well as hospital wards. In Malaysia, 

screening is currently performed by general practitioners, clinicians in hospital based 

diabetes centres, ophthalmologists, optometrists or a technician and a medically trained 

photographic interpreter, in the case of photography (Health Technology Assessment 

Unit, Medical Development Division, Ministry of Health Malaysia, 2002). There are 

many modalities of screening available to detect and classify diabetic retinopathy. One 

of the most common techniques used is ophthalmoscopy. Non-mydriatic digital fundus 

photography is also popular (Ministry of Health Malaysia, Malaysian Society of 

Ophthalmology and Academy of Medicine Malaysia, 2011).  

 

Different screening modalities performed by different practitioners will produce a wide 

variation of sensitivity and specificity. The screening tools include the following: the 

direct and indirect ophthalmoscope, the slit lamp biomicroscope, the mydriatic fundus 

camera and the non-mydriatic fundus camera. The non-mydratic fundus camera has 

high sensitivity and specificity among other advantages. For example pupillary 

dilatation is not required, especially if the room is adequately darkened, promoting 

compliance, efficiency and safety (Ministry of Health Malaysia, Malaysian Society of 

Ophthalmology and Academy of Medicine Malaysia, 2011). Trained primary care 

clinicians are needed for screening of diabetic retinopathy to increase the accuracy of 
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interpretation and grading. Proper training among all healthcare personnel therefore is 

essential. Specialised personnel for retinal screening and grading need specific training 

and regular performance assessment. Moreover, the Clinical Practice Guidelines 

Screening for Diabetic Retinopathy requires that the module of training should comprise 

clinical skills and knowledge, computer imaging and skills, in addition operational 

concerns and training of fundus grading (Ministry of Health Malaysia, Malaysian 

Society of Ophthalmology and Academy of Medicine Malaysia, 2011).  

 

Diabetes Mellitus is a growing problem among increasing numbers of diabetics every 

year. Subsequently, there are several challenges faced by the Ministry of Health 

Malaysia in diabetic retinopathy handling cases (Ministry of Health Malaysia, 2012a), 

including: 

 

i. Inadequate diabetic eye screening programs 

In order to perform successful eye screening, a team of trained healthcare 

personnel is required. Fewer screening teams, especially in rural hospitals, 

have significantly decreased the number of the eye screening programs. At 

the moment, screening programs are exclusively performed at primary health 

care centres (selected health clinic with fundus camera), hospital or clinics 

with eye care providers such as ophthalmology and optometry clinics. 

According to a relatively recent report on diabetic retinopathy screening by 

the Unit of Health Technology Assessment, only 24 out of the 114 Ministry 

of Health hospitals have a department of ophthalmology, while 

ophthalmologists aim to visits other hospitals regularly (Health Technology 

Assessment Unit, Medical Development Division, Ministry of Health 

Malaysia, 2002).  

 

ii. Inadequate resources to complete the task 

The main resources needed for the screening are trained staff and fundus 

cameras. All healthcare personnel involved in screening require proper 

training before they can join the programs. There is a need for training on 
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how to screen the images and how to improve the accuracy of interpretation 

and grading, in addition in terms of sensitivity and specificity. 

 

The screening tools and techniques used in the program are the other 

important factors to be considered. There are many available screening 

modalities used for diabetic retinopathy screening. Ophthalmoscopy is a 

popular screening method, but non-mydriatic digital camera is also widely 

prescribed due to its high sensitivity and specificity. The fundus camera 

however is limited throughout Malaysian hospitals and health clinics. In the 

year of 2011, the total number of fundus camera available at health clinics 

under the Ministry of Health was only 107 (Ministry of Health Malaysia, 

Malaysian Society of Ophthalmology, Academy of Medicine Malaysia, 

2011). This lack of vital screening resources will invariably result in longer 

waiting lists for initial screenings and referrals to ophthalmologist. This will 

ultimately lead to more serious eye complications. 

 

iii. Poor patient information or awareness 

One of the barriers in handling diabetic retinopathy is the patient factor. A 

lack of awareness of the possible eye complications from diabetes mellitus is 

one of the factors that have decreased the frequency of diabetic retinopathy 

screening. Moreover, other factors which impede the level of diabetic 

retinopathy awareness amongst Malaysians are eye care services poor access 

and dissimilar cultural beliefs. As such, patients should be aware that regular 

eye examinations are important. 

 

1.2 Research Aims and Objectives 
The aim of this research is to investigate automatic methods for diabetic retinopathy 

detection that can contribute towards improving diabetic retinopathy management and, 

subsequently, to develop an efficient system for diabetic retinopathy screening. 

Basically, the proposed diabetic retinopathy research consists of three types of systems. 

Firstly, the thesis will present the development of a basic system for the screening and 

classification of diabetic retinopathy using eye fundus images, which is a system for 
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general detection for diabetic retinopathy screening and will classify images into two 

respective cases: Normal and Diabetic Retinopathy. The research will then focus on the 

microaneurysms detection which are the earliest diabetic retinopathy signs. 

 

Different image processing techniques, including fuzzy image processing, are 

implemented in a variety of detection systems for microaneurysms which classify 

images into two main categories. The first categorisation classifies them into detected 

and non-detected cases. The second categorisation is based on Normal (No DR) and 

Diabetic Retinopathy cases. In addition, the thesis presents the fuzzy-based image 

processing decision support systems for diabetic retinopathy and maculopathy detection 

in eye fundus images. The proposed systems classify the images into two types of 

classification, in order to generate a diversity of results and system performance 

analysis, which are the two above cases (Normal and Diabetic Retinopathy) and an 

additional ten cases which follow the ophthalmologists’ practice and provide more 

details. The second classification involves No Diabetic Retinopathy and the other nine 

detailed classes of the DR cases: Mild DR without maculopathy, Mild DR with 

maculopathy, Moderate DR without maculopathy, Moderate DR with maculopathy, 

Severe DR without maculopathy, Severe DR with maculopathy, Proliferative DR 

without maculopathy, Proliferative DR with maculopathy and Advanced Diabetic Eye 

Disease (ADED). 

 

In order to assist screeners to classify the retinal images effectively and with high 

confidence, an accurate retinal screening system is necessary. Therefore, to develop a 

diabetic retinopathy screening grading and classification system, effective techniques of 

image processing must be used. This research project examines the use of the fundus 

images for detecting the diabetic retinopathy features presence in the eyes. This is a 

particularly challenging problem and this thesis proposes novel use of image processing 

techniques in order to automatically detect the stages of retinopathy. To achieve this 

aim, highly efficient and accurate image processing techniques must be used to produce 

an effective screening of diabetic retinopathy.  
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Despite the existence of a range of image processing techniques, the need for highly 

effective and specialised image processing techniques in this case cannot be over 

emphasised. Factors such as the fundus images suffering from noise and latency are 

often encountered, necessitating calibration and filtering before the images can be used 

reliably. In addition, the quality of the image depends on the skills applied by the 

paramedic in capturing the eye fundus images, as well as on other factors including the 

quality of the equipment and possible distractions from the environment. Due to these 

facts, all healthcare staff requires proper training before they are qualified and equipped 

for diabetic retinopathy screening. This is important as it can help increase the 

likelihood of accurate interpretation and grading. In addition to the lengthy and rigorous 

training of healthcare personnel before qualification, a growing challenge faced by the 

healthcare sector is the fact that diabetes mellitus is on the increase, with higher 

numbers of diabetics each year. It has also been highlighted by governments and other 

relevant stakeholders that the diabetic eye screening program is inadequate, as are the 

resources to complete the task, in addition to poor patient information or awareness 

(Ministry of Health Diabetic Retinopathy Screening Team, 2012b). 

 

Further to the range of complications associated with images captured by the fundus 

camera, there is also the need for an experienced paramedic to diagnose whether the 

patient has any conditions (i.e., diabetic retinopathy). This screening phase is carried out 

manually by the paramedic who looks for any changes (abnormalities) on the retinal 

image, making the whole diagnostic process highly convoluted and protracted.  

 

Based on the aforementioned reasons, in order to pursue this study primary research 

outcome, which is the development of a computer-based imaging tool, a method must 

be created in order to effectively detect important features on the fundus images and 

efficiently classify patients into the correct retinopathy stages. This automatic diabetic 

retinopathy grading will facilitate a reduction in the burden of manual grading for the 

screening team, and help alleviate the pressure on the limited eye screening centres in 

Malaysia (Ministry of Health Malaysia, Malaysian Society of Ophthalmology and 

Academy of Medicine Malaysia, 2011). As a result of early detection, it would also help 

ophthalmologists to treat patients before their conditions worsen and, most importantly, 
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increase the chance of protecting the patient’s vision. Moreover, an automatic diabetic 

retinopathy system would diagnose it in a faster and more efficient way. In addition, as 

suggested by the available literature, the initial detection of retinopathy, the existing 

retinopathy monitoring with consistent fundus examinations and effective laser 

treatment at suitable times, are among the key measures to prevent visual loss from 

diabetic retinopathy (Health Technology Assessment Unit, Medical Development 

Division, Ministry of Health Malaysia, 2002). 

 

The main objectives of the research described in this thesis are as follows:  

 

i. To develop an automatic screening and classification systems for diabetic 

retinopathy using fundus images in order to detect diabetic retinopathy at an 

early stage. 

ii. To propose novel use of image processing and machine learning techniques 

for early detection of the signs of diabetic retinopathy.  

 

The research introduced novel use of image processing techniques for the automated 

detection of retinopathy stages, including the combination of various pre-processing 

techniques as well as fuzzy image processing techniques, such as fuzzy histogram 

equalisation, fuzzy filtering and fuzzy edge detection. In addition, the research proposed 

the use of Circular Hough Transform and various machine learning classifiers. 

 

1.3 Motivation and Contributions of the Thesis 

Eye screening is important for the early detection and treatment of diabetic retinopathy. 

Regular screening can help detect patients with diabetes at an early stage thus, earlier 

identification of any retinopathy can allow changes in blood pressure or blood glucose 

to be managed efficiently to slow the rate of progression of the disease. The importance 

of the proposed research is to overcome the current problems faced in the diabetic 

retinopathy screening process, such as: 
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i. Manual diagnosis by the ophthalmologist 

Currently, clinicians use non-mydratic fundus cameras to capture retinal 

images. Based on the image produced from the fundus camera, the 

experienced screening team will diagnose whether or not patients have any 

conditions (including diabetic retinopathy). The diagnosis is carried out 

manually by screeners who assess any changes (abnormalities) on the retinal 

image. This process is both laborious and prone to error. Therefore, a 

computer-based imaging tool is needed to effectively detect the signs of 

diabetic retinopathy, allowing ophthalmologists to gain a suitable window in 

which to treat patients, before serious damage occurs, thus increasing the 

chance of protecting the patient’s vision. It will also help decrease the 

workload for healthcare personnel in the diabetic retinopathy screening 

process.  

 

ii. Time taken and limitations of screening resources  

The proposed automatic diabetic retinopathy system would help save time, 

costs and ultimately the vision of patients. With appropriate automation (i.e., 

decision support systems) in place, preventative actions to protect vision can 

then be taken earlier and therefore can help reduce the number of diabetic 

retinopathy problems, in addition to the risk of blindness. A decision support 

system for clinical diagnosis would contribute greatly in assisting with the 

management and detection of diabetic retinopathy. An automatic system will 

assist an ophthalmologist (or optometrist) to detect diabetic retinopathy (and 

its detailed classification) in a more efficient and faster way compared with 

manual analysis, which is more time-consuming. As a result, the proposed 

system will indirectly assist in the process of recommended follow-up 

schedules for each category of diabetic retinopathy based on the system 

detection. Furthermore, the development of the proposed system will 

contribute to overcoming the diabetic retinopathy screening limitations 

inherent in the present manual screening procedure, especially given the 

problems of inadequately trained staff and the use of the fundus camera, as 

highlighted in Section 1.1. 
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iii. Developing effective techniques of image processing for the diabetic 

retinopathy detection 

Diabetic retinopathy screening is a popular research area and many 

researchers focus on and contribute to the advancement of this study area. 

Most researchers focus on finding and proposing an accurate technique or 

method for detecting certain features of diabetic retinopathy through 

exploring the eye fundus images. Although there have been immense 

advancements in this area of research, there are still lacunae or spaces for 

improvement. The proposed techniques in this research will most notably 

benefit the realm of image processing in a number of areas or ways that 

include the provision of an accurate method for effectively detecting features 

of diabetic retinopathy. 

 

Based on the general objectives in Section 1.2 above, in particular the 

second objective, the highlighted contributions of this thesis include: 

implementing image processing techniques combination for the general 

diabetic retinopathy screening detection (Rahim et al., 2014), investigating 

image processing techniques combination for the diabetic retinopathy 

features detection, focusing on microaneurysms, an important early feature 

of diabetic retinopathy (Rahim et al., 2015a; 2015b) and the evaluation of 

image processing techniques combination for the diabetic retinopathy and 

diabetic maculopathy detection (Rahim et al., 2015c; 2016). In addition, the 

contributions of this thesis include employing the novel use of fuzzy image 

processing techniques for the pre-processing stage of medical images, i.e., 

eye fundus images for diabetic retinopathy screening (Rahim et al., 2015a; 

2015b; 2015c; 2016), as well as implementing a new online dataset 

containing normal and diabetic retinopathy fundus images (Rahim et al., 

2015b; 2015c; 2016) and finally, testing a new method for macula region 

localisation in order to detect maculopathy (Rahim et al., 2016). 

 

To summarise, diabetes mellitus is a main health problem. One of the diabetes mellitus 

health effects is diabetic retinopathy, which causes blindness. Therefore, an effective 
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tool to help in the diabetic retinopathy detection is essential. A computer-based imaging 

screening method is needed to be developed where effective and cost-effective 

approaches are required. Automatic detection systems of diabetic retinopathy for 

patients with diabetes using the eye fundus photography will help the screening process 

by providing a user- or patient-friendly approach in addition to a cost-effective 

screening tool. Automatic classification systems with a high accuracy of diabetic 

retinopathy screening will help in decreasing the workload for healthcare personnel in 

the process of the early detection of diabetic retinopathy. It would also be helpful to 

patients in terms of early treatment, which could prevent or ameliorate substantial visual 

loss. This thesis proposes an automatic diabetic retinopathy detection system, and also 

introduces a new dataset of fundus images, which would be beneficial to retinal imaging 

researchers and practitioners, especially in the diabetic retinopathy screening field. 

 

1.4 Research Methodology 
The research methodology is concerned with the base of the inverted triangle in Figure 

1.1. The figure shows that the main components of this research are diabetic retinopathy 

screening, fundus images as input and image processing techniques. The developed 

system consists of three stages: image pre-processing, feature extraction and 

classification. In order to validate the systems output performance, the results generated 

from the developed system are compared to the expert findings and several analyses are 

performed.  

 

Understanding the diabetic retinopathy screening process, including the diabetic 

retinopathy development and diabetic retinopathy signs, are essential and information is 

collected through observation and interview techniques. The fundus images, which are 

the main data for this research, are extracted from the personal computer that is attached 

to the fundus camera. Each patient folder consists of the patient information and the eye 

fundus images. The automatic diabetic retinopathy detection systems are developed by 

employing a novel use of image processing techniques. The developed systems consists 

of three types of system development, which are the general detection of diabetic 

retinopathy, the development of an automatic system for microaneurysms detection and 

the development of an automatic diabetic retinopathy and maculopathy detection 
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system. The systems are evaluated with the combination of normal and diabetic 

retinopathy fundus images from a new data set collected during this research and also 

from several public datasets available as benchmark data. A thorough system 

performance analysis has been undertaken, which compared the performance of 

automatic systems to the manual diagnosis performed by the experts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Methodology of the research 
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1.5 Thesis Overview 
The thesis is organised into six chapters, each focusing on different features of the 

research work. The following is a summary of the contents of each chapter. 

 

Chapter 1 provides an overview of diabetic retinopathy screening and a more detailed 

investigation of the problems, particularly in Malaysia. The research aims and 

objectives of this study are also presented. In addition, the motivations which have led 

to this research, the contributions of the thesis and the research methodology are 

presented in this introductory chapter. 

 

Chapter 2 describes the background and the literature review in addition to basic 

information on diabetes mellitus and diabetic retinopathy, as well as the prevalence of 

diabetes mellitus and diabetic retinopathy worldwide and, particularly, in Malaysia. It 

also provides information on the level of advancement in the area of image processing 

for diabetic retinopathy screening systems. The chapter also highlights the 

implementation of fuzzy image processing techniques on medical and non-medical 

images, which is the core of this research work.   

 

Chapter 3 discusses the research methodology used, including the process of data 

collection for this study. The research design, as a guide for planning the research 

development, is also presented. The experimental datasets, which consist of the existing 

datasets and a novel developed dataset, are presented in Chapter 3 in greater detail. The 

development of this new dataset is highlighted, including the expert diagnosis process, 

the diagnosis summary and its overall advantages.  

 

Chapter 4 explains the development of the proposed systems, using the previously 

described datasets and image processing techniques. Each system presents a 

combination of different techniques, such as different pre-processing techniques, 

different feature parameters and different classifiers in the diabetic retinopathy 

screening system. These systems are different from those proposed by other researchers. 

The evaluations of the developed systems are also presented in Chapter 4, where it 
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presents the efficiency and the validity of diabetic retinopathy classification through the 

developed systems.  

 

Chapter 5 presents the overall results analysis of a new dataset. It also presents the 

overall result analysis for the automatic developed systems. The chapter discusses the 

analysis performed on the expert diagnosis, including descriptive and inferential 

analysis. In order to generate a variance of system testing results and system 

performance, the overall analysis of the developed systems are presented in two ways: 

confusion matrix and statistical analysis. In addition, some discussions on the findings 

of this study are presented.  

 

Chapter 6 summarises the accomplishments of the research work. It concludes the 

contents of the thesis and also highlights some recommendations for future research 

work. It also provides information regarding the research contributions, which have 

benefited a number of areas.   
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2 BACKGROUND AND LITERATURE REVIEW 

Diabetes Mellitus (DM) is a significant public health concern. The diabetes epidemic is 

leading to an increasing number of severe and chronic complications, including those 

that are sight-threatening. Diabetic Retinopathy (DR) is a complication of diabetes 

caused by high blood glucose. Diabetic retinopathy is a microvascular complication of 

both insulin dependent (type 1) and non-insulin dependent (type 2) diabetes. It is one of 

the diabetes mellitus complications that damages blood vessels inside the retina. The 

retina is located at the back of the eye. Diabetic retinopathy commonly affects both eyes 

and can lead to vision loss if it is not promptly treated (Centre for Eye Research 

Australia, 2013).  

 

This chapter provides the background for each of the main components involved in the 

research. It comprises seven main components which are diabetes mellitus, diabetic 

retinopathy, epidemiology of diabetic retinopathy, classification of diabetic retinopathy, 

diabetic retinopathy screening, diabetic retinopathy image processing and finally, fuzzy 

image processing, particularly on medical images. The chapter starts with the 

explanation of diabetes mellitus in Section 2.1, followed by Section 2.2 which presents 

one of its complications, i.e., diabetic retinopathy. Section 2.3 reveals the prevalence of 

diabetes mellitus and diabetic retinopathy from a global perspective in addition to an 

epidemiologic perspective in Malaysia. The classification of diabetic retinopathy is 

explained in Section 2.4. Section 2.5 describes how diabetic retinopathy screening is 

performed, including the grading process, examination schedule, diabetic retinopathy 

treatment and management in addition to the follow up schedule. The image processing 

approach, which is particularly used in diabetic retinopathy screening research, is 

explained in Section 2.6. The implementation of fuzzy image processing that focuses on 

medical images, which is the core of the proposed research, is presented in Section 2.7. 

Finally, a summary of the second chapter is provided in Section 2.8. 

 

2.1 Diabetes Mellitus 
Diabetes mellitus is a disorder caused by constant hyperglycemia of variable severity, 

incidental to a lack or lessened efficacy of insulin (Ministry of Health Diabetic 
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Retinopathy Screening Team, 2012a). Meanwhile, Scanlon et al. (2012) have defined 

diabetes mellitus as a chronic condition due to an excess of glucose circulating in the 

bloodstream. Diabetes is a disorder caused by high levels of glucose in the blood 

(Taylor and Batey, 2012; NHS Choices, 2012). It happens either when the pancreas 

does not produce enough insulin or because cells do not respond to the insulin 

produced. Insulin is a peptide hormone, produced by beta cells of the pancreas, a large 

gland which is located behind the stomach. There are two types of diabetes mellitus, 

which are Type 1 diabetes and Type 2 diabetes. 

 

The increasing numbers of cases of diabetes are due to the following factors: a longer 

life-span, modern lifestyles (urbanisation, mechanisation and industrialisation) and also 

environmental and social factors, such as an unhealthy diet, obesity and physical 

inactivity (International Diabetes Federation, World Health Organization and Secretariat 

of the Pacific Community, 2000; Ministry of Health Diabetic Retinopathy Screening 

Team, 2012a; Sivaprasad et al., 2012), in addition to uncontrolled hypertension and 

smoking (Health Technology Assessment Unit, Medical Development Division, 

Ministry of Health Malaysia, 2002). Tajunisah and others (2006) have claimed that the 

duration of diabetes, hypertension and systemic complications including diabetic foot 

ulcer, lower limb amputation, nephropathy and neuropathy were also factors of 

retinopathy incidence. In addition, Mallika et al. (2011) confirmed that the duration of 

diabetes, body mass index and visual loss are associated with diabetic retinopathy. 

Meanwhile, the main symptoms of both types of diabetes are thirst, urinating frequently 

(particularly at night), tiredness, weight loss, loss of muscle bulk, skin infections and 

urinary infections (NHS Choices, 2012; Taylor and Batey, 2012). 

 

Diabetes causes capillaries problems in the body, and the merely way to visualise this 

condition is by looking into the retina (Taylor and Batey, 2012). Figure 2.1 shows the 

anatomy of the eye including the retina, optic nerve, retinal vessels, cornea, lens, iris 

and sclera. The retina is a light-sensitive tissue that located at the back of the eye, as 

illustrated in Figure 2.1. Diabetes mellitus, if left untreated, can cause many health 

problems. Among the systemic complications of diabetes mellitus are stroke, 
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cardiovascular disease, diabetic neuropathy, diabetic nephropathy and also diabetic 

retinopathy (Ministry of Health Diabetic Retinopathy Screening Team, 2012a).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Retina (eyeSmart, 2014) 

 

2.2 Diabetic Retinopathy 
The clinical manifestations of retinopathy are due to two basic pathophysiologic 

mechanisms: increased capillary penetrability and the closure of the retinal capillaries 

(Health Technology Assessment Unit, Medical Development Division Ministry of 

Health Malaysia, 2002). Meanwhile, Taylor and Batey (2012) defined the term 

‘retinopathy’ as a disease of the retina, and explained how diabetic retinopathy occurs. 

High levels of blood sugar eventually cause capillary damage, where the lining cells of 

capillaries become activated and ‘leaky’. Capillary closure or occlusion happens later, 

due to the capillary damage and also the increase of the platelet stickiness and clotting 

factors. As a result, the capillaries fail to supply nutrients to the retina as usual and 

produce ischaemia, which is a decreased blood flow. 

 

This item has been removed due to 3rd Party Copyright. The 
unabridged version of the thesis can be found in the Lancester 

Library, Coventry University.
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A fundus image with diabetic retinopathy features is presented in Figure 2.3, while the 

explanation of the features is presented in Table 2.1. Amongst the detected retinopathy 

signs are the microaneurysms, the retinal haemorrhages, the hard exudates, cotton wool 

spots, abnormal new vessels and venous beadings, which are presented in Figure 2.3. 

The definitions of these signs of diabetic retinopathy are listed in Table 2.1. 

 

Table 2.1 Terminology definition of diabetic retinopathy signs (adapted from 

Taylor and Batey, 2012) 

 

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be found in 
the Lancester Library, Coventry University.
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Table 2.1 (continued) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Features of diabetic retinopathy (Ministry of Health Diabetic 

Retinopathy Screening Team, 2012b) 
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Figure 2.4 shows a comparison between the ordinary retina and a retina with diabetic 

retinopathy signs. Figure 2.4 (a) shows the normal retina, which is free of any signs of 

diabetic retinopathy. Meanwhile, Figure 2.4 (b) shows the retina with the presence of 

several features of diabetic retinopathy, such as microaneurysms, haemorrhages, 

exudates, cotton wool spots and maculopathy. The terminology of these features is 

described in Table 2.1, while the visualisation of these features is presented in Figure 

2.3. 

 

 

 
 

 

 

(a) Normal retina 

 

(b) Diabetic retinopathy signs 

 

 

Figure 2.4 Normal retina compared to retina with diabetic retinopathy signs 

 

2.3 Epidemiology of Diabetic Retinopathy 

This section will reveal both the Malaysian and the worldwide prevalence of visual 

impairment and diabetic retinopathy. 

 

2.3.1 Diabetic Retinopathy and Global Epidemiology 

Diabetic Retinopathy is an important cause which can lead to blindness. Global Data on 

Visual Impairment, a 2010 article by the World Health Organization (WHO) stated that 

globally, the number of visually impaired people of all ages was estimated to be 285 

million, where 39 million are blind and 246 million suffered from low vision (World 

Health Organization, 2012b). In addition, people aged 50 years and older make up 82% 

This item has been removed due 
to 3rd Party Copyright. The 

unabridged version of the thesis 
can be found in the Lancester 
Library, Coventry University.
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unabridged version of the thesis 
can be found in the Lancester 
Library, Coventry University.



 

22 

of the blind and 65% of the visually impaired. The report makes estimates for three age 

groups (0 to 14 years, 15 to 49 years and 50 years above) coming from six WHO 

regions (the African Region, the Region of the Americas, the Eastern Mediterranean 

Region, the European Region, the South-East Asian Region and the Western Pacific 

Region). The major global causes of visual impairment are uncorrected refractive errors 

(42%), cataracts (33%), glaucoma (2%), age related macular degeneration (1%), 

diabetic retinopathy (1%), trachoma (1%), corneal opacities (1%) and the remaining 

18% is undetermined. Meanwhile, the major causes of blindness are cataracts (51%), 

glaucoma (8%), age related macular degeneration (5%), childhood blindness (4%), 

corneal opacities (4%), uncorrected refractive errors and trachoma (3%), diabetic 

retinopathy (1%) and other undetermined causes (21%). The global visual impairment 

and blindness reasons are depicted in pie chart form in Figure 2.5 and Figure 2.6, 

respectively. The report summarises that retinal diseases are the main global of visual 

impairment cause. In addition, the article confirms that the total number of visual 

impairments and blindness due to age-related macular degeneration, glaucoma and 

diabetic retinopathy is more compared to trachoma and corneal opacities, which are the 

infective causes. The report suggests an urgent development of the eye care system 

including rehabilitation, education and support services is required to overcome those 

enduring eye diseases. It can be concluded therefore that diabetic retinopathy is among 

of the visual impairment and blindness causes. Thus, this eye problem should be 

addressed before it is worsens. 

 

In addition, Sivaprasad and others (2012) examine a global prevalence of diabetic 

retinopathy according to ethnicity and region. The survey reveals that the prevalence of 

diabetic retinopathy, including sight threatening diabetic retinopathy and macular 

edema, are higher in South Asian, African and Latin American populations compared to 

the white population. The survey also concludes that ethnic-specificity is one of the 

contribution rates of diabetic retinopathy, in addition to other factors, including the 

length of exposure and severity of hyperglycemia, hypertension and hyperlipidemia. In 

addition, factors like obesity, urbanisation, changes in diet, sedentary lifestyles and 

communicable diseases rate will increase the demands on healthcare for many 

ethnicities, particularly in Asia.  
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Figure 2.5 Global causes of visual impairment, including blindness, as 

percentage (World Health Organization, 2012b:6) 

 

 

 Figure 2.6 Global causes of blindness as a percentage of global blindness 

in 2010 (World Health Organization, 2012b:6) 

 

2.3.2 Diabetic Retinopathy Epidemiology in Malaysia 

Diabetes mellitus is a significant public health concern and one of the most established 

enduring diseases in Malaysia. The National Health and Morbidity Survey (NHMS) 

presented the diabetes prevalence for Malaysians (Letchuman et al., 2010). The survey, 

This item has been removed due to 3rd Party Copyright. The unabridged 
version of the thesis can be found in the Lancester Library, Coventry 
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which involved 34,539 respondents and covered all states of Malaysia, reported that the 

highest prevalence of diabetes among ethnic groups is thus: Indians (19.9%), followed 

by Malays (11.9%) and Chinese (11.4%). In addition, the survey also revealed other 

information, such as the prevalence of people with known diabetes was 7.0%, while 

newly diagnosed diabetes was 4.5% and 4.2% for Impaired Fasting Glycaemia. It was 

also reported that about 73.5% of the patients used the government healthcare services 

and only 45.05% of known diabetics had undergone an eye examination. Letchuman 

and others (2010) were unsatisfied with the results showing that only one third of 

respondents had their eyes examined within one year from the time of the survey. 

Although they are required to have an eye examination at diagnosis and subsequently 

annually (as recommended by the clinical practice guidelines on the management of 

diabetic retinopathy in type 2 diabetes), the patients seldom had their eye examinations 

as suggested.  In addition, Letchuman and others (2010) conclude that the reasons for 

the lower percentage of eye examination are include: patients’ lack of awareness of the 

schedule and the lack of eye screening services due to insufficient numbers of trained 

staff and resources.  

 

The survey also reported the prevalence of diabetes cases in Malaysia by state, where 

Negeri Sembilan, Melaka and Penang have the highest frequency of diabetes, with 

15.3%, 15.2% and 14.9%, respectively. The location of this research is Melaka, which 

is highlighted as having the highest prevalence of diabetes. The survey also reveals that 

the prevalence of diabetes is higher in urban (12.2%) compared to rural areas (10.6%). 

In addition, Mafauzy and colleagues (2011) proposed a study on the diabetes care status 

in Malaysia, which involved 1,670 patients from general hospitals, diabetes clinics and 

referral clinics. The most commonly reported eye complications of the study include 

proliferative diabetic retinopathy. 

 

Goh’s research (2008) reported that in 2007 the total number of diabetics with diabetic 

retinopathy registered to the Diabetic Eye Registry was about 36.8%. In addition, the 

research revealed some demographic characteristics, such as the mean age of the 

registered patients was 57.2 years and that half of them (52.8%) were aged between 30 

to 60 years. Diabetic patients were most commonly female at 54.6% and the majority of 
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the patients were Malay (54.0%). Moreover, about 92.2% of patients diagnosed with 

type 2 diabetes mellitus had the condition for below 10 years and 91.7% had been 

referred from a government healthcare facility. It was also reported that two thirds of 

diabetic patients had never previously undergone an eye examination and 71.9% of 

those who had an eye examination had attended a year ago. There were about 63.3% 

patients diagnosed as having no diabetic retinopathy, in addition to mild non-

proliferative diabetic retinopathy accounting for 16.5%, moderate non-proliferative 

diabetic retinopathy (9.8%), severe non-proliferative diabetic retinopathy (3.4%), 

proliferative diabetic retinopathy (7.1%) and maculopathy was detected in 9.5% of 

cases (Goh, 2008).  

 

The 7
th

 Report of the National Eye Database 2013 by the NED Steering Committee 

Members (2015) presented the distribution of three eye diseases, which consisted of 

diabetic retinopathy, glaucoma and lens-related complications, from the year 2002 to 

2013, as illustrated in Figure 2.7. It can be concluded that among the three eye diseases, 

diabetic retinopathy showed the highest percentage of distribution. The percentage of 

diabetic retinopathy cases however, seemed to be reducing from 2010 onwards.  

 

 

Figure 2.7 Percentage distribution of diabetic retinopathy cases, glaucoma or 

lens-induced glaucoma, 2002-2013 (NED Steering Committee Members, 

2015:112) 
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In addition, Addoor and others (2011) conducted a study of the awareness of diabetic 

retinopathy among the patients attending the diabetic clinics in Melaka, Malaysia and 

reported that 79.8% of the respondents were aware of diabetes mellitus complications 

and 87.2% were aware that diabetes can affect the eyes. The study also reported 

however that only 50% of the patients had undergone an ophthalmological evaluation. 

The proposed study concluded that although awareness among the patients was good, 

the motivation to undergo the assessment was poor. Furthermore, Thevi et al. (2012) 

revealed the eye diseases and visual impairment frequency among the rural population. 

It was reported that cataracts (22.9%) were the most popular eye disease, after that 

retinal illnesses including diabetic retinopathy (11.5%) and ocular trauma (9.8%). 

 

2.4 Classification of Diabetic Retinopathy 
There are several classifications or stages of diabetic retinopathy. The Screening for 

Diabetic Retinopathy Report by the Ministry of Health in Malaysia explained the 

technical features of how the stages of diabetic retinopathy occur (Health Technology 

Assessment Unit, Medical Development Division, Ministry of Health Malaysia, 2002). 

The enlargement of the veins in the retina is reported as one of the initial signs of 

diabetic retinopathy. The small capillaries present may also produce some changes, 

which affect the blocking, and later result in small swellings in the vascular walls, 

called microaneurysms. This is termed minimal non-proliferative diabetic retinopathy 

(NPDR), and, at this early stage, the sight may not be affected. The incidence of 

diabetic retinopathy continued in cases where the blood flow gradually worsens and 

progressively causes damage to larger portions of the retina. At this level, small 

haemorrhages and other vascular changes in the fundus of the eye appear, due to 

vascular blocking and leakage. Consequently, the retinopathy progresses from minimal 

to mild, due to the appearance of retinal haemorrhages, hard exudates and nerve layer 

infarct. In addition to minimal and mild NPDR, moderate NPDR occurs due to venous 

beading and intra-retinal microvascular irregularities. For severe NPDR classification, 

there should be more haemorrhages, microaneurysms, intra-retinal microvascular 

abnormalities and venous beading than is present in moderate NPDR (Health 

Technology Assessment Unit, Medical Development Division, Ministry of Health 

Malaysia, 2002). 
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The next severe stage of diabetic retinopathy, or proliferate diabetic retinopathy (PDR) 

occurs when new vessels (neovascularisation) are detected. This stage is high risk and 

could result in blindness. These diabetic retinopathy stages and their respective features 

are presented in Table 2.4. The macula disorders which affect the central vision happen 

due to visual loss from diabetic retinopathy. Therefore, eye examinations for the 

diagnosis of diabetic retinopathy at an initial stage are important, because diabetic 

retinopathy can bring to blindness. Moreover, regular screening can help save sight. 

 

2.5 Diabetic Retinopathy Screening 

Screening is defined as the testing of a population in order to identify individuals 

exhibiting attributes that could be early symptoms, or indicators, of a predisposition 

associated with a particular condition (Taylor and Batey, 2012). The main purpose of 

diabetic retinopathy screening is to detect whether the individuals require referral for 

further treatment, in order to prevent blindness (Taylor and Batey, 2012). In addition to 

this main purpose, there are other purposes for diabetic retinopathy screening. These 

include: identifying the disease at an early stage; possibly detecting a requirement for 

blood pressure and blood sugar treatment; educating the population about the causes of 

diabetic retinopathy and ways to reduce the risk; and, potentially, to identify non-

diabetic conditions through the screening process (Taylor and Batey, 2012). One major 

problem is that diabetic eye disease does not interfere with sight until it reaches an 

advanced stage (Taylor and Batey, 2012). Laser treatment can save sight, but only if it is 

used at an early stage. This shows the importance of essential regular screening, which 

can help detect the diabetic patients at an early stage of diabetic retinopathy. Moreover, 

earlier identification of any retinopathy signs can allow changes to blood pressure or 

blood glucose management in order to slow the rate of progression.  

 

Digital retinal imaging is usually used as a screening technique. The proposed method is 

recommended in the UK and also by the National Retinal Screening Project Group 

(Taylor and Batey, 2012). However, there are some challenges, such as efficient and 

cost-effective measures, that need to be considered to establish the screening systems. 

Furthermore, Taylor and Batey (2012) considered digital retinal imaging as one of the 

screening choices and underlined five principles of retinal screening. These are 
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comprised of regular screening assurance, the availability of an efficient screening 

system, eye screening practise being included as part of diabetes care, the 

ophthalmologist’s participation in the planning and operation of the screening system 

and finally, the quality control of the screening process. Scanlon and colleagues (2009) 

recommended four steps in systematic screening programmes developed for the sight-

threatening diabetic retinopathy. Firstly effective treatment, opportunistic as well as 

systematic screening, and finally, full quality assurance and coverage screening. 

Meanwhile, Hutchins et al. (2012) presented a study of diabetic retinopathy screening in 

New Zealand, and concluded that among the requirements in improving the retinal 

screening quality should be quality data and quality assurance platforms.  

 

As discussed in Chapter 1, there are many screening methods available for diabetic 

retinopathy screening. Figure 2.8 shows the screening modalities used in screening 

programmes including the direct ophthalmoscope, the slit-lamp biomicroscopy with 

contact lens, the binocular indirect ophthalmoscopy and the fundus photography. 

However, different screening modalities will provide a variation in the sensitivities and 

specificities obtained. 

 

Table 2.2 describes the diagnostic accuracy of different screening tools, which are the 

direct ophthalmoscope, the slit lamp biomicroscope, the mydriatic fundus camera and 

also the non-mydriatic fundus camera. It can be concluded from Table 2.2, that the non-

mydriatic fundus camera has high sensitivity and specificity, eliminating the need for 

pupillary dilatation, promoting compliance, efficiency and safety. The clinical practice 

guidelines for the screening of diabetic retinopathy (Ministry of Health Malaysia, 

Malaysian Society of Ophthalmology and Academy of Medicine Malaysia, 2011) 

recommend that the non-mydriatic fundus camera should be used as a screening tool for 

diabetic retinopathy, whenever possible with a double field fundus photo assessment. 

When there is no access to a fundus camera, an ophthalmoscope should be used. 
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Direct ophthalmoscope 
Slit-lamp biomicroscopy with contact 

lens 

 

 
 

 

 

Binocular indirect ophthalmoscopy Fundus photography 

 

Figure 2.8 Diabetic retinopathy screening tools (Ministry of Health Diabetic 

Retinopathy Screening Team, 2012c:14) 

 

Table 2.2 Sensitivity and specificity of diabetic retinopathy tools (Ministry of 

Health Malaysia, Malaysia Society of Ophthalmology and Academy of Medicine 

of Malaysia, 2011)  
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Generally, in current practice, all registered diabetic patients will first undergo the 

visual acuity test. Following this, fundus photography session will be organised using 

the fundus camera and assessment will then be performed. A trained paramedic will 

play a role in grading the captured fundus images into a diabetic retinopathy stage, 

based on the changes or abnormalities shown on the fundus images. The management of 

the condition, including a follow-up schedule or referral to an ophthalmologist for 

further diagnosis, will be decided upon based on the retinopathy stages. This 

explanation of the diabetic retinopathy screening process is illustrated in Figure 2.9. 

 

Currently in Malaysia, the clinicians use the non-mydratic fundus camera to capture 

retinal images. The fundus camera comprises an internal or external digital camera, a 

computer and a software system. It is used because of its strengths as it is easy to use, 

patient-friendly, user-friendly, time and cost effective and also pupil dilatation is 

performed only if necessary. The fundus camera produces high quality digital 

photographs that can be viewed immediately and shown to the patients to improve their 

understanding of the disease. A fundus camera is designed to photograph the interior 

surface of the eye such as the retina, the optic disc, the macula, and the posterior pole 

(i.e., the fundus). Fundus cameras are used by optometrists, ophthalmologists, and 

trained medical professionals in order to monitor the disease progression, for the 

diagnosis of a disease or in screening programmes, where the photos can be analysed 

later. 
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Figure 2.9 Screening process of diabetic retinopathy to prevent blindness 

(Ministry of Health Malaysia, Malaysian Society of Ophthalmology and Academy 

of Medicine of Malaysia, 2011) 

 

The handbook or guide to diabetic retinopathy screening by the Ministry of Health 

Diabetic Retinopathy Screening Team (2012b) explains the technique of photography 

and also details the features of diabetic retinopathy, visible through the use of the 

fundus camera. The screening group suggested that two photographs of two views (with 

the optic disc as the centre and the fovea as the centre) should be taken as the input for 
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screening, as presented in Figure 2.10. The optic disc or the optic nerve is a round area 

in the back of the eye while the fovea is the centre of the macula region. Figure 2.11 

presents good quality fundus photos, which are essential for the process of diabetic 

retinopathy screening. 

 

 

 
 

 

 

 

 
 

 

 
 

Optic disc as the centre Fovea as the centre 

 

Figure 2.10 Fundus camera photography (Ministry of Health Diabetic Retinopathy 

Screening Team, 2012b, 2012d) 

 

 

 

Figure 2.11 Good quality fundus photos (Ministry of Health Diabetic Retinopathy 

Screening Team, 2012b) 
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The fundus image can be divided into four quadrants which are superonasal, 

inferonasal, superotemporal and inferotemporal, as shown in Figure 2.12. The macula 

region is at the posterior pole of the eye, within one disc diameter of the fovea (Taylor 

and Batey, 2012). 

 

 

 
 

 

 

Fundus image quadrants Macula 

 

Figure 2.12 Normal fundus image (Ministry of Health Diabetic Retinopathy 

Screening Team, 2012b) 

 

2.5.1 Diabetic Retinopathy Grading 

Based on the fundus image captured by the fundus camera, the experienced paramedic 

will then make the diagnosis as to whether or not the patient has any eye disease, 

including diabetic retinopathy. The grading is performed manually by the paramedics, 

with reference to any changes or abnormality seen on the retinal image. Table 2.3 shows 

the findings of diabetic retinopathy features for each stage of the condition. The 

presented retinopathy stages are the non-proliferative diabetic retinopathy (mild, 

moderate and severe), the proliferative diabetic retinopathy, the diabetic maculopathy 

(mild, moderate and severe) and the advanced diabetic eye disease.  Information about 

the retinopathy stages and the terminology used to describe their features of are 

presented in Section 2.4 and Table 2.1, respectively, for a detailed explanation. 
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The Early Treatment Diabetic Retinopathy Study (ETDRS) group initially proposed the 

diabetic retinopathy severity scale (Early Treatment Diabetic Retinopathy Study 

Research Group, 1991). In addition to the early classification by ETDRS, an 

international clinical disease severity scale for diabetic retinopathy and diabetic macula 

oedema (DME) was proposed by Wilkinson and others in 2003. It is much simpler, 

having less severity levels and diagnostic criteria as compared to the ETDRS 

classification system. Table 2.4 shows the Diabetic Retinopathy Disease Severity Scale 

including no apparent retinopathy, nonproliferative diabetic retinopathy (mild, moderate 

and severe) and proliferative diabetic retinopathy. Table 2.5 shows the Diabetic Macular 

Edema Disease Severity Scale proposed by Wilkinson and colleagues (2003), which has 

been used as an international scale in order to assist in the grading of fundus images into 

distinct categories based on the retinal findings. 

 

Table 2.4 International Clinical Diabetic Retinopathy Disease Severity Scale 

(Wilkinson et al., 2003) 
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Table 2.5 Diabetic Macular Edema Disease Severity Scale (Wilkinson et al., 2003) 

 

2.5.2 Examination Schedule 

Regular screening is important for early detection and early treatment, in order to assist 

the management of diabetic retinopathy. The preliminary fundus examination for 

diabetic retinopathy varies according to the types of diabetes mellitus, and is presented 

in Table 2.6 below. 

 

Individuals with diabetes mellitus should be screened at least every two years. 

Individuals who can be categorised as high risk (i.e. with a longer duration of diabetes 

or poor control of blood sugar, blood pressure or serum lipid) should be examined at 

least annually. Moreover, individuals with any signs of non-proliferative diabetic 

retinopathy should be examined at 6-12 monthly intervals. Earlier follow-up may be 

required in high risk groups, including the presence of renal complications and the 

progression of diabetic retinopathy. Table 2.7 provides the recommendations for eye 

examination follow-up schedules for patients with diabetes mellitus. 
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Table 2.6 Timing of the first screening (Ministry of Health Malaysia, Malaysian 

Society of Ophthalmology and Academy of Medicine of Malaysia, 2011) 

Table 2.7 Recommended follow-up schedule (American Academy of 

Ophthalmology Retina Panel, 2008) 

The crucial aim for diabetic retinopathy screening is to detect sight threatening factors 

and to ensure their timely treatment in order to prevent vision loss. Therefore, 

appropriate referral to an ophthalmologist should be performed. Among the criteria 

which would require referral are the presence of any level of diabetic maculopathy, 

severe NPDR, any PDR, unexplained loss of vision and also if the screening 

examination cannot be performed with an upgradable fundus photo. The National 

Institute for Clinical Excellence (NICE) presents the urgency of referral as shown in 

Table 2.8. It is recommended that the examination schedule and urgency of referral to 

an ophthalmologist should be based on the grade and severity of the diabetic retinopathy 

along with the presence of risk factors (Ministry of Health Malaysia, Malaysian Society 

of Ophthalmology and Academy of Medicine of Malaysia, 2011). 
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Table 2.8 Criteria for urgent referral (National Institute for Clinical Excellence, 

2002) 

2.5.3 Diabetic Retinopathy Management and Treatment 

Early detection of diabetic retinopathy is vital because diabetic retinopathy is 

irreversible. The standard practice for treating diabetic retinopathy is by using laser 

photocoagulation, where the blood capillaries immersed the energy. The summary of 

the treatment for diabetic retinopathy is presented in Table 2.9. 

 

Table 2.9 Summary of treatment for diabetic retinopathy (Ministry of Health 

Malaysia, Malaysian Society of Ophthalmology and Academy of Medicine of 

Malaysia, 2011) 
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2.6 Diabetic Retinopathy Image Processing 

Currently, image processing techniques are widely used as a means of diagnosing 

diseases, including eye diseases. Computer-based imaging tools are necessary to 

effectively detect signs of diabetic retinopathy. Early detection would allow the 

ophthalmologist to treat patients before major damage occurs and would present the 

best chance of protecting the patient’s vision. The automatic diabetic retinopathy 

grading system would allow a faster and more efficient diagnosis. Preventive actions 

could be taken early to protect vision and avoid blindness.  

 

Diabetic retinopathy screening is currently a common research area, in which some 

researchers focus on finding and proposing several techniques or methods for detecting 

certain features of diabetic retinopathy (i.e., microaneurysms, haemorrhages, exudates, 

and neovascularisation). Nonetheless, there are some researchers who propose the 

development of automated systems for detecting and classifying normal or abnormal 

diabetic retinopathy.  

 

Digital image processing systems generally have three main parts: image preprocessing, 

feature extraction and classification.  

 

2.6.1 Image Preprocessing 

Preprocessing is the process of enhancing or improving features of image data for the 

next processing task. According to Sonka and colleagues (2008), image preprocessing 

methods can be classified into four categories: pixel brightness transformations, 

geometric transformations, local preprocessing and image restoration. However, some 

papers classify image preprocessing methods into image enhancement and image 

restoration only. 

 

Pixel brightness transformations deal with pixel brightness, and consist of brightness 

corrections and greyscale transformations. The brightness of pixel is adjusted in 

brightness correction according to the current brightness and image location; whereas in 

greyscale transformation, the brightness values contrast of the image is enhanced. The 

greyscale image is defined as a data matrix which the values are indicated by the shades 
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of grey (Gonzalez et al., 2009). Sonka and others (2008) concluded that greyscale 

transformations are mainly used for manual viewing in which the image is simply 

defined in an improved contrast. For example, greyscale transformation provides a clear 

contrast to an X-ray image. Greyscale transformation technique includes histogram 

equalisation for enhancement of contrast.  The technique creates an equal distribution of 

brightness level for the image.  

 

Geometric transformations offer the removal of geometric misrepresentation that 

happens during the image capturing process. The two basic steps of a geometric 

transform are pixel coordinate transformation and brightness interpolation. In addition, 

a significant purpose of image restoration methods, are to subdue degradation. The 

image restoration methods apply the concept of deconvolution across the whole image.  

 

Local preprocessing methods utilise a small pixel neighbourhood in order to generate an 

output image with a new brightness value. Two common groups are used to achieve 

this, namely smoothing and edge detection. Smoothing is used to reduce noise or other 

minor fluctuations in the image. Gradient operators determine edges where the locations 

undergo fast changes. There are two components of edge detection, which are 

magnitude and direction. Most gradient operators such as Roberts, Laplace, Prewitt, 

Sobel, Robinson and Kirsch can be expressed using convolution masks.  

 

Amongst the preprocessing techniques used in the present diabetic retinopathy detection 

system are greyscale conversion, green channel extraction, contrast enhancement (such 

as histogram equalisation), filtering, morphological operations, segmentation and 

thresholding among others. Within the scope of diabetic retinopathy detection, optic 

disc elimination and blood vessel removal are two main processes that are widely used 

as an additional stage, before the next process is performed. In addition, the localisation 

of the fovea and macula are important for the detection of maculopathy. This detection 

of these retinal structures also requires some preprocessing techniques. Table 2.10 lists 

the preprocessing techniques which have been implemented in diabetic retinopathy 

detection research. 
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2.6.3.1 Support Vector Machines 

Support Vector Machines (SVM) was introduced in 1992 by Boser, Guyon and 

Vapnikin in COLT-92 (Jakkula, 2008). SVM are a set of related supervised learning 

methods used for classification and regression. A support vector machine is a 

classification and regression prediction tool that uses machine learning theory to 

maximise the predictive accuracy while automatically avoiding the over-fit of the data 

(Jakkula, 2008). SVMs can be defined as systems which use the hypothesis space of a 

linear function in a high dimensional feature space. The original support vector 

classifier was developed for the linear separation of two classes and later this limitation 

was overcome by allowing non-linearly separable classes, non-separable classes, 

combining multiple 2-class classifiers to yield multi-class classification and other 

extensions (Sonka et al., 2008).  

 

An SVM works by finding the best hyperplane which separates all data points, which is 

where the best hyperplane will have the largest margin between the two classes. The 

margin is the maximal width of the slab parallels to the hyperplane that has no interior 

data points. The data points closest to the separating hyperplane are support vectors. 

Figure 2.13 illustrates the functioning of SVM. 

 

An SVM is a popular technique for data classification. Jakkula (2008) concluded its 

strengths and weaknesses. The major strength of an SVM is that the training is 

relatively easy, with no local optimum. In addition, it scales relatively easy to high 

dimensional data and the trade-off between classifier complexity and error can be 

controlled explicitly. On the other hand, SVM requires a good kernel function and this 

is one of its weaknesses (Jakkula, 2008; Burges, 1998). In addition its speed and size 

are its other limitations, both in training and testing (Burges, 1998). 

 

The SVM has been successfully used for pattern classification problems and is also 

widely used in medical image processing and analysis. Mookiah and others (2012) 

proposed data mining techniques for an automated diagnosis of glaucoma using Higher 

Order Spectra (HOS) and Discrete Wavelet Transform (DWT) features. In this case, a 

support vector machine classifier is used to identify the glaucoma and normal images 

automatically and with high accuracy. Priya and Aruna (2011) investigated and 
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proposed a computer-based system for diabetic retinopathy in identifying normal, 

NPDR and PDR classes. The proposed system uses colour fundus images, where the 

features are extracted from the raw image using image processing techniques and fed to 

a support vector machine for classification. Experimental results show that the 

classification accuracy can provide an improved result, with a sensitivity of 99.45% and 

a specificity of 100%.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13 Basic two-class classifications with Support Vector Machines (The 

Mathworks, Inc., 2016a) 

 

2.6.3.2 Neural Networks 

Neural networks are widely used in application areas such as system identification and 

control, pattern recognition, medical diagnosis, financial application, data mining, 

visualisation and many more. One of the main applications of neural networks is 

classification. A neural network consists of many neurons called units or nodes, each of 

which performs two functions. Firstly the aggregation of its input from other neurons or 

the external environment, and secondly, the generation of an output from the aggregated 

inputs (Er et al., 2003).  
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According to Er and others (2003), a neural network is characterised by its architecture, 

or connecting pattern among the neurons, its method of determining the weights of the 

connections and its activation function. Er and colleagues (2003) also presented 

biomedical engineering applications using one of the Artificial Neural Network (ANN) 

paradigms. One of its popular applications is in the classification of breast cancer. Er 

and others (2003) presented the methods and results of the studies corresponding to 

extracting rules from a mammography dataset and automatically constructed a fuzzy 

classifier using the Dynamic Fuzzy Neural Network (D-FNN). This was done in order 

to classify the two important features in breast cancer diagnosis, which are benign and 

malignant masses. Lin and other co-workers (2003) proposed a neural networks method 

to determine the progression of glaucoma based on visual field thresholds and 

concluded that the progression of glaucoma could be detected from visual field 

thresholds with a neural network.  

 

Gardner and others (1996) initially developed a screening tool for the automatic 

detection of diabetic retinopathy using an artificial neural network and comparing the 

network against the ophthalmologist screening of a set of fundus images. As a result, 

the network achieved good accuracy therefore the system could be used as an aid to the 

screening of diabetic retinopathy for diabetic patients. Priya and Aruna (2012) enhanced 

the computer-based system for diabetic retinopathy in identifying normal, NPDR and 

PDR classes, by using two types of classifiers: a Probabilistic Neural Network (PNN) 

and a Support Vector Machine (SVM). The classifiers are described in detail and their 

performances are compared. As a conclusion, it is shown that, from the results obtained, 

the SVM model is more effective compared to the PNN. Priya and Aruna (2013a) 

proposed and compared three models, namely a Bayesian classifier, while maintaining 

the PNN and the SVM in the developed system. Experimental results show that the 

SVM outperforms all other models and this proves once again, that the SVM is a better 

choice in detecting and classifying DR categories. The detection of DR disease and its 

classification with the help of the Radial Basis Function Neural Network (RBFNN) 

method has also been proposed in (Priya et al., 2013b). However, the experimental 

results show that the accuracy of the proposed system is relatively low (76.25%) and it 
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is recommended that its accuracy could be improved by finding more relevant features 

and by combining it with other classification methods. 

 

2.6.3.3 Other Classification Methods 

Naive Bayes classification is another machine learning technique used for classification 

purpose. The Naïve Bayes classifier can be used when the features are independent of 

one another within each class, but it works well in practice even when that 

independence assumption does not hold (The MathWorks, Inc., 2016b). The classifier 

works in two steps. In the training step, the method estimates the parameters of a 

probability distribution from the training samples by assuming that the features are 

conditionally independent, given the class. The method computes the posterior 

probability of an unseen test sample belonging to each class in the prediction step. The 

method later classifies the test sample according to the largest posterior probability.   

 

Decision trees are considered to be one of the most popular approaches for 

implementing classifiers. A decision tree is a classifier in the form of a tree structure 

and it classifies instances or examples by starting at the root of the tree and moving 

through it until a leaf node is reached. Rokash and Maimon (2005) pointed out some 

advantages of using a decision tree, for example it is easy to follow when compacted, as 

it is self-explanatory. It can handle both nominal and numeric input attributes, can 

represent any discrete-value classifier and is also capable of handling datasets with 

errors and missing values. 

 

In the k-nearest neighbour (k-NN) classifier, the object is classified by a ‘majority vote’ 

from its neighbours, with the object being assigned to the most common class among its 

k nearest neighbours. K-NN offers several advantages including simplicity, 

effectiveness, intuitiveness and competitive classification performance and it can handle 

the noisy training data. However, the limitations of the k-NN method include a poor 

run-time performance if the training set is large and it is also very sensitive to irrelevant 

or redundant features because all the features contribute to the similarity and the 

classification (Imandoust and Bolandraftar, 2013).  
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Dynamic Histogram Equalization (BPDHE) proposed by Ibrahim and Kong (2007), in 

which the Gaussian kernel was used for a global image histogram smoothing, followed 

by the segmentation of the valley regions for dynamic equalisation. However, this 

technique processes the crisp statistics of digital images to enhance contrast, which 

suffers from the limitation that it does not take into account the inexactness of grey-

values and also that crisp histograms need smoothing for equalisation partitioning. In 

order to overcome this limitation, the fuzzy histogram is introduced to handle the 

imprecision in grey levels with the appropriate fuzzy membership function, resulting in 

there being no missing intensity levels and no random fluctuations. The use of fuzzy 

statistics has improved the algorithm’s performance and improved its ability to preserve 

brightness and provide better contrast enhancement as compared to BPDHE. The 

proposed technique shows that it can preserve image brightness better than the 

histogram equalisation and the other techniques based on contrast limited adaptive 

histogram equalisation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.14 Brightness Preserving Dynamic Fuzzy Histogram Equalization stages 
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Li et al. (2011) proposed a novel fuzzy level set algorithm for medical image 

segmentation based on the segmentation obtained by spatial fuzzy clustering. The 

proposed algorithm leads to a better segmentation and effectiveness for medical image 

segmentation tasks. In addition, fuzzy filter techniques, which aim to detect and remove 

the noise from the corrupted image, are proposed in (Toh et al., 2010; Kwan et al., 

2002; Kwan, 2003; Toh et al., 2008). Toh et al. (2008) proposed a new fuzzy switching 

median (FSM) filter technique in image processing, which is an extension to the classic 

switching median filter through employing a fuzzy mechanism in detecting the noisy 

pixel. The proposed filter was able to effectively remove noise while preserving image 

details and textures. Later, Toh and others (2010) proposed a novel two-stage noise 

adaptive fuzzy switching median (NAFSM) filter for the detection and removal of salt-

and-pepper noise. The first stage, which is the detection stage, uses the histogram of the 

corrupted image to identify noise pixels. Meanwhile, the second stage is the noise pixels 

filtering. After that, fuzzy reasoning is applied to NAFSM filtering in order to handle 

uncertainty present in the extracted local information. The proposed filter is able to 

reduce high-density salt-and-pepper noise, as well as preserving fine image details, 

edges and textures. Kwan (2002, 2003) proposed seven fuzzy filters for noise reduction 

in images, where the fuzzy filters apply a weighted membership function to an image in 

order to determine the centre pixel.  

 

Another fuzzy image processing that can be implemented is fuzzy edge detection. An 

edge is a boundary between two uniform regions. Therefore, the membership functions 

are defined for fuzzy edge detection to state the degree of a pixel whether it represents 

an edge or a uniform region. Figure 2.15 shows the membership functions example of 

the inputs (image gradients) and outputs (intensity of the edge-detected image) for the 

edge detection, while Figure 2.16 shows the output after the edge detection using fuzzy 

logic. 
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Figure 2.15 Membership functions of the inputs and outputs (The Mathworks, 

Inc., 2016c) 

 

 

 

Figure 2.16 Edge detection using fuzzy logic output (The Mathworks, Inc., 2016c) 
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2.8 Summary 
This chapter reviewed the prevalence of diabetes and diabetic retinopathy, including the 

diabetic retinopathy incidence in addition to the signs and features of diabetic 

retinopathy. The epidemiology of diabetic retinopathy is also presented to reveal the 

severity of diabetic retinopathy disease. This chapter also summarised the classification 

of and screening for diabetic retinopathy, in addition to diabetic retinopathy treatment 

and the follow up schedule. Image processing was discussed as a tool to diagnose 

diabetic retinopathy in a more precise and efficient way. At the close of the chapter, 

background information about digital image processing, image analysis and processing 

techniques (particularly in diabetic retinopathy detection research) were presented. 

Finally, fuzzy image processing techniques were also presented. 

 

The summary of preprocessing techniques, feature extractions methods and machine 

learning techniques for classification used in previous diabetic retinopathy screening 

research are presented in Table 2.10, Table 2.11 and Table 2.12, respectively. 

Meanwhile, the fuzzy image processing techniques are presented in Section 2.7. It can 

be concluded that various image preprocessing techniques, feature extractions and 

machine learning techniques were proposed in order to produce an efficient and reliable 

diabetic retinopathy system. The fuzzy image processing techniques help in generating 

better quality of image and enhanced performance. However, fuzzy processing has not 

been used during the preprocessing stage for diabetic retinopathy screening system 

which involves fundus images. Therefore, this proposed research implements fuzzy 

techniques for the image pre-processing part within the microaneurysms and 

maculopathy detection.  
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3 RESEARCH METHODOLOGY AND DATA 

COLLECTION 

This chapter introduces the system design of the proposed research in Section 3.1. 

Section 3.2 presents the target population involved in the research and the location of 

the research study in Section 3.3. Section 3.4 explains the types of data collected and 

the data collection procedure is presented in detail in Section 3.5. An analysis of the 

data collected is presented in Section 3.6. Alongside the data collection and analysis 

phase, ethical issues should be considered, which are outlined in Section 3.7. Finally, in 

addition to the research data set collected, the benchmark public data sets used in the 

proposed research are presented in Section 3.8 and followed by the summary of the 

research methodology and data collection chapter in Section 3.9. 

 

3.1 Research Design 

Generally, there are six steps in the process of research proposed by Creswell (2012) 

and they entail: recognising the research problem, review of related literature, 

specifying a purpose for research, data collection, and analysis and reporting of data, 

and finally, evaluating the research. Awang (2012) presented a flowchart of research 

which although similar to Creswell’s is more general in its nature. 

 

In general, the data collection techniques for this research project are as follows: 

i. Personal interview: face to face informal interviews with the 

ophthalmologists and trained healthcare staff involve in diabetic retinopathy 

screening. 

ii. Observation: directly observing the process of fundus images capture and its 

manual grading by trained health care staff. 

iii. Internal sources: extracting the existing patient’s folder from the personal 

computer attached to the fundus camera which contains the patient’s details, 

fundus images and diagnosis. 

 

Figure 3.1 presents the research design for the development of this research on 

‘Automatic Screening and Classification of Diabetic Retinopathy Eye Fundus Images’.  
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3.2 Study Population 
The study includes both type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus 

(T2DM) patients. It also covers all individuals with diabetes mellitus including adults, 

children and adolescents. The diabetes mellitus duration is associated to the prevalence 

of diabetic retinopathy and it varies among nations and ethnicity. Therefore, this study 

involves individuals from all ethnic groups in Malaysia. 

 

3.3 Location of the Research Study 
The study area of Melaka state, is one of the fourteen states that make up Malaysia. The 

state of Melaka is located in Peninsular Malaysia and is surrounded by Negeri 

Sembilan, Johor and also the Straits of Malacca. The data is collected from the main 

hospital in the state of Melaka, the Melaka Hospital, a government-funded public 

hospital located at Jalan Mufti Haji Khalil, Melaka, Malaysia. It was chosen because its 

demographic is diverse in terms of ethnicity-religion and socio-economic groupings in 

the southern part of Malaysia. Generally, the Melaka Hospital is a referral hub for 

patients from Melaka health centres in addition to other health centres in the north of 

Johor and a district in Negeri Sembilan, which is Tampin. Furthermore, very few 

studies of the prevalence of diabetes mellitus and diabetic retinopathy have been carried 

out in the state. These have mainly focussed on larger urban areas such as Kuala 

Lumpur and Putrajaya. Therefore, the study will indirectly reveal the diabetes mellitus 

and diabetic retinopathy prevalence throughout the Melaka state, in order to bridge the 

prevalence gap with respect to the diabetes mellitus and diabetic retinopathy 

epidemiology in Malaysia. Figure 3.2 shows the site of the research: at the Melaka 

Hospital, Malaysia. 

 

3.4 Data Collection 

This section introduces the types of data collected in this research project, which were 

used to response to the research questions and to achieve the objectives. After defining 

and identifying the research problem and the research design, the task of data collection 

took place. The method of data collection to be used for the study deals with two types 

of data: primary and secondary. 
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Main entrance of Melaka Hospital  
Eye Clinic, Department of Ophthalmology, 

Melaka Hospital  

 

Figure 3.2 Research study location 

 

3.4.1 Primary Data 

Data which is new, original and collected for the first time is termed as primary data 

(Kothari, 2004). The Social Dimensions of the Watershed Planning (2006) defined 

primary data as generated and compiled data through interviews, surveys or focus 

groups. In addition, the Social Dimensions of the Watershed Planning (2006) also 

claimed that those data types are designed in order to address an unavailable issue or 

information need in any present sources. Primary data is tailored to provide well-

focused and exclusive support for the decision-makers of organisations, but on the other 

hand, the collection and analysing of the data more expensive and time consuming 

(Malhotra and Birks, 2006). In order to develop the proposed system for the purpose of 

this project, primary data which is information gathered from observation and interview, 

has been collected. The detail of the observation strategy is explained in Section 3.5.1, 

while the interview strategy is explained in Section 3.5.2.  

 

3.4.2 Secondary Data 

Secondary data is defined as data which has been collected by another party and has 

undergone a statistical process (Kothari, 2004). Secondary data is also classed as data 
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that has already been collected for some other purpose (Sounders et al., 2009; Malhotra 

et al., 2006).  

 

According to Sounders et al. (2009), organisations collect and store a diversity of data 

in order to support their operations. Sounders et al. (2009) highlighted some of the 

advantages of using secondary data in a research project, and they include having fewer 

resource requirements, being inconspicuous, being practical for longitudinal studies and 

offering comparative and contextual data. Sounders et al. (2009) however, also revealed 

the disadvantages of using secondary data: data collected may not match with need, 

access can be difficult or costly, in addition to unsuitable aggregations and definitions. 

The secondary data for this research project however are collected from an internal 

source, namely fundus images. Section 3.5.3 will describe the details of the secondary 

data collection method.  

 

 

3.5 Collecting Data Procedure 

The data collection techniques for the primary data are observations and interviews, 

while the secondary data is collected from existing fundus images.   

 

3.5.1 Collecting Primary Data through Observation 

Observation is one of the techniques implemented for this study. According to Sounders 

et al. (2009), participant observation and structured observation are two types of 

observation. Sounders et al. (2009) differentiated between the two kinds of observation 

in which participant observation is qualitative and stresses the discovery of meanings 

that people attach to their actions. Structured observation however, according to 

Sounders et al. (2009), is quantitative and is more concerned with the frequency of 

those actions. Kothari (2004) explained that an observation is defined as information 

collected by an investigator’s own observation without having interviewed the 

respondents. Kothari (2004) also outlined the disadvantages of the observation method: 

costs, the provision of limited information and its unsuitability for larger samples.  
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For the proposed research project, an observation method is used that has a direct 

understanding of the process by which fundus images involving diabetes mellitus 

patients are captured using a fundus camera. It also includes the manual grading process 

of the captured fundus images by trained health care staff during the screenings, as 

shown in Figure 3.3. The observation is important in order to understand the following: 

how the fundus camera works, the process of fundus images capture and the manual 

grading of fundus images, which is aimed to be converted into a fully automated 

grading process. 

 

Figure 3.3 Fundus images capturing and the grading process 
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3.5.2 Collecting Primary Data through Interview 

According to Kothari (2004), a personal interview session requires the investigator to 

follow a firm procedure and seek answers to a set of predetermined questions. In 

additions, Kothari (2004) claimed that an interview is usually performed in an organised 

manner and the output produced will be determined by the interviewer’s capability. 

  

Face to face interviews with an ophthalmologist and a medical assistant involved in the 

diabetic retinopathy screening are performed for the purposes of this study. A personal 

interview with the ophthalmologist is required to gather valuable information about the 

ophthalmology field, specifically on diabetic retinopathy, as well as the features of 

diabetic retinopathy signs, the diabetic retinopathy screening process and the respective 

management of patients with diabetic retinopathy problem. In addition, discussion with 

respect to the ground truth from the collected data is held with more experienced 

ophthalmologists. The ophthalmologists will determine the types of retinopathy for each 

of the data examples based on the retinopathy signs found on the fundus images. The 

produced ground truth is important with respect to the system testing phase, where the 

manual diabetic retinopathy analysis by several experienced ophthalmologists will be 

compared to the results of the automated system developed in this research project.  

 

3.5.3 Collecting Secondary Data through Existing Fundus Images 

The most important data for this research study are fundus images which are taken from 

the fundus camera located in the screening room. The fundus images from the diabetic 

patients are captured by experienced medical staff for screening. For the purposes of 

this research, numerous clinical fundus retinal images from the personal computer 

attached to the fundus camera are extracted and analysed. The developed system 

proposed by this study is tested on both normal and colour fundus images obtained from 

patients with diabetes mellitus. Manual diabetic retinopathy diagnosis, carried by an 

experienced paramedic is, then compared to the results of the automated system in order 

to test and improve the sensitivity and specificity of the proposed grading methods.  

 



 

70 

3.6 Data Management and Analysis Procedure 
The task of data analysis will take place after the data collection phase. This requires 

several correlated operations, for example the categories establishment and their raw 

data application such as coding and formulation, followed by statistical inferences 

(Kothari, 2004).  

 

For this research project, manual analysis by experienced paramedics is compared to the 

results of the automated system based on the provided ground truth. The sensitivity and 

specificity are calculated to test the capability of the proposed system and its potential 

as a quality assurance in retinal screening. Sensitivity is the percentage of abnormal 

fundus images which have been classified as abnormal, while specificity is the 

percentage of normal fundus images classified as normal by the screening. Accuracy 

can also be calculated as a feature of the screening’s quality assurance. According to the 

UK National Institute for Clinical Excellence, well-designed screening studies are 

required to determine whether new tests of screening or early detection (such as digital 

camera retinal photography) meet the standards of 80% sensitivity and 95% specificity 

(National Institute for Clinical Excellence, 2002).  Listed below are four possible 

outcomes of a screening. Results are required in sensitivity, specificity and accuracy 

calculations (Taylor and Batey, 2012): 

 

i. True negative: the image is normal and was reported by the screener as 

normal 

ii. True positive: the image shows retinopathy and was correctly reported by the 

screener as having retinopathy 

iii. False negative: the image shows retinopathy but was reported by the 

screener as  normal 

iv. False positive: the image is normal but was reported by the screener as 

showing retinopathy 

 

Table 3.1 shows the formula to calculate the sensitivity, specificity and accuracy 

respectively, as explained above. 
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conduct the research and collect medical data from Malaysian health clinics and 

hospitals. Patient confidentiality and medical data protection are the important ethical 

issues that need to be considered in this case.  

 

3.8 Benchmark Public Data Sets 
There are several public data sets available for the benchmarking of diabetic retinopathy 

detection from digital images. In order to run and test the developed system, firstly, 

fundus images from publicly available data sets will be used as a benchmark before 

running the system with the fundus images collected from the Melaka Hospital. Some 

of the most popular public databases which contain eye fundus images are the Standard 

Diabetic Retinopathy Database Calibration Level 0 (DIARETDB0), the Standard 

Diabetic Retinopathy Database Calibration Level 1 (DIARETDB1), Methods to 

Evaluate Segmentation and Indexing techniques in the field of Retinal Ophthalmology 

(MESSIDOR), Digital Retinal Images for Vessel Extraction (DRIVE), STructured 

Analysis of the Retina (STARE), the Retinal Vessel Image set for Estimation of Widths 

(REVIEW) and the Retinopathy Online Challenge (ROC) database. 

 

One of the more popular data sets containing a combination of normal and diabetic 

retinopathy fundus images is the Standard Diabetic Retinopathy Database Calibration 

Level 0 (DIARETDB0). The data set consists of 130 colour fundus images of which 20 

are normal and the remaining 110 contain signs of diabetic retinopathy, such as hard 

exudates, soft exudates, microaneurysms, haemorrhages and neovascularisation. The 

original images, sized 1500 x 1152 in PNG format, are captured with a 50 degree field-

of-view digital fundus camera with an unknown camera setting (Kauppi et al., 2006). In 

addition to the DIARETDB0, there is another data set developed by the Machine Vision 

and Pattern Recognition Research Group at Lappeenranta University of Technology, 

Finland, which is the Standard Diabetic Retinopathy Database Calibration Level 1 

(DIARETDB1), with 89 colour fundus images, including 84 images with at least mild 

non-proliferative signs (microaneurysms) of diabetic retinopathy in addition to five 

normal images (Kauppi et al., 2007).  
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The methods to evaluate the segmentation and indexing techniques in the field of retinal 

ophthalmology or the MESSIDOR database is another data set, produced by research 

funded by the French Ministry of Research and Defence to facilitate studies on diabetic 

retinopathy diagnosis (Messidor, 2004). It consists of 1,200 colour fundus images 

captured using a colour video 3CCD camera on a Topcon TRC NW6 non-mydriatic 

retinograph with a 45 degree field of view. The images acquired by three 

ophthalmologic departments have three different sizes: 1440 x 960, 2240 x 1488 and 

2304 x 1536 pixels and 8 bits colour representation (Messidor, 2004). 

 

Another retinal images database is from the Digital Retinal Images for Vessel 

Extraction (DRIVE) project, which offers both retinal colour images and the results of 

the automatic segmentation of blood vessels. The set of 40 images, where 33 do not 

show any sign of diabetic retinopathy and seven show signs of mild early diabetic 

retinopathy, are captured using a Canon CR5 non-mydratic 3CCD camera with a 45 

degree field of view, 8 bits per colour plane and a size of 768 by 584 pixels (Staal et al., 

2004).  

 

The STructured Analysis of the Retina (STARE) project by Dr. Michael Goldbaum at 

the University of California, San Diego, funded by the U.S. National Institutes of 

Health, is another database with retinal colour images (Hoover et al., 2003). The set of 

400 raw images including a list of diagnosis codes and a diagnosis for each image can 

be obtained from the STARE database. Blood vessel segmentation work involves 40 of 

these images (Hoover et al., 2000), while 80 images are used for optic nerve detection 

(Hoover et al., 2003). 

 

The DRIVE and STARE data set are excellent databases of retinal vessel pixel 

segmentations; however they do not include width measurements. Therefore, the 

Retinal Vessel Image set for Estimation of Widths (REVIEW) data set is presented to 

fill this gap. The data set includes 16 images with 193 vessel segments and a variety of 

pathologies and vessel types. The database contains accurate width measurements and 

four subsets of images, which are categorised in four classes: high resolution, vascular 

disease, central light reflex and kick-points. Al-Diri and others (2008) have described 
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the REVIEW data set for retinal vessel and the algorithm used to process the 

segmentation in order to produce vessel profiles. 

 

The Retinopathy Online Challenge (ROC) presents an online competition for numerous 

methods for the detection of microaneurysms which can be compared using the same 

data set (Niemeijer et al., 2010). The images have three different sizes: 768 x 576, 1058 

x 1061 and 1389 x 1383. The data set consists of 50 training images of colour fundus 

photographs with available reference standards, and 50 test images where the reference 

standard was withheld by the organisers. The overall results show that the detection of 

microaneurysms has been a challenging task for both automatic methods and human 

expertise. 

 

3.9 Developed Data Set 
In addition to the public data sets presented above, a combination of normal and 

Diabetic Retinopathy (DR) fundus images from a novel data set was developed as part 

of this research. 

 

The fundus images are collected from the Eye Clinic, in the Department of 

Ophthalmology, at the Melaka Hospital, Malaysia. The novel data set consists of 600 

colour fundus images collected from 300 patient’s folders. Each of the patient’s folders 

has a minimum of two images, at least one for the right side and one for the left side, 

where two different angles were captured; with the optic disc and the macula 

respectively at the centre. The original images, which are sized 3872 x 2592 in JPEG 

format, provide high quality and detail. These were captured with a KOWA VX-10 

digital fundus camera. Figure 3.4 shows some examples of the images from the new 

developed data set. Three experts from the Department of Ophthalmology at the Melaka 

Hospital, Malaysia were involved in order to diagnose the fundus images into ten 

retinopathy stages: No Diabetic Retinopathy, Mild DR without maculopathy, Mild DR 

with maculopathy, Moderate DR without maculopathy, Moderate DR with 

maculopathy, Severe DR without maculopathy, Severe DR with maculopathy, 

Proliferative DR without maculopathy, Proliferative DR with maculopathy and 

Advanced Diabetic Eye Disease (ADED). An Excel file containing the link to each eye 
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fundus image and the retinopathy stages drop down list, as presented in Figure 3.5 was 

provided to each of the experts separately in order to avoid bias. The summary findings 

of the three experts are presented in Figure 3.6. The average from the three experts is 

used for the overall expert diagnosis, as shown in Figure 3.7. As a result of the analysis 

of the experts’ diagnosis, performed using SPSS software, the total number of images in 

each class is as follows: normal (no retinopathy) class with 276 images, while the 

abnormal or diabetic retinopathy (DR) class can be divided into nine other categories 

including mild DR without maculopathy (72), mild DR with maculopathy (27), 

moderate DR without maculopathy (85), moderate DR with maculopathy (83), severe 

DR without maculopathy (23), severe DR with maculopathy (11), proliferative DR 

without maculopathy (6), proliferative DR with maculopathy (10) and, finally, advanced 

diabetic eye disease, ADED (7). These are presented in Table 3.2. Meanwhile, the data 

analysis procedures of the novel dataset are discussed in Chapter 5 (Overall Results 

Analysis and Discussion), together with the system results analysis.  
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Figure 3.4 Examples of images in the dataset 
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Figure 3.5 Expert diagnosis file 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Expert diagnosis summary 
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Figure 3.7 Expert diagnosis average 

 

Table 3.2 Expert diagnosis summary 

Retinopathy Stage No. of Images 

No DR 276 

Mild DR without maculopathy 72 

Mild DR with maculopathy 27 

Moderate DR without maculopathy 85 

Moderate DR with maculopathy 83 

Severe DR without maculopathy 23 

Severe DR with maculopathy 11 

PDR without maculopathy 6 

PDR with maculopathy 10 

ADED 7 

Total 600 

 

 

The new dataset is different when compared to the other datasets, presented earlier in 

Section 3.8. The data set represents the South East Asian population, particularly 

Malaysian, unlike the other datasets, which represent the Caucasian population. It 

provides an almost balanced total number of No DR/Normal and DR/Abnormal images. 

Typically, in the diagnosis of medical images, it is difficult to find a large number of 

normal cases. The imbalanced number of available images poses some problems in the 

classification phase; therefore, the balanced number in the new dataset will help 

overcome this problem.  
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Moreover, the categorisation of the expert diagnosis followed the standard practice 

based on the International Clinical Retinopathy and Diabetic Macula Oedema Disease 

Severity Scale. The classification of the data involves maculopathy, which is the yellow 

lesion near the macula. This is a very detailed categorisation compared to other data 

sets. The detection of maculopathy is very important, as the macula is responsible for 

central vision and it represents a sensitive part of the eye. It is vital therefore in 

detecting the urgency of a referral. In addition, the novel dataset and the expert 

diagnosis may be used separately for both diabetic retinopathy grading and diabetic 

maculopathy grading. 

 

In order to make the novel fundus images dataset widely accessible, it has been made 

available as an online database. The novel dataset is accessible at 

http://creative.coventry.ac.uk/fundus. The webpage of this research contains the novel 

dataset with eye fundus images, including the expert diagnosis file and the published 

papers related to this research project. Figure 3.8 shows the screenshot of the main page 

of the dataset webpage. The aim of this online database is to highlight the research 

project development and to promote research on retinal-imaging to enable comparative 

studies and, most importantly, to share the eye fundus images with other researchers. 

The dataset can be downloaded for research and educational purposes.  

 

                                        

Figure 3.8 Main web page for the developed dataset 
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3.10 Summary 
The chapter discussed the main phases involved in the research development, beginning 

with the research design outline which implemented in the study. The data collection 

and analysis are important stages in the research design. In this respect, the data 

collection instruments were presented focusing on the data collection process design 

and management. Ethical issues should also be considered in research, when dealing 

with people and organisations. The chapter also provided information on the ethical 

considerations involved in this research. Significantly, a high quality of data, i.e., 

fundus images and adequate techniques, can help rise the quality and efficiency of the 

developed system, therefore, eye fundus images new dataset which would be beneficial 

to researchers and practitioners in the area of retinal imaging was introduced, in addition 

to the other public datasets used for the purposes of evaluation.  

 

Table 3.3 shows a mapping table that lists the datasets used for each system 

development in this research work. The Standard Diabetic Retinopathy Database 

Calibration Level 0 (DIARETDB0) is used for the evaluation of System I, while the 

Standard Diabetic Retinopathy Database Calibration Level 1 (DIARETDB1) is used for 

System II evaluation. The Retinopathy Online Challenge (ROC) dataset is used for the 

evaluation of microaneurysms detection in System III and System IV. The new 

developed dataset collected from Melaka Hospital is used for the evaluation of System 

VI and System VII, for the maculopathy and diabetic retinopathy detection. In addition 

to the justification of the datasets used, Table 3.3 provides the type of the system 

detection. 
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Table 3.3 Summary of datasets used for systems development 

 System I System II System III System IV System V System VI System VII 

Dataset Used        

Benchmark Public Dataset:        

- DIARETDB0 √       

- DIARETDB1  √      

- MESSIDOR        

- DRIVE        

- STARE        

- REVIEW        

- ROC   √ √    

Developed Dataset:        

- Melaka Hospital     √ √ √ 

Type of System 

Development 

General detection General detection Microaneurysms 

detection 

Microaneurysms 

detection 

Maculopathy 

detection 

Maculopathy 

detection 

Maculopathy 

detection 

Justification of Selected 

Dataset 

- A combination 

of normal and 

diabetic 

retinopathy 

fundus images 

- Suitable for 

general 

classification 

- Contains 

normal fundus 

images and 

images with 

mild NPDR  

- Suitable for 

general 

classification 

- ROC presents an online competition 

for numerous methods in 

microaneurysms detection to 

compare with each other on the same 

data 

- Suitable for the microaneurysms 

detection and classification 

- New dataset consists of 600 fundus images and experts 

diagnosis which diagnose the fundus images into ten 

retinopathy stages, following the ophthalmologists 

practice 

- Suitable for the maculopathy and diabetic retinopathy 

detection and classification 
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4 CONTRIBUTIONS TO DEVELOPING SYSTEMS FOR 

DIABETIC RETINOPATHY AND MACULOPATHY 

DETECTION 

Several systems, implementing different methods, have been proposed for diabetic 

retinopathy screening in the course of this research. The development of the proposed 

systems can be categorised into three types of approach. The first system development 

is based on a general detection of diabetic retinopathy (i.e., either normal or with 

retinopathy present). Meanwhile, the second type presents several system developments 

for the detection of microaneurysms, an important sign of diabetic retinopathy. Finally, 

the third type explains the development of two systems in order to detect diabetic 

retinopathy alongside maculopathy.  

 

This chapter presents the development and evaluation of each of the proposed types of 

system development. They present a combination of techniques, such as different 

preprocessing techniques, different feature parameters and different classifiers in a 

diabetic retinopathy screening system, which differs from systems proposed by other 

researchers. The preliminary screening system (System I) for the general detection of 

diabetic retinopathy is presented in Section 4.1. The detection of microaneurysms in 

colour fundus images is presented in Section 4.2. The first two systems (System II and 

System III) for the detection of microaneurysms, which highlight the use of feature 

extraction and classification methods, are explained in Section 4.2.1 and Section 4.2.2, 

respectively. The other two proposed systems (System IV and System V) for the 

microaneurysms detection, which implement the fuzzy image processing techniques, are 

reported in Section 4.2.3 and Section 4.2.4. Section 4.3 presents the two systems 

(System VI and System VII) for the detection of diabetic retinopathy alongside the 

detection of maculopathy in the eye’s fundus images. Finally, a summary of the chapter 

is presented in Section 4.4. 
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4.1 Basic System for General Diabetic Retinopathy Detection 

(System I) 
This section presents a preliminary system for the classification and screening of 

diabetic retinopathy using eye fundus images. This is a general detection system of 

diabetic retinopathy that classifies images into two main classes: normal and with 

diabetic retinopathy. The system is evaluated by using the Standard Diabetic 

Retinopathy Database Calibration Level 0 (DIARETDB0), described in Section 3.8, 

which consists of 130 colour fundus images (Kauppi et al., 2006).  

 

The system explored and implemented some basic image processing techniques, which 

will be used for further developments of the diabetic retinopathy screening system. 

Rahim and others (2014) reported the development of such an automatic screening and 

classification of diabetic retinopathy fundus images in detail, while exploring the 

existing systems and applications related to diabetic retinopathy screening and detection 

methods. This system is an automatic system for detecting diabetic retinopathy by 

classifying the images into general detection categories, which are normal (no apparent 

retinopathy) or abnormal (retinopathy present). 

 

The proposed ophthalmic decision support system consists of an automatic acquisition, 

screening and classification of diabetic retinopathy fundus images, which will assist in 

the detection and management of diabetic retinopathy. The developed system contains 

four main parts, namely the image acquisition, the image preprocessing, the feature 

extraction, and the classification using several machine learning techniques. 

 

The proposed screening system has been developed using open source software, 

OpenCV (Open Source Computer Vision) and Microsoft Visual C++ 2010. The 

OpenCV environment, developed by Willow Garage, is a programming library offered 

for real time computer vision (Itseez, 2014). OpenCV includes a collection of 

standardised image analysis and machine vision algorithms to be used by developers.  

Most work in this area uses tools such as Matlab and SPSS for feature extraction and 

analysis, but by using OpenCV it is possible to build more effective systems, with 

processing times that are suitable for use in real situations. Using OpenCV also 

simplifies the distribution of software due to permissive licensing, and it lowers the cost 
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of development, use and maintenance because there are no purchases or licensing fees. 

Finally, OpenCV is portable, meaning that any machine that is able to run C is also 

likely to be able to run OpenCV. Furthermore, OpenCV has been used on Windows, 

Linux, MacOS and Android systems. 

 

The proposed system starts with the image acquisition process, where images are 

selected for further processing. These will undergo preprocessing in order to improve 

the image contrast in addition to other enhancements. The preprocessed images will 

then be used to extract a number of features, such as the area, the mean and the standard 

deviation of on pixels. Four nonlinear classifiers, namely a binary decision tree, a k-

nearest neighbour classifier, and two support vector machines, using radial basis 

function and polynomial function kernels respectively, will then be trained on the 

training set to find an optimal way to group images into their respective classes. Finally, 

in the prediction phase, where the system might ultimately be used to assist the 

clinician, the images are classified into two main cases: normal or diabetic retinopathy. 

Figure 4.1 presents the block diagram of the proposed system for automating the 

screening and classification of diabetic retinopathy.  

 

 

         Figure 4.1 Block diagram of the proposed general automatic screening and 

classification of diabetic retinopathy 
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4.1.1 Image Preprocessing 

Preprocessing is the process of image data improvement, involving the enhancement of 

some image characteristics or features for the next stage of processing. The image 

preprocessing techniques involved in the present work include Greyscale Conversion, 

Contrast Limited Adaptive Histogram Equalisation, Discrete Wavelet Transform, 

Filtering and Morphological Operations. 

 

The first preprocessing technique used is the conversion of the colour fundus image into 

a greyscale image, as greyscale is usually a better format for image processing. A 

greyscale image has pixels of a single value, namely its intensity information. It is also 

known as a “black and white” image. The intensity is calculated by using a common 

formula combination of 30% of red, 59% of green and 11% of blue. 

 

The Adaptive Histogram Equalisation (AHE) is a computer image processing technique 

for improving the image’s contrast. The difference between the adaptive histogram 

equalisation and the ordinary histogram equalisation is that the adaptive histogram 

equalisation computes several histograms for different sections of the image, and 

subsequently distributes the lightness values. This technique is used to improve local 

contrast and enhance more details of the image. However, the adaptive histogram 

equalisation has its limitations, as it produces over-amplification of noise in the 

homogeneous regions of an image. Therefore, the Contrast Limited Adaptive Histogram 

Equalisation (CLAHE) is used in the proposed system in order to prevent the over 

amplification of noise. CLAHE functions by clipping the histogram at the predefined 

value before computing the cumulative distribution function. Histogram equalisation 

processed image is obtained by mapping each pixel with level rk in the input image into 

a corresponding pixel with level sk in the output image, as given below (Gonzalez and 

Woods, 2002): 
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         𝑠𝑘 =  𝑇(𝑟𝑘) = ∑ 𝑝𝑟

𝑘

𝑗=0

(𝑟𝑗) 

              =  ∑
𝑛𝑗

𝑛

𝑘

𝑗=0

         𝑘 = 0, 1, 2, … , 𝐿 − 1 

(4.1) 

 

 

Discrete wavelet transform is a variant of wavelet transform for which the wavelets are 

discretely sampled. The discrete wavelet transform is an O(N) algorithm and it is also 

often referred to as the fast wavelet transform. The Haar wavelet is implemented in the 

proposed system development as it is a simple wavelet transform and it is currently used 

in many methods of discrete image transforms and processing. Discrete wavelet 

transforms can be used to reduce the image size without losing much of the resolution. 

The implementation of discrete wavelet transform is necessary to overcome the 

limitation of the software used, where a warning is generated when the image is too big 

to fit on the screen. Therefore resizing of the image is required. Since the fundus images 

are of a high resolution and of quite a large size, the use of the Haar wavelet is 

recommended. As a result of the implementation of the Haar Wavelet on the proposed 

system, the size of the fundus images are reduced by half, from 1500x1152 to 750x576. 

 

Image filtering is used to improve the image quality or to restore a digital image which 

has been corrupted by some noise. A comparison of the performance between three 

different edge operators, i.e., Sobel, Prewitt and Kirsch has been proposed for the 

detection and segmentation of blood vessels in the colour retinal images (Karasulu, 

2012). The experimental results show that the edge-based segmentation using the 

Kirsch compass templates is far superior to other methods. Moreover, the Kirsch 

operator can adjust the related threshold value automatically due to the image 

characteristics. Based on these reasons, the Kirsch operator has been chosen as an edge 

detection filter technique in the proposed system development. The Kirsch edge 

detection uses eight filters (i.e., eight masks for the related eight main directions) that 

are applied to a given image in order to detect edges. These eight filters are a rotation of 

a basic 3x3 compass convolution filter (i.e., single mask). The Kirsch filter is applied on 



 

86 

the wavelet transform image to create the eight filtered output images. The masks are 

distinct as given below (Karasulu, 2012): 

 

    𝑀0 =  [
5 5 5

−3 0 −3
−3 −3 −3

] , 𝑀1 =  [
5 5 −3
5 0 −3

−3 −3 −3
] , 𝑀2 =  [

5 −3 −3
5 0 −3
5 −3 −3

], 

    𝑀3 =  [
−3 −3 −3
5 0 −3
5 5 −3

] , 𝑀4 =  [
−3 −3 −3
−3 0 −3
5 5 5

] , 𝑀5 =  [
−3 −3 −3
−3 0 5
−3 5 5

], 

    𝑀6 =  [
−3 −3 5
−3 0 5
−3 −3 5

] , 𝑀7 =  [
−3 5 5
−3 0 5
−3 −3 −3

]  

(4.2) 

 

 

Morphological operations are used for certain purposes including image preprocessing, 

enhancing object structure, segmenting objects from the background and also for the 

quantitative description of objects (Sonka et al., 2008). In the proposed system 

development, morphology operators involving dilation and erosion are implemented to 

extract the blood vessels. A closing operation is defined as dilation followed by the 

erosion operator. Joshi and Karule (2012) implemented the closing operation for retinal 

blood vessel segmentation, where the disk shaped structuring element for the 

morphological operation is used. The dilation operates in greyscale images to enlarge 

brighter regions and it closes the small dark regions, while the erosion operator shrinks 

the dilated objects back to their original size and shape. As a result, the vessels being 

thin dark segments laid out on a brighter background, are closed by the closing 

operation. Figure 4.2 (a)-(f) shows the output after each of the preprocessing operations 

on a selected image. 
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(a) Original image 
(b) Greyscale 

Conversion 

(c) Adaptive 

Histogram 

Equalisation 

 

 

 
 

 

(d) Discrete Wavelet 

Transform 
(e) Kirsch Filtering 

(f) Morphological 

Operators 

 

Figure 4.2 Image preprocessing 

 

4.1.2 Feature Extraction 

After performing the preprocessing techniques, feature extraction takes place in order to 

obtain the features from the given images. Features can be grouped into shape-based 

features, pixel-intensity-based features, Fourier-descriptor-based features and colour-

based features. Within the preliminary system for the classification and screening of 

diabetic retinopathy, three basic shape features, including the area of on pixels and the 

mean and the standard deviation, are extracted for the purpose of diabetic retinopathy 

detection. The three values have been chosen as they are basic features and suitable for 

the pre-processed candidate image. These values for both normal and diabetic 

retinopathy images are used in order to create a model for training. Table 4.1 presents 

the details of the feature extracted including the generated code.  
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Table 4.1 Feature extraction in the proposed system 

 

4.1.3  Classification 

 The extracted feature values from the step described above have been passed to the 

classification stage. The PRTools, a Matlab toolbox for pattern recognition has been 

used to implement the classifiers (Duin et al., 2007). Nonlinear classifiers can provide 

better classification results compared to linear classifiers. Therefore, four nonlinear 

classifiers, namely the binary decision tree classifier, the k-nearest neighbour classifier, 

the radial basis function (RBF) kernel based support vector classifier and the 

polynomial kernel based support vector classifier have been selected to be trained on 

images and to group them into two classes, i.e., normal and diabetic retinopathy 

respectively, based on the three extracted features. The decision tree is a classifier in the 

form of a tree structure. It classifies instances by starting at the root of the tree and 

moving through it until a leaf node is reached. In the k-nearest neighbour classifier, the 

object is classified by a ‘majority vote’ of its neighbours, with the object being assigned 

to the most common class among its k nearest neighbours. The 1-nearest neighbour rule 

(1-NN) is used in the particular implementation of the system. A support vector 

machine (SVM) performs the classification by constructing an N-dimensional 

hyperplane that optimally separates the data into two categories. The support vector 

machine classifier can use various kernel functions, such as linear, polynomial or a 

radial basis function. The kernel function transforms the data into a higher dimensional 

space in order to be able to perform the separation in the nonlinear region. Two different 

Feature Description Snippet Code 

Area of 

on pixels 

 

 

 

Number of grey level pixels on 

the black and white image, where 

white pixels on are all pixels 

above a threshold of 100 pixels 

maxS = cvGet2D(gray, y, x);  

 val = maxS.val[0]; 

  if(val > 100) { 

    count++; 

 sum += val; }                      

Mean Mean value of on pixels  mean = sum / count; 

Standard 

deviation 

Standard deviation of on pixels  

 

 

 

maxS = cvGet2D(gray, y, x);  

       val = maxS.val[0]; 

if(val > 100) { 

    count++; 

 val = (mean-val); 

 sum += val*val;   }     

sdv = sqrt(sum) / count; 
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types of kernel functions provided in Matlab for SVM classification were used, i.e., the 

second order polynomial kernel SVM, svc (ATrain, ‘p’, 2), and the radial basis function 

kernel SVM, rbsvc (ATrain). The results show that the RBF kernel outperformed the 

results obtained by the second order polynomial kernel.  

 

4.1.4 System Results and Evaluation 

Figure 4.3 shows the user interface snapshot of the proposed developed system. The 

performance (misclassification error) of the four classifiers is presented in Table 4.2. 

Since the dataset is hugely unbalanced, the minority class was oversampled by 

duplication in order to balance it. The DIARETDB0 data is split randomly into 90% for 

training and the remaining 10% for testing. The process is repeated ten times in a cross-

validation procedure in order to generate unbiased results. The average results on the ten 

runs for each of the four classifiers are then reported. The four machine learning 

classifiers were chosen to show the variance performance of different categories of 

algorithms in machine learning, i.e., clustering, classification and regression. For 

example, for the classification category, Support Vector Machines and k-nearest 

neighbour were used, and for the regression category, the binary decision tree was used. 

For more clarity, in Table 4.2, the confusion matrix for the first out of the ten 

experiments is presented, in order to show the relative performance of the four 

classifiers. A total of 130 colour fundus images, which consists of 110 normal images 

and 20 diabetic retinopathy images, were used initially. Later, the diabetic retinopathy 

images were duplicated to contribute the same number as the normal images. As a 

result, both normal and diabetic retinopathy classes constitute a total of 220 images, 

where each class has 110 images, respectively. A 10% from the 220 images, which total 

to 22 images, were used for the testing part, dividing 11 images for the normal class and 

another 11 images for the diabetic retinopathy class. The values of true positives, false 

negatives, false positives and true negatives can be extracted from the generated 

confusion matrix for the calculation of specificity, sensitivity and accuracy of the 

system. For example, for the binary decision tree, the value of true positives is 6, false 

negatives is 5, false positives is 0 and the true negatives is 11. The classification 

performance of the diagnosis system is assessed using the accuracy of the individual 

classifiers and also their specificity and sensitivity. The experimental results show that 
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the four classifiers, and especially the k-nearest neighbour, are well able to identify both 

classes, i.e., the normal and the diabetic retinopathy (DR) cases. All four classifiers had 

more success in identifying the diabetic retinopathy cases, as there were more examples 

of such images in the database. As a comparison, the system results proposed by Priya 

and Aruna (2011) showed a sensitivity of 99.45%, specificity of 100% and accuracy of 

98.92% for the Support Vector Machine classifier. In addition, the experimental results 

in (Priya and Aruna, 2012) showed that the results were 98%, 96% and 97.6% for 

sensitivity, specificity and accuracy, respectively, for Support Vector Machine, while 

for Probabilistic Neural Network the results were 90% for sensitivity, 88% for 

specificity and 89.6% for accuracy. 

 

Figure 4.3 Snapshot of the proposed system user interface 

 

Table 4.2 Average results when using the four classifiers 

 Binary decision 

tree 

k-nearest 

neighbour 

RBF kernel 

SVM 

Polynomial kernel 

SVM 

Misclassification 

error 

0.2091 0.01364 0.0909 0.3182 

Accuracy 0.7909 0.9864 0.9091 0.6818 

Specificity 1 1 1 0.5545 

Sensitivity 0.5818 0.9727 0.8182 0.8091 

Confusion matrix for 

the first experiment 

Labels  

(1 : Normal, 2: DR) 

 

 

 

 

   True    | Estimated Labels 

Labels |  1     2  | Totals 

-----|----------|--------- 
  1       | 11    0  |   11 

  2       |  5     6  |   11 

----|----------|--------- 
Totals | 16   6   |  22 

 

True    | Estimated Labels 

Labels |  1     2  | Totals 

----|----------|--------- 
  1       |  11   0   |   11 

  2       |  0   11   |   11 

    ------|-----------|--------- 
Totals | 11   11 |  22 

 

True    | Estimated Labels 

Labels |  1     2  | Totals 

-----|-----------|--------- 
  1       | 11   0   |   11 

  2       |  2    9   |   11 

    ------|----------|--------- 
Totals  | 13   9 |  22 

 

True    | Estimated Labels 

Labels |  1     2  | Totals 

------|---------|--------- 
  1        |  6   5    |   11 

  2        |  2   9    |   11 

    -------|---------|--------- 
Totals  |  8  14  |  22 
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A general automatic system for screening and classification of diabetic retinopathy 

using fundus images has been developed. The classification area of the system can be 

enhanced by building an ensemble of classifiers. Unbalanced learning techniques can 

also be considered in order to train the individual classifiers in the ensemble. In 

addition, more sophisticated features will be used in the future work to properly 

discriminate between the various diabetic retinopathy signs (i.e., different features 

extraction for microaneurysms, haemorrhages, exudates, etc.). The system will also be 

extended to obtain more details of the diabetic retinopathy classification, namely to 

classify them into the following cases: no apparent retinopathy, mild non-proliferative, 

moderate non-proliferative, severe non-proliferative and proliferative DR. In addition to 

the classification diagnosis, the system can be improved to provide the recommended 

follow-up schedule for each stage, as underlined by the American Academy of 

Ophthalmology, in order to become a complete system to be used in a diabetic 

retinopathy screening practice.  

 

4.2 Microaneurysms Detection  
Microaneurysms, which are the earliest visible sign of diabetic retinopathy, appear as 

small dots on the retina. The early detection of microaneurysms is the first step in 

preventing diabetic retinopathy. Since the detection of microaneurysms is important and 

challenging, four variants of system development (System II – System V) which 

introduce different configurations and different techniques, are presented in this chapter 

(see also Rahim et al., 2015a, 2015b). 

 

4.2.1 Automatic Detection of Microaneurysms in Colour Fundus 

Images Using Vessel Segmentation and Features Extraction  

(System II) 

The system for the automatic detection of microaneurysms presented in this section 

consists of four main parts, namely, the image acquisition, the image preprocessing, the 

feature extraction, and the classification, using several machine learning techniques. 

System II is evaluated using the Standard Diabetic Retinopathy Database Calibration 

Level 1 (DIARETDB1), containing 89 colour fundus images (Kauppi et al., 2007). 
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There are 75 images with microaneurysms and the remaining 14 images were identified 

as showing no signs of microaneurysms.  

 

The initial stage of the proposed system is the image acquisition process, followed by 

the preprocessing process. The preprocessed images are then used to extract a number 

of features. Four nonlinear classifiers, namely a binary decision tree, a k-nearest 

neighbour classifier, and two support vector machines, using radial basis function and 

polynomial function kernels respectively, are then trained on the training data to find an 

optimal way to group images into their respective classes. Finally, in the classification 

phase, the images are classified as to whether microaneurysms are present or not. The 

overall process of microaneurysm detection is shown in Figure 4.4.  

 

 

Figure 4.4 Block diagram of the proposed automatic detection of 

microaneurysms 
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4.2.1.1 Image Preprocessing 

Preprocessing is used for image improvement. Greyscale Conversion and Shade 

Correction are the preprocessing techniques used in the proposed system. 

 

Firstly, the colour fundus image is converted into the greyscale format for improved 

contrast. The second technique is shade correction, where the background image is 

estimated and later subtracted from the original image. The non-uniform illumination in 

the image needs to be corrected if the presence of microaneurysms in this area is to be 

correctly detected. The first step is to estimate the background using the morphological 

opening technique. The function imopen in Matlab (MathWorks, 2014) is used to 

perform a morphological opening of the greyscale image (with the structuring element 

of 12 pixels and disk shape). The second step is to subtract the background image from 

the original image (using the imsubtract function). The shade correction process is then 

continued, by increasing the image contrast (using the function imadjust), followed by 

thresholding of the image (by using im2bw function), and finally by the removal of the 

background noise (using bwareaopen). As a result, the thresholded image is inverted 

and the final output shows only the fundus image area.  

 

After the greyscale conversion and shade correction, vessel segmentation is then 

performed. The vessels are extracted from the shade corrected image using a 

morphological operation. The image is closed using a disc shaped structuring element of 

5 pixels. The shade corrected image is filled to eliminate holes in the vessels. Later, the 

filled image is subtracted from the closed image to give a vessel difference image. The 

image is thresholded to obtain binary images containing the vessels. The binary image 

is subtracted from the Gaussian filtered image, so that the final image has vessel free 

candidates. 

              

In addition to the two main preprocessing methods of greyscale conversion and shade 

correction, other image preprocessing techniques can also be implemented, such as the 

green channel conversion, the median filter, the Gaussian filter and the Contrast Limited 

Adaptive Histogram Equalisation. In addition, four of the blood vessel extraction 

techniques can be implemented, including the Kirsch Template, the Frangi Filter, Local 
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Entropy and Entropic Thresholding. Figure 4.5 shows the output after the preprocessing 

operations are performed on a selected image. 

 

 

Figure 4.5 Preprocessing the output image 

 

4.2.1.2 Feature Extraction 

After performing the preprocessing tasks, feature extraction takes place in order to 

obtain relevant features from the given images. Since a microaneurysm has specific 

features, such as a circular shape and a red colour, appropriate features should be 

extracted to ensure reliable feature extraction and classification. Sopharak and 

colleagues (2013) have listed some useful features for microaneurysm detection based 

on shape, pixel intensity, Fourier descriptor and colour. Features for the purposes of 

microaneurysm detection, such as the area of the pixels, the perimeter of the object, the 

major and minor axis length, its aspect ratio and its circularity have been chosen and 

extracted in the second system. These values are used to extract microaneurysms as they 

are appropriate for the characteristics of the microaneurysms. Table 4.3 presents the 

details of the features extracted in our system. 

 

 

 

 

  

 

 
 

(a) Greyscale Conversion (b) Shade Correction (c) Vessel Segmentation 
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Table 4.3 Feature extraction in the proposed microaneurysms detection system 

Feature Description 

Area of pixels in the 

candidate object 

The actual number of pixels in the region 

Perimeter of the object The distance around the boundary of the region 

Major Axis Length of the 

candidate object 

The length (in pixels) of the major axis of the ellipse that 

has the same normalised second central moments as the 

region 

Minor Axis Length of the 

candidate object 

The length (in pixels) of the minor axis of the ellipse that 

has the same normalised second central moments as the 

region 

Aspect ratio Major Axis Length divided by the Minor Axis Length 

Circularity Roundness of the candidate, ((4*pi*Area) / (Perimeter. ^2)) 

 

4.2.1.3 Classification 

Classification was carried out using the PRTools package (Duin et al., 2007) in Matlab. 

In the second system, presented in this section, the classifiers selected and implemented 

for image classification purposes were: the binary decision tree classifier, the 1-nearest 

neighbour rule (1-NN) classifier, the radial basis function kernel based support vector 

classifier and the second order polynomial kernel based support vector classifier.  

 

4.2.1.4 System Results and Evaluation 

Figure 4.6 shows the user interface snapshot of the proposed developed system. The 

performance (misclassification error) of the four classifiers is presented in Table 4.4. 

Since the dataset is imbalanced, containing 75 images with signs of microaneurysms 

and only 14 normal images, the minority class was therefore oversampled by one-time 

duplication in order to avoid having an overly imbalanced dataset. The DIARETDB1 

data is split randomly into 90% for training and the remaining 10% for testing. The 

process is repeated ten times in a cross-validation procedure in order to generate 

unbiased results. The average results on the ten runs for each of the four classifiers are 

then reported.  

 

The accuracy, sensitivity and also the specificity of the individual classifiers are 

presented in Table 4.4 to measure classification performance. The accuracy of the four 

classifiers i.e., the binary decision tree and the 1-nearest neighbour  is 0.9091, while the 



 

96 

radial basis function kernel and the second order polynomial kernel based support 

vector classifier is 0.7273. The experimental results show that the four classifiers are 

able to identify both classes, i.e., the “microaneurysms detected” and the “no 

microaneurysms” classes. The binary decision tree and the k-nearest neighbour 

classifiers yielded very good results. 

 

 

Figure 4.6 Snapshot of the proposed system user interface 

 

Table 4.4 Average results when using the four classifiers 

 

 Binary 

decision tree 

k-nearest 

neighbour 

RBF kernel 

SVM 

Polynomial kernel 

SVM 

Misclassification error 0.0909 0.0909 0.2727 0.2727 

Accuracy 0.9091 0.9091 0.7273 0.7273 

Specificity 1 1 0.3333 0 

Sensitivity 0.875 0.875 0.875 1 
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4.2.2 Automatic Detection of Microaneurysms in Colour Fundus 

Images Using a Combination of Image Preprocessing Techniques 

and Circular Hough Transform (System III) 

The third system proposed here is an automatic detection of microaneurysms, which 

introduces the combination of the preprocessing techniques and the Circular Hough 

Transform for the localisation and detection of microaneurysms in colour fundus 

images. For the third proposed systems, 40 fundus images of three different sizes (768 x 

576, 1058 x 1061 and 1389 x 1383) have been used for evaluation from the Retinopathy 

Online Challenge (ROC) public database (Niemeijer et al., 2010).  

 

The Circular Hough Transform technique has been previously proposed for the 

detection of microaneurysms in two types of photography modes, i.e., in retinal 

fluorescein angiographic images (Abdelazeem, 2002) and also in digital red-free 

photographs (Hipwell et al., 2000). The application of the Circular Hough Transform 

for the detection of microaneurysms in the colour mode (another type of fundus 

photography mode) was therefore explored. In the colour mode, the retina is illuminated 

by white light and examined in full colour. The red-free or monochromatic mode is 

where the imaging light is filtered to remove red colours, which helps to improve the 

contrast of vessels and other structures. In the angiography mode, vessels are brought 

into high contrast by the intravenous injection of a fluorescent dye, which produces a 

very high-contrast image of the vessels. The detection of microaneurysms in colour 

fundus images is more challenging compared to angiography and red-free types.  

 

The initial stage of the proposed system is the image acquisition process, followed by 

the preprocessing process. Following this, the detection of the microaneurysm is 

performed using the Circular Hough Transform method. Finally, in order to test the 

accuracy of the microaneurysms detection system compared to the ROC annotation, 

statistical tests are performed for results analysis. The overall process of microaneurysm 

detection is presented in Figure 4.7.  
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Figure 4.7 Block diagram of the proposed automatic detection of 

microaneurysms using Circular Hough Transform 

 

4.2.2.1 Image Preprocessing 

A combination of preprocessing techniques, i.e., a Greyscale Conversion and Contrast 

Limited Adaptive Histogram Equalisation are used in the system development. The 

proposed preprocessing techniques are used to help increase the contrast of the colour 

fundus images. The uses of colour fundus images are more challenging compared to 

other modes of fundus photography examination: angiography and red-free. 

Appropriate techniques must therefore be implemented in order to improve the contrast 

of the fundus images for improved visualisation and detection. 

 

4.2.2.2 Circular Hough Transform 

The Circular Hough Transform (CHT) is implemented in the proposed system to locate 

microaneurysms, due to their circular shape. In addition, CHT is also useful in detecting 

the optic disc in a diabetic retinopathy screening system. The Hough Transform has 

been used for optic disc localisation by Noronha and other colleagues (2006). 
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Meanwhile, the same method was used to detect the early signs of diabetic retinopathy, 

represented by microaneurysms (Abdelazeem, 2002). 

 

The Hough Transform can be used to detect lines, circles or other parametric curves. It 

can be used to determine a circle when a number of known points fall on the perimeter. 

The objective is to find the (a, b) coordinates of the centres at (x, y) on a circle of radius 

R. The Hough Transform offers some advantages, such as simplicity, ease of use, the 

effective handling of missing and occluded data and the fact that it can be adapted to 

many types of forms, other than lines. However, the limitations of the Hough Transform 

include the complex computation involved for objects with many parameters, the 

detection of one single type of object, difficulty in determining the length and position 

of a line segment and finally, that it cannot separate collinear line segments (Solberg, 

2009).  

 

Firstly, the radius of the microaneurysm in the fundus images is calculated (using the 

function imdistline). Based on the radius range specified, the system will find the circles 

in the fundus images using CHT (through the imfindcircles function). Finally, after 

finding the circles in the image based on the radius range, a circle is then created on the 

current axes (using the function viscircles). The output of the third proposed system in 

the localisation and detection of microaneurysms is shown in Figure 4.8. 

 

Figure 4.8 Microaneurysms detection by using the Circular Hough Transform 
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4.2.2.3 System Results and Evaluation 

Figure 4.9 shows the user interface snapshot of the proposed developed system. The 

performance analysis of the system and the expert annotation are presented in Table 4.5 

and Table 4.6, respectively. The number of microaneurysms detected by the expert and 

the developed system are calculated and compared. The presence of any number of 

microaneurysms is represented as diabetic retinopathy (microaneurysms detected) and if 

there is no microaneurysm detected, it is considered as normal (microaneurysm not 

detected). Two types of statistical tests were performed to test the system performance 

compared to the expert diagnosis. The T-test is used to test the mean differences 

between the annotated images and the system output, and the results are presented in 

Table 4.5. The fundus images (forty in total) diagnosed by the expert and by the system 

were then compared with the T-test analysis. Firstly, a descriptive statistical analysis 

was conducted and the results, as shown in Table 4.5, indicate that there is only a small 

difference in the mean for the annotated images and that of the system (1.78 and 1.88, 

respectively). The inferential statistical analysis (i.e., T-test) result indicates a p-value of 

0.253. This shows that the means of the annotated images and the system output are not 

significantly different. 

 

 

Figure 4.9 Snapshot of the user interface of System III 
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Table 4.5 T-test analysis 

*n=40 

 Mean 

Standard 

Deviation 

Standard 

Error 

Mean p-value 

Pair Tested    0.253 

Expert 1.78 0.423 0.067  

System 1.88 0.335 0.053  

*n=Number of fundus images diagnosed by the expert and the system 

 

The Chi-square test was also used to compare the two groups (i.e., the expert diagnosis 

and the system diagnosis). In addition, the Chi-square test was used to explore the 

relationship between these two categorical variables, as the results will help determine 

whether the system findings are more likely to be different from the expert findings, or 

in this case whether or not the expert is more likely to successfully identify diabetic 

retinopathy than is the system. The results generated by the Chi-square test are shown in 

Table 4.6, where the Chi-square test indicates a p-value of 0.239. Thus, it can be 

concluded that the system findings are more likely to be no different to the expert 

findings. In addition, Table 4.6 also shows the results of a cross tabulation generated to 

descriptively compare the methods of assessment between two groups: expert and 

system diagnosis for both normal and diabetic retinopathy categories. The results show 

the expert diagnosed 9 images as normal and 31 images as having diabetic retinopathy, 

while the developed system diagnosed 5 images as normal and the remaining 35 images 

as belonging to the diabetic retinopathy category, providing a further indication of the 

similarities between the two sets of diagnosis. 

 

Table 4.6 Chi-square analysis 

*n=80 
 

 
 

 

  Classification   

 
 Normal 

n (%) 

DR 

n (%) 

Total 

n 

 

Chi-Square Test Statistic 

Method of 

Assessment 

     χ
2
 (1, n=80) = 1.385, 

p=0.239 

Expert  9 (22.5) 31 (77.5) 40   

System  5 (12.5) 35 (87.5) 40   

                  *n=Number of fundus images diagnosed by the expert and the system 
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4.2.3 Automatic Detection of Microaneurysms in Colour Fundus 

Images Using Fuzzy Image Processing (System IV) 

The fourth system applies a fuzzy technique for image preprocessing in the detection of 

microaneurysms. As explained in Section 4.2.2.1 above for the third system, the colour 

fundus images are more challenging compared to the other modes of fundus 

photography examination. Therefore, in order to obtain better visualisation and accurate 

detection, contrast enhancement should be implemented.  

 

The fourth system proposes the implementation of a fuzzy preprocessing technique, the 

Fuzzy Histogram Equalisation. The fuzzy preprocessing techniques were used for 

contrast enhancement in the medical digital images, such as pathology images (Garud et 

al., 2011) and also other non-medical images (Sheet et al., 2010). The performance of 

the fuzzy preprocessing techniques reported in previous work is promising. Therefore, 

the suitability of the fuzzy preprocessing technique for the screening of diabetic 

retinopathy using colour fundus images will be investigated and proposed. 

 

Contrast enhancement produces a better image than the original by changing the pixel 

intensities (Sheet et al., 2010). There are several contrast enhancement techniques 

available: Histogram Equalisation (HE), Contrast Limited Adaptive Histogram 

Equalisation (CLAHE), Histogram Stretching and brightness preserving histogram 

modification approaches. Histogram equalisation is a technique for adjusting image 

intensities in order to enhance contrast, in which the grey-level values are uniformly 

distributed. Adaptive histogram equalisation is a more advanced version of histogram 

equalisation which divides the image into smaller tiles, applies the histogram 

equalisation to each tile, and then interpolates the results. This adaptive histogram 

equalisation includes limits on how far the contrast should be changed, namely the 

Contrast-Limited Adaptive Histogram Equalisation, CLAHE. 

 

Sheet et al. (2010) proposed a modified technique of the brightness preserving 

equalisation called the Brightness Preserving Dynamic Fuzzy Histogram Equalisation 

(BPDFHE). This technique is explained at length in Section 2.7. The representation and 

processing of images in the fuzzy domain allows the technique to handle the inexactness 

of grey level values in a better way in order to improve the overall performance. The 
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technique proposed by Sheet et al. (2010) is used for contrast enhancements in digital 

pathology images (Garud et al., 2011). The performance of this technique has been 

compared with HE and CLAHE and, as a result, the BPDFHE preserved the image 

brightness better than the other two techniques. Good performance of the BPDFHE 

technique especially in medical images such as pathology images is reported by Garud 

et al. (2011). This technique has been explored as a preprocessing technique for the 

proposed detection of microaneurysms in diabetic retinopathy screening.  

 

The first stage of the proposed system is the image acquisition process, the second is 

preprocessing process, the third is the detection of microaneurysms using the Circular 

Hough Transform method and, finally, in order to test the accuracy of the 

microaneurysms detection system with the ROC annotation, the statistical tests are used 

for analysis. System IV(a) is similar to the third system presented in Section 4.2.2, 

which implemented the Greyscale Conversion, Contrast Limited Adaptive Histogram 

Equalisation and Circular Hough Transform. The difference between these systems is 

that the third system bases its categorisation of Normal (no microaneurysms detected) 

or Diabetic Retinopathy (microaneurysms detected) on the presence of microaneurysms. 

System IV on the other hand, categories results into microaneurysms detected or 

undetected based on the number of microaneurysms detected between the expert and the 

developed system. The overall process of microaneurysms detection is presented in 

Figure 4.10.  

 

4.2.3.1 Image Preprocessing 

A combination of preprocessing techniques including a Greyscale Conversion and a 

Contrast Limited Adaptive Histogram Equalisation (CLAHE) are implemented for the 

first system, System IV(a), while for the second system, System IV(b), a combination of 

both a Greyscale Conversion and a Fuzzy Histogram Equalisation is proposed. Figure 

4.11 shows both the output and the histogram for the intensity of the fundus image after 

the preprocessing techniques have been applied, i.e., Greyscale Conversion, CLAHE 

and Fuzzy Histogram Equalisation. 
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Figure 4.10 Block diagram of System IV for the automatic detection of 

microaneurysms  

Figure 4.11 Preprocessing the output image 

 
 

 
 

 
 

 

 
 

  

(a) Greyscale 

Conversion 

(b) Contrast Limited 

Adaptive Histogram 

Equalisation 

(c) Fuzzy Histogram 

Equalisation 
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4.2.3.2 Microaneurysms Detection 

The Circular Hough Transform technique is implemented in the fourth system to detect 

the microaneurysms, as this technique has a good ability to detect circular shapes. The 

background on the Circular Hough Transform technique is presented in Section 4.2.2.2. 

 

4.2.3.3 System Results 

Figure 4.12 shows the user interface snapshot of the proposed developed system. 

Generally, the interfaces for both systems are similar, but the implementation of the 

preprocessing techniques is different, as mentioned in Section 4.2.3.1 above. 

 

The statistical result comparisons for both systems are presented in Table 4.7. The T-

test and the ANOVA test were performed to test the mean differences between the 

annotated images and the system results based on the number of microaneurysms 

detected by the expert and by the system. The first system, using a combination of 

Greyscale Conversion and Contrast Limited Adaptive Histogram Equalisation, shows 

that the means of the annotated images (7.48) and the system output (18.98) are 

significantly different. On the other hand, the second system, which implemented the 

Greyscale Conversion and the Fuzzy Histogram Equalisation, shows that the means of 

the annotated images (7.48) and the system (9.33) are not significantly different. The 

inferential statistical analysis (i.e., T-test) result indicates a p-value of 0.006 and 0.484 

for the first and the second system, respectively. Meanwhile, the results generated by 

the ANOVA test are also shown in Table 4.7, where the ANOVA test indicates a p-

value of 0.380 for the first system and 0.961 for the second system. In addition, the first 

system (System IVa) produces the sensitivity of 0.8710, the specificity of 0.1111 and 

the accuracy of 0.7000. The second system (System IVb) which implemented the Fuzzy 

Histogram Equalisation generates better results where the sensitivity is 0.8387, the 

specificity increased to 0.5556 and the accuracy is 0.7750. Based on the results 

presented, it can be concluded that the implementation of the fuzzy preprocessing 

techniques provides better contrast enhancement for fundus images, hence, it greatly 

assists in the detection of microaneurysms, providing a  more efficient and reliable 

performance of the diagnosis system. 
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Figure 4.12 Snapshot of the user interface of System IV 

 

Table 4.7 Summary results for Systems IV(a) and IV(b) 

Features System IV(a) System IV(b) 

Techniques Greyscale Conversion, 

Contrast Limited 

Adaptive Histogram 

Equalisation, Circular 

Hough Transform 

Greyscale Conversion, 

Fuzzy Histogram 

Equalisation, Circular 

Hough Transform 

Number of fundus 

images diagnosed 

40 40 

Confidence Interval 95% 95% 

T-test p-value 0.006 0.484 

T-test mean: 

Expert 

System 

 

7.48 

18.98 

 

7.48 

9.33 

T-test standard 

deviation: 

Expert 

System 

 

 

10.268 

21.021 

 

 

10.268 

11.425 

T-test standard error 

mean: 

Expert 

System 

 

 

1.624 

3.324 

 

 

1.624 

1.806 

ANOVA test p-value 0.380 0.961 
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4.2.4 Automatic Detection of Microaneurysms Using Fuzzy 

Histogram Equalisation, Fuzzy Filtering and Fuzzy Edge Detection 

(System V) 

Fuzzy image processing is a collection of different fuzzy approaches to the processing 

of the images. Fuzzy edge detection, fuzzy histogram equalisation and fuzzy filtering 

are among the fuzzy processing techniques that can be performed on images. In addition 

to the fuzzy histogram equalisation, which was presented in Section 4.2.3, the fuzzy 

filters for image filtering have been proposed by Patil and Chaudhari (2012), Toh 

(2010) and also Kwan (2003). In addition to using fuzzy histogram equalisation and 

fuzzy filters, fuzzy edge detection can also be performed. 

 

In this section, in order to develop the proposed system, 600 fundus images from a 

novel data set, collected from the Melaka Hospital, Malaysia (which is presented in 

Section 3.9), have been used for evaluation. The system starts with the image 

acquisition process, where the system selects images for further processing. The 

selected images undergo preprocessing in order to improve image contrast in addition to 

other enhancements. The preprocessed images are then used to locate and detect the 

retinopathy signs, i.e., the microaneurysms. The numbers of microaneurysms detected 

are displayed. Finally, in the classification phase, the images are classified into two 

main cases: microaneurysms detected or microaneurysms not detected, based on the 

number of microaneurysms detected. The overall process of microaneurysm detection is 

presented in Figure 4.13.  
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Figure 4.13 Block diagram of System V for the automatic detection of 

microaneurysms 

 

4.2.4.1 Image Preprocessing 

The image preprocessing techniques involved in this present work include Greyscale 

Conversion, Adaptive Histogram Equalisation, Fuzzy Histogram Equalisation, Fuzzy 

Filtering and Fuzzy Edge Detection. 

 

The first preprocessing technique used is the conversion of the colour fundus image into 

a greyscale image, as greyscale is usually the best format for image processing. 

Histogram equalisation is a computer image processing technique for improving the 

image’s contrast. The proposed preprocessing techniques are used to help increase the 

contrast of the colour fundus images. As mentioned in Section 4.2.3.1, for System IV, 

the use of colour fundus images is more challenging compared to angiography and red-

free which are the other modes of fundus photography examination. Therefore, 

appropriate techniques need to be implemented in order to improve the contrast of the 

fundus images for better visualisation and detection. The Brightness Preserving 

Dynamic Fuzzy Histogram Equalisation (BPDFHE) technique proposed by Sheet et al. 
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(2010), has been chosen as a preprocessing technique for the proposed detection of 

microaneurysms in diabetic retinopathy screening. This is due to its good performance 

and proven ability to work well for medical images, such as the pathology images 

presented by Garud et al. (2011). 

 

Image filtering is used to improve the image quality or to restore a digital image which 

has been corrupted by some noise. The proposed system implemented the median filter 

by employing the fuzzy techniques. The Noise Adaptive Fuzzy Switching Median 

(NAFSM) filter is an extension to the Fuzzy Switching Median (FSM) filter developed 

by Toh and colleagues (2010). It worked well both in removing salt-and-pepper noise 

and preserving image details and textures, by incorporating fuzzy reasoning in 

correcting the detected noisy pixel. The technique is composed of two modules, which 

are the salt-and-pepper noise detection and the fuzzy noise cancellation module. This 

technique is explained in Section 2.7, together with the fuzzy histogram equalisation 

and fuzzy edge detection. 

 

As outlined in Section 2.7, an edge is a boundary between two uniform regions. The 

edge can be detected by comparing the intensity of the neighbouring pixels. However, 

since uniform regions are not crisply defined, small differences of intensity between two 

neighbouring pixels do not always represent an edge, it might instead represent a 

shading effect. Therefore, the use of membership functions would overcome the 

problems by defining the degree of pixel as to whether it belongs to an edge or to a 

uniform region. The image gradients are created as the inputs of a Fuzzy Inference 

System (FIS) for edge detection. For each input, a zero-mean Gaussian membership 

function is specified, where if the gradient value for a pixel is 0 (region), then it belongs 

to the zero membership function with a degree of 1. Another membership function is 

added, which specifies the standard deviation from the zero membership function for 

the gradient inputs. As an output of the FIS, which is the intensity of the edge-detected 

image, the triangular membership functions (white and black) are specified. The values 

of the standard deviation and also the values of the triangular membership functions for 

the output can be changed in order to adjust the edge detector performance. Next, the 

FIS rules can be specified to make a pixel white if it belongs to a uniform region, 
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otherwise the pixel presents as black. Figure 4.14 shows the membership functions of 

the inputs and outputs for the edge detection purpose. For both inputs, which are the 

gradient of every pixel on both axes, the parameters for the Gaussian membership 

function consists of the central value or mean (0) and the standard deviation (0.1). 

Meanwhile, for the outputs of the edge detection, which are the intensities of the edge-

detected image, there are three parameters required for the triangular membership 

function. The parameters are the start, peak and end of the triangles of the membership 

functions. The triplet parameter values for both white and black are (0.7, 0.9, 1) and (0, 

1, 1), respectively. The fuzzy membership functions parameters were obtained by 

changing the parameter values until better performance of the edge detector and 

increased intensity of detected edges were produced. These parameters influence the 

intensity of the detected edges. The Gaussian fuzzy membership function was used due 

to the smoothness decision obtained, while the triangular function was chosen due to 

simplicity and computational efficiency. The implementation of both fuzzy membership 

functions for the edge detection provides better edge detection and more quality output 

image. Figure 4.15 shows the output after each of the fuzzy pre-processing operations 

on a selected image, as explained previously. 

 

 

Figure 4.14 Membership functions for inputs and outputs 
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Figure 4.15 Preprocessing the output image with fuzzy approaches 

 

4.2.4.2 Localisation and Detection of Microaneurysms 

After performing the preprocessing techniques, both localisation and microaneurysm 

detection takes place. In order to detect the circular microaneurysms satisfactorily, the 

Circular Hough Transform (CHT) technique is implemented in the proposed system. 

The implementation of the Circular Hough Transform uses the imdistline function in 

Matlab to calculate the radius of microaneurysms in the fundus images. The viscircles 

function that draws circles in the fundus image with a specified centre and radius onto 

the current axes is presented in Section 4.2.2.2.  

 

4.2.4.3 Classification 

The counting of microaneurysm will then takes place. The presence of any number of 

microaneurysms is represented as Diabetic Retinopathy, DR (microaneurysms 

detected), and if there is no microaneurysm detected, it is considered as normal or no 

retinopathy (microaneurysms not detected). The categorical types of the output whether 

Normal/No DR or DR will be used later for the analysis of the system performance. The 

categorical types from the expert diagnosis and the system generated are then compared. 

The nominal inputs from both expert and system are represented as 1 for Normal/No 

DR and 2 for DR. The average from the three experts will be used for the overall expert 

diagnosis. Later, the comparison between the overall expert diagnosis and the proposed 

system diagnosis will be completed and a statistical analysis of both performances will 

then be produced.  

 

 
 

  

(a) Fuzzy Histogram 

Equalisation 

(b) Fuzzy 

Filtering 

(c) Fuzzy Edge 

Detection 
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4.2.4.4 System Results and Evaluation 

Figure 4.16 shows the user interface snapshot of the proposed developed system. The 

performance analysis summary of the proposed system, which utilises different 

techniques, is presented in Table 4.8. System V(a) implemented the greyscale 

conversion, histogram equalisation and Circular Hough Transform (CHT), while 

System V(b) proposed the implementation of the Fuzzy Histogram Equalisation in 

addition to the greyscale conversion and CHT. System V(c) and System V(d) proposed 

the implementation of other fuzzy image processing techniques, such as Fuzzy Filtering 

and Fuzzy Edge Detection respectively. Two types of statistical tests were performed to 

test the system performance compared to the expert diagnosis. Six hundreds fundus 

images diagnosed by the expert and the systems are involved in both tests. The results 

generated prove that, within the 95% confidence interval, the means of the annotated 

images (1.54) and the system with the fuzzy techniques such as Fuzzy Histogram 

Equalisation (1.49) and Fuzzy Edge Detection output (1.59) are not significantly 

different. Thus, it can be concluded that the system findings are more likely to be no 

different to the expert findings. However, the annotated images and the system with the 

fuzzy median filter (with mean 1.43) are significantly different and show the opposite. 

The inferential statistical analysis (i.e., T-test) result indicates a p-value of 0.00 (System 

V(a)), 0.92 (System V(b)), 0.00 (System V(c)) and 0.73 (System V(d)), respectively. 

The Chi-square test indicates a p-value of 0.00, 0.94, 0.00 and 0.81 for the four systems. 

In addition, Table 4.8 shows that the results generated compare descriptively to the 

methods of assessment between two groups: the expert and the system diagnosis for 

both normal and diabetic retinopathy cases. The analysis based on the presented results 

concludes therefore, that the implementation of the fuzzy preprocessing technique 

provides better contrast enhancement and other improvements for fundus images, hence, 

it greatly assists in detecting microaneurysms more efficiently therefore a reliable 

performance of the diagnosis system can be produced. 
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Figure 4.16 Snapshot of the proposed system user interface 

 

Table 4.8 Summary results for System V(a), V(b), V(c) and V(d) 

 System V(a) System V(b) System V(c) System V(d) 

Techniques Greyscale, 

Histogram 

Equalisation, 

CHT 

Greyscale, Fuzzy 

Histogram 

Equalisation, 

CHT 

Greyscale, Fuzzy 

Median Filter, 

CHT 

Greyscale, Fuzzy 

Edge Detection, 

CHT 

T-Test Mean: 

Expert  

System 

 

1.54 

1.67 

 

1.54 

1.49 

 

1.54 

1.43 

 

1.54 

1.59 

T-Test p-value 0.00 0.92 0.00 0.73 

Chi-Square p-value 0.00 0.94 0.00 0.81 

Expert Count: 

No DR 

DR 

 

276 

324 

 

276 

324 

 

276 

324 

 

276 

324 

System Count: 

No DR 

DR 

 

201 

399 

 

305 

295 

 

343 

257 

 

246 

354 
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4.3 Maculopathy and Diabetic Retinopathy Detection  
Maculopathy is represented by yellow lesions near the macula and is a disease of the 

macula region of the retina. The macula is the centre of the retina and provides our 

central vision. The macula region is a very sensitive area in the centre of which is the 

fovea, a tiny area which is responsible for both detailed and colour vision (Taylor and 

Batey, 2012). The detection of maculopathy therefore is very important because the loss 

of vision at the fovea alone causes blindness. Maculopathy is present when there are any 

exudates, haemorrhages or microaneurysms in the macula region. However, the visible 

signs of maculopathy are only indirect markers for the possible presence of macula 

oedema, which is the swelling of the retina (Taylor and Batey, 2012). The presence or 

absence of the maculopathy will determine the need for treatment or referral. The 

referral to the ophthalmologist is assigned if maculopathy is present. If maculopathy is 

absent referral is not required and the screening will be repeated in one year’s time. The 

combined detection of diabetic retinopathy and maculopathy therefore is vital in order 

to effectively assist the management of diabetic retinopathy screening. 

 

In order to identify maculopathy, the localisation and the detection of both macula and 

fovea are essential, as maculopathy is represented by lesions in the macula region and 

the fovea is at the centre of the macula. Kumar et al. (2013) proposed an approach in 

detecting the macula by using bit plane decomposition and mathematical morphology 

methods. Mubbashar et al. (2011) presented an automated system for the localisation 

and detection of the macula in digital retinal images. The centring of the optic disc and 

the blood vessel extraction are performed prior to the detection of the macula. This is 

achieved by using the centre of the optic disc and by thresholding, followed by vessel 

enhancement and then locating the macula as the darkest pixels in the region. In 

addition, the detection of the macula is proposed by Akram et al. (2014) along with the 

detection of exudates. The system proposed a contrast enhancement, thresholding and 

blood vessel segmentation to detect the dark candidate, followed by the classification of 

some of the set features for macula detection through the use of a Gaussian Mixtures 

Model-based classifier. The localisation of the optic disc and the fovea in retinal fundus 

images is also proposed by Sekhar et al. (2008). Morphological operations and the 

Hough transform are implemented to locate the optic disc, while the fovea is located via 



 

115 

the spatial relationship with the optic disc and also from the spatial distribution of the 

macula. They defined the region of interest as an area in a sector that originates at the 

optic disc centre at an angle of 30° above and below the line between the optic disc 

centre and the centre of the retinal image disc.  

 

Meanwhile, Punnolil (2013) proposed an approach for the grading of diabetic 

maculopathy through implementing the detection of retinal structures, such as the optic 

disc, the macula and the fovea followed by the detection of lesions including the 

exudates, haemorrhages and microaneurysms. These were later graded into classes of 

diabetic maculopathy using a multiclass Support Vector Machines (SVM) classifier 

based on the extracted features. Tariq et al. (2013) present a similar diabetic 

maculopathy grading system starting with the optic disc localisation and the vascular 

structure to extract the macula. Next, features such as area, compactness, mean 

intensity, mean hue and others are extracted from the exudates detection and used to 

classify different stages of maculopathy using a Gaussian Mixture Model-based 

classifier. The detection of diabetic maculopathy in retinal images is also investigated 

by Vimala and Kajamohideen (2014) through the use of morphological operations. The 

detection of macula is generated from the image preprocessing techniques such as green 

component extraction, filtering and adaptive histogram equalisation. Morphological 

operations are then performed, such as top-hat transform and bottom-hat transform. 

Other automatic gradings of diabetic maculopathy systems are proposed by 

Siddalingaswamy and Prabu (2010), Hunter et al. (2011) and Chowriappa et al. (2013). 

Siddalingaswamy and Prabu (2010) proposed the detection of the optic disc, fovea and 

macula region, based on the location and diameter of the optic disc, followed by the 

detection of the hard exudates using both clustering and mathematical morphological 

techniques. The classification into severity levels of maculopathy, which consist of 

mild, moderate and severe levels, is performed based on the location of exudates in the 

marked macular region. An automated diagnosis of the maculopathy system is 

presented by Hunter et al. (2011). Firstly, the optic nerve head and the fovea are 

detected in order to locate the macula region. Candidate lesions are then segmented, 

followed by feature extraction and, finally, classification by a multilayer perceptron. An 

ensemble selection for the feature-based classification of diabetic maculopathy images 
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is suggested by Chowriappa et al. (2013). This is based on extracting textural features 

and then using classifiers such as the hidden Naïve Bayes, Naïve Bayes, sequential 

minimal optimisation (SMO) and the tree-based J48 algorithm to classify the features 

into disease severity classes. 

 

The detection of maculopathy is vital as it will eventually cause loss of vision if the 

affected macula is untreated. Therefore, some researchers are focusing on this 

challenging area and suggest several solutions for the detection of maculopathy on 

retinal images. However, fuzzy processing has not been implemented during the 

preprocessing stage within these previously reported maculopathy detection systems. 

Therefore, the proposed system implements a combination of fuzzy techniques for the 

image processing area of diabetic retinopathy and maculopathy detection. Two systems 

have been proposed for detecting diabetic retinopathy alongside maculopathy in this 

research work. The development of the first system (System VI) is explained in detail in 

Rahim et al. (2015c), while the second system (System VII) is presented in Rahim et al. 

(2016). Both systems have been evaluated with the 600 fundus images from the novel 

data set, collected from the Melaka Hospital, Malaysia, which is presented in Section 

3.9. 

 

4.3.1 Detection of Diabetic Retinopathy and Maculopathy in Eye 

Fundus Images Using Fuzzy Image Processing (System VI) 

System VI implements a combination of fuzzy techniques in image preprocessing, 

which involves fuzzy filtering, followed by fuzzy histogram equalisation and finally 

fuzzy edge detection. System VI is different from System V presented in Section 4.2.4, 

as System V proposed individual system variants implementing different fuzzy 

processing techniques for the detection of microaneurysms. On the other hand, System 

VI proposed a novel detection system for diabetic retinopathy and maculopathy by 

combining several consecutive fuzzy image preprocessing techniques in one system, 

based on previous encouraging results for the use of fuzzy image processing obtained 

by System V. In addition, System VI is following the current practice observed by the 

ophthalmologist in the classification and grading of diabetic retinopathy and 

maculopathy, which classifies images into ten main classes, as explained in Section 3.9. 
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The system begins with the image acquisition process, where the system selects images 

for further processing. The selected images undergo preprocessing in order to improve 

the image contrast as well as perform other enhancements, with a combination of 

several fuzzy techniques. The preprocessed images are then used for feature extraction, 

where three features, namely, the area, the mean and the standard deviation of on pixels 

are extracted. Finally, in the classification phase, some machine learning classifiers are 

trained using these features to classify the images into their respective classes. Figure 

4.17 presents the block diagram of the proposed system for the automatic screening and 

classification of diabetic retinopathy and maculopathy using fuzzy image processing 

techniques. 

 

 

Figure 4.17 Block diagram of System VI for the automatic detection of diabetic 

retinopathy and maculopathy using fuzzy image processing 



 

118 

4.3.1.1 Image Preprocessing 

Image preprocessing is the operation of improving the image data quality. Fuzzy 

approaches are implemented in this proposed version of the system at the preprocessing 

stage. The image preprocessing techniques involved in the present work include 

Greyscale Conversion, Fuzzy Filtering, Fuzzy Histogram Equalisation and Fuzzy Edge 

Detection. Similar proposed image preprocessing techniques, as in System V, are 

implemented due to their good performance. In order to calculate the white pixels from 

the edge-detected image, the output image is converted or inversed to produce the black 

and white image. Figure 4.18 shows the membership functions of the inputs and outputs 

for the edge detection purpose.  For both inputs, which are the gradient of every pixel 

on both axes, the parameters for the Gaussian membership function consists of the 

central value or mean (0) and the standard deviation (0.1). Meanwhile, for the outputs of 

the edge detection, which are the intensities of the edge-detected image, there are three 

parameters required for the triangular membership function. The parameters are the 

start, peak and end of the triangles of the membership functions. The triplet parameter 

values for both white and black are (0, 1, 1) and (0, 0.7, 1), respectively. Figure 4.19 

shows the output after each of the fuzzy pre-processing operations on a selected image. 

 

 

Figure 4.18 Membership functions for inputs and outputs 
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Figure 4.19 Preprocessing of the output image 

 

4.3.1.2 Feature Extraction 

After performing the preprocessing techniques, feature extraction takes place to obtain 

the features from the preprocessed images. Three preliminary features are proposed, 

namely, the area of on pixels and the mean and standard deviation which will be 

extracted for the purposes of detection. The first feature is the number of white pixels on 

the black and white image, while the second and third features are the mean value and 

the standard deviation of on pixels, respectively. These three shape-based features are 

suitable to be extracted from the edge-detected inversed output image. For example, the 

area of on pixels represents the detected maculopathy, which is the purpose of this 

developed system. Other more sophisticated features could be extracted in addition to 

these three proposed features in order to improve the classification performance. 
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4.3.1.3 Classification 

The extracted feature values were used in the classification stage, where the PRTools 

Matlab toolbox (Duin et al., 2007) for pattern recognition was employed for this task. In 

order to generate a variety of results and a good performance analysis of the system, two 

types of classification were considered. First, the images have been classified into two 

classes, i.e., normal (276 images) and diabetic retinopathy (324 images). In addition, 

with the use of several machine learning classifiers, the images are then classified into 

ten classes, which provide more details, i.e., No Diabetic Retinopathy (DR) with 276 

images, and the other nine detailed classes of the DR cases, which are: Mild DR without 

maculopathy (72 images), Mild DR with maculopathy (27 images), Moderate DR 

without maculopathy (85 images), Moderate DR with maculopathy (83 images), Severe 

DR without maculopathy (23 images), Severe DR with maculopathy (11 images), 

Proliferative DR without maculopathy (6 images), Proliferative DR with maculopathy 

(10 images) and Advanced Diabetic Eye Disease (ADED, with only 7 images). Several 

machine learning classifiers, such as the binary decision tree classifier and the 1-nearest 

neighbour classifier have been selected to train and classify images into these 

categories. 

 

4.3.1.4 System Results and Evaluation 

Figure 4.20 shows the user interface snapshot of the proposed developed system. The 

performance of the proposed system, including the misclassification error, accuracy of 

the individual classifiers and also the specificity and sensitivity of the two classifiers for 

both categories are presented in Table 4.9, based on the confusion matrix generated. 

Since the dataset is hugely imbalanced for some classes including mild DR with 

maculopathy, severe DR with and without maculopathy, proliferative DR with and 

without maculopathy and Advanced Diabetic Eye Disease (ADED), the minority classes 

were oversampled. This was achieved by running the system with images from these 

classes replicated several times in order to obtain various extracted feature values and 

balance the dataset. The developed dataset is split randomly into 90% for training and 

the remaining 10% for testing. The process is repeated ten times in a cross-validation 

procedure in order to generate unbiased results. The average results on the ten runs for 

each of the two classifiers are reported. The experimental results show that the two 
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classifiers, and especially the k-nearest neighbour, are able to identify well for both 

main categories. The two classifiers identified the diabetic retinopathy cases much 

better however in the two classes’ case, as there were more examples of such images in 

the database compared to other example of the ten classes. The maculopathy can be 

seen clearly from the inversed edge-detected image and the area of on pixels will have a 

higher value for those images with maculopathy. 

 

 

Figure 4.20 Snapshot of the proposed system user interface 

 

Table 4.9 Summary results for System VI 

 Category I : 2 classes Category II : 10 classes 

 Binary 

decision tree 

k-nearest 

neighbour 

Binary 

decision tree 

k-nearest 

neighbour 

Misclassification error 0.2539 0.2139 0.4395 0.2975 

Accuracy 0.7461 0.7861 0.5605 0.7025 

Specificity 0.4536 0.5572 0.4500 0.6500 

Sensitivity 0.8403 0.8598 0.5956 0.7297 
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4.3.2 Detection of Diabetic Retinopathy and Maculopathy in Eye 

Fundus Images Using Fuzzy Image Processing and Retinal 

Structures Segmentation (System VII) 

System VII implements a combination of fuzzy techniques for image preprocessing, 

such as fuzzy filtering and fuzzy histogram equalisation. In addition, the proposed 

system implements the localisation and the detection of four retinal structures, which 

are the optic disc, the blood vessels, the macula and the fovea, which are important in 

the identification of maculopathy. Furthermore, the system detects diabetic retinopathy 

lesions, the exudates, which are vital in the detection of exudative maculopathy. Several 

features extracted from the exudates lesions and from the maculopathy are used for 

classification. The system is evaluated with a combination of normal and diabetic 

retinopathy images, including the maculopathy fundus images from the new dataset 

developed, as discussed in Section 3.9. 

 

The proposed diabetic retinopathy and maculopathy detection system has been created 

using the Matlab R2014a environment. The system starts with the image acquisition 

process, where the system selects images from the folder for further processing. Next, 

the image preprocessing task takes place in order to improve the image quality. This 

task includes the implementation of the fuzzy image processing techniques and the 

retinal structures’ localisation and segmentation. In order to detect the maculopathy, the 

lesions called exudates must be identified (where exudates situated in the macula region 

represents the exudative maculopathy). Several features are then extracted from the 

preprocessed image. Finally, in the classification phase, several machine learning 

classifiers, such as the k-nearest neighbour, support vector machines and Naïve-Bayes 

classifiers are trained using the generated features in order to classify the images into 

their respective classes. Figure 4.21 shows the block diagram of the proposed system for 

automatic screening and classification of diabetic retinopathy and maculopathy in 

retinal images using fuzzy image processing techniques. The individual stages are 

discussed in more detail in the following sections. 
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techniques: green channel extraction, fuzzy filtering and fuzzy histogram equalisation. 

Figure 4.22 shows the output image obtained after the preprocessing stages. 

 

The first preprocessing technique is the extraction of the green channel from the colour 

fundus image, which consists of the red, green and blue channels. In the previous 

proposed systems (System I – System VI), the colour fundus images are converted into 

a greyscale image. In the present system, the green channel extraction is used to 

investigate the difference and capability of the green channel format compared to both 

the greyscale format and other image colour conversion formats. In most of the research 

that has been carried out in diabetic retinopathy screening, the green channel is used for 

detecting the diabetic retinopathy lesions such as haemorrhages, vessels and 

microaneurysms. The red channel is somewhat saturated while the green channel 

contains more structural information. Therefore, it is sensible to use the green channel 

for the segmentation or morphological operations, since most of the image processing 

tools work for greyscale only. Due to the capability of the green channel, the colour 

fundus image is converted into the green plane channel. In addition, the aim of the 

conversion is to investigate the ability of colour features, as one of the features to be 

used for classification besides shape and intensity features. The next pre-processing 

techniques are performed on the green channel image. 

 

Image filtering needs to be implemented to improve the image quality or restore the 

digital image which tends to have a variety of noise types. The poor photo quality may 

also be due to equipment related factors, such as a dirty lens or a dirty computer screen. 

In addition, distractions from the surroundings, such as too bright a room can be a factor 

in generating poor quality fundus photographs. The filtering process therefore is 

necessary to overcome this problem and to enable the image for further processing and 

for effective grading task. The proposed system implements the median filter with fuzzy 

techniques described by Toh et al. (2010) termed the Noise Adaptive Fuzzy Switching 

Median (NAFSM) filter. Although the proposed technique is not working well as an 

individual system variant in System V for microaneurysm detection, the technique has 

been working well in System VI for both diabetic retinopathy and maculopathy 

detection. 
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After filtering the image from any noise, the third preprocessing technique, the fuzzy 

histogram equalisation, is performed on the images. The role of the histogram 

equalisation is to improve the contrast of the image. As stated above, colour fundus 

images are more challenging compared to angiography and red-free modes of fundus 

photography examination. The implementation of the histogram equalisation by 

employing fuzzy techniques therefore helps to improve the contrast of the fundus 

images for better visualisation and detection. The technique called Brightness 

Preserving Dynamic Fuzzy Histogram Equalisation (BPDFHE) proposed by Sheet et al. 

(2010) was found to work well on colour fundus images (see System IV- System VI) 

and has also been chosen as a preprocessing technique in this proposed system.  

 

Figure 4.22 Preprocessing the output image 

 

4.3.2.2 Retinal Structure Extraction 

The extraction of retinal structures assists the diagnosis of eye diseases, through 

improving both the detection results and grading for lesions. The detection of retinal 

structures for diabetic retinopathy screening therefore, such as the optic disc, blood 

vessels, the macula and the fovea are essential in order to produce a reliable screening 

system. Figure 4.23 shows the output image with the extraction of retinal structures. 

   

(a) Original image 
(b) Greyscale 

conversion 

(c) Green channel 

extraction 

   
(d) Green channel 

complement  
(e) Fuzzy filtering 

(f) Fuzzy histogram 

equalisation 
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The optic disc is the most important retinal structure in the screening of diabetic 

retinopathy. The optic disc has the largest high contrast among all the circular shape 

areas. The location of the optic disc is of critical importance in retinal image analysis 

and is required as a prerequisite stage in detecting lesions, including exudate detection. 

Optic disc localisation and segmentation therefore are both performed in the proposed 

system in order to improve the overall detection accuracy. The technique used in the 

proposed system is based on the circular Hough transform (CHT), to ensure more 

reliability in the optic disc detection task. In this case, the Hough transform for circles is 

used to locate the optic disc, due to its circular shape. Based on a specified radius range, 

the system finds circles in fundus images using CHT with the use of the imfindcircles 

function in Matlab. After finding the circles in the image based on the radius range, the 

function viscircles in Matlab is then used to create a circle. The function draws circles 

with the specified centre and radius onto the current axes on the fundus images. The 

CHT technique has also been used for the detection of microaneurysms in Systems III 

and V, as this technique is works well in detecting circular shapes. In addition to the 

proposed CHT technique, the polygonal Region of Interest (ROI) technique can be 

performed on the fundus image to detect the optic disc. A region of interest is a portion 

of an image for filtering purposes and also for performing other operation. In order to 

implement this method, the roipoly Matlab function is used, which aims to create an 

interactive polygon tool associated with the image displayed in the current image, 

known as the target image. The function roipoly works by selecting vertices of the 

polygon and, as a result, it returns a binary image that can be used for masked filtering. 

The function allows moving, deleting or resizing the polygon as well as moving, adding 

or deleting a vertex and also changing the colour of the polygon. 

 

After locating the optic disc, another important retinal structure represented by the 

blood vessels, is then extracted. There are several vessel extraction techniques 

including: morphological operations, the Kirsch filter, the Frangi filter, local entropy 

and entropic thresholding. For the proposed system, morphological operations are 

implemented for the extraction of the blood vessels. The operation starts where the 

fuzzy histogram equalisation output image is opened, using a disc shaped structuring 

element. The image background is then removed and the image is thresholded to obtain 
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the binary images containing the vessels. Finally, the morphological open is 

implemented using the bwareaopen function to remove any small noise. In order to 

generate the elimination of the vessels, the binary image can be subtracted from the 

Gaussian filtered image so that the final image has vessel free candidates. 

 

The detection of the optic disc is vital for the detection of macula because its centre can 

be used for macula detection. The macula appears as a dark region near the centre of the 

image and its location is at a two-disc-diameter distance from the optic disc. The fovea 

is the centre of the macula. Once the macula is identified, it is simple to determine the 

fovea as its centre. The macular region can then be defined using two clinical 

approaches. The first approach uses the Early Treatment Diabetic Retinopathy Study 

(ETDRS), which indicates the presence of clinically significant macular edema (CSME) 

as any part located within one disc diameter of the centre of the fovea (Wilkinson et al., 

2003). The second approach is based on the anatomical characteristics, where the 

macular region is about 5-5.5 mm in diameter. In the proposed system, three methods 

for macula detection are implemented. The first method uses the centre of the optic disc 

identified by the circular Hough transform. The macula is identified based on the 

distance specified from the optic disc. Once again, the circular Hough transform is used 

to create a circle for the macula region. The detection of the macula region is proposed 

by an angle of 37 degrees above and below the horizontal line crossing the optic disc 

centre and with the centre of the macula region situated at 2 disc diameter (2DD) 

distance from the optic disc centre. A circle of 1.3 discs diameter (1.3DD) is then 

cropped to find lesions in the macula region. Figure 4.23(d) illustrates this process more 

clearly. The cropped macula region can be used to locate larger and more appropriate 

lesion areas relevant to maculopathy. The poly2mask function can be used to find the 

region of interest of the macula region. In addition, the imcrop tool can also be used. 

However, the cropping process has its limitations as it can be performed with 

rectangular shapes only. This is because images are represented as arrays in Matlab and 

arrays are required to be rectangular. The circular region of interest (ROI) cropping can 

also be implemented with roicirclecrop function. The function crops the ROI in the 

form of a circular shape and with a black background based on two points: the centre 

and the radius of the circle. 
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4.3.2.3 Exudate and Maculopathy Detection 

In order to detect maculopathy, exudates first need to be detected in the macula region. 

The thresholding method is one of the ways to detect the exudate lesions. Thresholding 

is used to extract an object from its background by assigning an intensity value 

(threshold value) for each pixel, such as whether the pixel is classified either as an 

object pixel or a background pixel. In this case, thresholding is used in the system 

development as the simplest form of segmentation in order to segment the fundus image 

into either an exudate or a background region. In the proposed system, the global 

thresholding or fixed thresholding is implemented, as it is one of the more popular 

methods. In global thresholding, the threshold value, T, is held constant throughout the 

image. Choosing a correct threshold value is quite challenging and it is important to 

ensure that the chosen value is neither too low nor too high. In order to find a suitable 

threshold value for this system development, software termed ImageJ (ImageJ, 2014) is 

used (through using the thresholding slider bar from the Adjust Threshold menu). From 

the observations and the threshold value found during the searching process, it is 

concluded that a value of 135 is the most appropriate in order to segment both the 

exudate regions and the background of the fundus images, obtained after the fuzzy 

histogram equalisation task. In addition to global thresholding, Fuzzy C-Means (FCM) 

clustering can also be implemented in the system for detecting exudates. Morphological 

operations can also be used for the extraction of exudates. The image after the optic disc 

localisation and the segmentation of the blood vessels is then generated for the feature 

extraction task, which will later be converted into a binary image in order to extract the 

features of the exudates. After the detection of the exudates, the maculopathy can be 

identified by cropping the area around the macula region. Figure 4.24(a) shows the 

exudates extraction with the optic disc overlay, while Figure 4.24(b) shows the 

maculopathy output within the proposed macula region. 
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Figure 4.24 Exudates and maculopathy extraction output image 

 

4.3.2.4 Features Extraction 

After performing the preprocessing techniques, the retinal structure extraction and also 

the exudates detection, feature extraction then takes place in order to obtain the features 

from the given images. There are three features selected from the exudates output image 

and macula image, respectively. They are the area of on pixels, the mean of on pixels 

and the standard deviation of the on pixels for the exudates region. In addition, there are 

another three features from the maculopathy region, i.e., the area of on pixels, the mean 

of on pixels and the standard deviation of the on pixels for the maculopathy. These 

shape-values are chosen as they are suitable for representing the exudate and 

maculopathy regions. Since the pre-processing techniques are performed after the 

conversion of colour fundus images into the green channel, it can be concluded that the 

system also investigated the capability of the colour-based features as well. The 

difference between the mean pixel values for the exudate and maculopathy regions and 

between the standard deviations of pixel values for the exudate and maculopathy 

regions are explored. The features between the exudates region and the maculopathy 

region are then compared. The value of the exudates area is higher compared to the area 

of the maculopathy value as the maculopathy is located around the macula, and the 

diameter of the macula is small.   

 

 

 

 
 

(a) Exudates detection (b) Maculopathy detection 
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4.3.2.5 Classification 

The six extracted features were used in the classification stage. As the system focuses 

on the detection of maculopathy, the classes from the developed dataset, as presented in 

Table 3.2 above (in Section 3.9), have been categorised into two classes, which are: 

maculopathy detected or eye fundus with maculopathy (131 images) and maculopathy 

not detected or fundus without maculopathy (469 images). Several machine learning 

algorithms, such as the 1-nearest neighbour classifier, Naïve-Bayes classifier, support 

vector machines (SVM) and radial basis function kernel SVM, have been selected to 

train and classify images into their respective classes.  

 

4.3.2.6 System Results and Evaluation 

Figure 4.25 shows the user interface snapshot of the proposed system. The results are 

shown in Table 4.10. The confusion matrix, the sensitivity, the specificity and the 

accuracy of the individual classifiers are presented. Since the maculopathy detected 

class (131 images) is imbalanced compared to the maculopathy not detected class (469 

images), the maculopathy detected class was oversampled several times. As a result, a 

total of 990 images, consisting of 469 images from the maculopathy not detected class 

and 521 images from the maculopathy detected class are involved in the final 

classification stage. The new dataset is split randomly into 90% for training and the 

remaining 10% for testing purpose. The process is repeated ten times in a cross-

validation procedure to generate unbiased results. The results are averaged over ten runs 

for each of the classifiers. The experimental results show that the four classifiers are 

able to identify well for both categories, in particular the k-nearest neighbour and radial 

basis function kernel support vector machine. The prior detection of exudates is 

important because their presence will determine the whether or not maculopathy is 

present. Based on the results presented, it can be seen that the sensitivity value is a little 

lower than the specificity. This is due to the fact that the total number for maculopathy 

detected (abnormal) cases is lower than the total number for maculopathy not detected 

cases (normal), which was explained above. The other reason may be the capability of 

the global thresholding technique which was used for the detection of the exudates. The 

proposed threshold value may be quite high and, as a result, some of the exudates may 

not be detected by the proposed technique. 
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Figure 4.25 Snapshot of the proposed system user interface 

 

Table 4.10 Average results when using the four classifiers 

 k-nearest 

neighbour 

Polynomial 

Kernel 

SVM 

RBF Kernel 

SVM 

Naïve-Bayes 

Misclassification error 0.0700 0.3000 0.0700 0.2500 

Accuracy 0.9300 0.7000 0.9300 0.7500 

Specificity 1.0000 0.9787 0.9362 0.9149 

Sensitivity 0.8679 0.4528 0.9245 0.6038 

 

4.4 Summary 
A preliminary system for the detection of diabetic retinopathy using a combination of 

non-fuzzy techniques is presented in System I. Several individual systems for the 

automatic detection of microaneurysms in colour fundus images for diabetic retinopathy 

screening are also presented in Systems II to V. System II highlights the automatic 

detection of microaneurysms in colour fundus images using segmentation and feature 

extraction. Two subsystems for an automatic detection of microaneurysms in colour 
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fundus images using the Circular Hough Transform method for the localisation of 

microaneurysms have been proposed, due to the capability of the proposed method to 

detect circular shapes. The first subsystem proposed a combination of image processing 

techniques and Circular Hough Transform, while the second subsystem presented the 

detection of microaneurysms using fuzzy image processing. The first system, which 

applies a non-fuzzy technique for image preprocessing is compared to the second 

system, which implements a fuzzy image preprocessing technique. Based on the results 

obtained, it was concluded that the implementation of fuzzy preprocessing techniques 

provides better contrast enhancement for fundus images and in addition it can greatly 

assist in detecting microaneurysms. Due to promising results in the implementation of 

the fuzzy histogram equalisation technique for the detection of microaneurysms, the 

development of the microaneurysms detection system has been enhanced by developing 

a new dataset and using other fuzzy techniques for image preprocessing.  

 

The implementation of separate fuzzy filtering and fuzzy edge detection, in addition to 

the fuzzy histogram equalisation (as discussed previously), has been proposed for the 

automatic detection of microaneurysms in System V. The fuzzy techniques work better 

for both fuzzy histogram equalisation and fuzzy edge detection. The analysis shows that 

the implementation of the fuzzy preprocessing techniques give better contrast 

enhancement in addition to other improvements, such as brightness, and improved 

segmentation for fundus images. The use of fuzzy image processing techniques plays an 

important role in producing better image quality and improved performance analysis. In 

addition, the capability of a combination of different fuzzy image processing techniques 

for the detection of diabetic retinopathy and maculopathy in eye fundus images is 

investigated in System VI. The proposed system implements a combination of fuzzy 

techniques for image preprocessing, which combine fuzzy filtering, followed by the 

fuzzy histogram equalisation and fuzzy edge detection. The system then classified 

images into two classes including ten additional classes, which provide more detail 

about the stages of the disease. The results show better identification of diabetic 

retinopathy cases from the two-class-classifiers compared to the ten classes’ case. In 

addition, the results show that maculopathy can be seen clearly from the generated 

output image. Finally, System VII proposed a novel combination of fuzzy image 
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preprocessing techniques including the localisation of retinal structures (i.e., for the 

optic disc, the blood vessels, the macula and the fovea), followed by feature extraction 

and, finally, classification with some machine learning algorithms. To conclude, the use 

of fuzzy image processing together with retinal structure extraction can help produce a 

more reliable screening system for diabetic retinopathy. 

 

Several methods and techniques of image processing were implemented to develop the 

diabetic retinopathy screening system, which were presented and contrasted in the 

sections above. Different techniques have been implemented for the proposed system in 

order to either detect general retinopathy signs (i.e., whether retinopathy is present or 

not), or more specific signs of retinopathy, such as microaneurysms, or maculopathy. 

Although detection using colour fundus images was challenging, the proposed 

techniques were able to improve the image contrast and eventually improve the 

performance of the system. In addition, different public data sets have been used, which 

contained a variety of colour fundus images. A good quality of available fundus images 

can help in the process of the localisation and detection of the signs of retinopathy.  
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5 OVERALL RESULTS ANALYSIS AND DISCUSSION  

This research has explored the development of the automatic systems for screening and 

classification of diabetic retinopathy. Several systems have been successfully 

developed, which contribute to achieve the objectives of this research. In order to 

develop the system, eye fundus images are vital as an input. Therefore, sufficient good 

quality images are required for both the development and the system performance. A 

thorough system analysis and performance of the developed systems, alongside the 

novel dataset analysis were presented. 

 

This chapter presents the analysis of the results involving the data and the developed 

systems. Section 5.1 discusses the analysis performed on the experts’ diagnosis as a 

ground truth, including the descriptive and inferential analysis. The analysis of the 

developed systems is presented in Section 5.2, which consists of two types of analysis, 

namely the confusion matrix and statistical analysis. Meanwhile, Section 5.3 explains 

some important points for further discussion based on the research findings. Finally, 

Section 5.4 presents the summary of the chapter. 

 

5.1 Developed Data Set Analysis 
As presented in Section 3.9, 600 fundus images from 300 patients were selected 

together with the provided ground truth by the three experts from the Ophthalmology 

Department, Melaka Hospital, Malaysia. The images were classified into ten 

retinopathy stages, where the average from the three experts’ findings was used as the 

final number of images for each stage. The first stage, which is normal (no retinopathy), 

contributes the greatest number of 276 images. The abnormal or diabetic retinopathy 

(DR) stage is divided into nine other stages: mild DR without maculopathy (72), mild 

DR with maculopathy (27), moderate DR without maculopathy (85), moderate DR with 

maculopathy (83), severe DR without maculopathy (23), severe DR with maculopathy 

(11), proliferative DR without maculopathy (6), proliferative DR with maculopathy (10) 

and finally, advanced diabetic eye disease, ADED (7).  
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The ground truth delivered by the experts can be placed into four categories. Table 5.1 

shows the variety of the categorisation which can be used for system testing. The first 

categorisation is the original classification made by the experts, which divides into ten 

stages of retinopathy. The second categorisation divides into two cases, which are “no 

diabetic retinopathy” and “diabetic retinopathy”.  Meanwhile, the third categorisation 

consists of four cases involving stages of no diabetic retinopathy, non-proliferative 

diabetic retinopathy (mild, moderate and severe cases), proliferative diabetic 

retinopathy and finally advanced diabetic eye disease. The fourth categorisation is based 

on maculopathy detection, which classifies into two cases, namely maculopathy 

detected and maculopathy not detected.  

 

Table 5.1 Expert diagnosis summary categorisation 

Categorisation I Categorisation II 

Retinopathy Stage No. of 

Images 

Retinopathy Stage No. of 

Images 

No DR 276 No DR 276 

Mild DR without maculopathy 72 DR 324 

Mild DR with maculopathy 27   

Moderate DR without maculopathy 85   

Moderate DR with maculopathy 83   

Severe DR without maculopathy 23   

Severe DR with maculopathy 11   

PDR without maculopathy 6   

PDR with maculopathy 10   

ADED 7   

Total 600  600 

Categorisation III Categorisation IV 

Retinopathy Stage No. of 

Images 

Retinopathy Stage No. of 

Images 

No DR 276 Maculopathy detected 131 

Non-Proliferative DR 301 Maculopathy not detected 469 

Proliferative DR 16   

ADED 7   

Total 600  600 

 

Based on the ground truth provided by the experts, several descriptive and inferential 

analysis tasks using the SPSS statistical package were performed.  
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i. Boxplot 

The boxplot is the first method of assessment performed for our analysis. It is a useful 

visualisation of how the data is distributed. In addition, the boxplot is able to display the 

distribution of the variable scale and the pinpointing of the outliers. Moreover, the 

boxplot shows five statistics, which are the minimum, the first quartile, the median, the 

third quartile and the maximum value. Figure 5.1 shows the representation of the 

boxplot performed on the ground truth, which involves a total of 1,800 images, i.e., 600 

from each expert. It shows that for the first expert, there are several outliers, i.e., the 

extreme values, which do not fall within the inner fences. The outliers mean that these 

values are not frequent, particularly for the first expert, and that most of the time, these 

values are not within the normal range. Meanwhile, the dark line shows the median, 

which is the measure of the central tendency. It shows that for the first and third experts, 

the median value is 1 (no diabetic retinopathy), while for the second expert the median 

generated is 2 (mild diabetic retinopathy without maculopathy). The boxplot also shows 

the 25
th

 percentile, representing 25% of cases or rows that have values below the 25
th

 

percentile, in addition to the 50% of the cases or rows that lie both within the box and 

the 75
th

 percentile. 

 

 

Figure 5.1 Boxplot assessment 
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ii. Histogram 

A histogram is an alternative for a descriptive analysis that can be performed for this 

application. It is a visual summary of the distribution of values and it is useful for 

showing the distribution of a single scale variable. Figure 5.2 shows the representation 

of a histogram, where the 1,800 images, i.e., 600 images from each expert (600 images 

from the first expert, 600 images from the second expert and another 600 images from 

the third expert) are placed into the ten retinopathy stages. It shows that the majority of 

the images are classified in the first stage, which is the “no retinopathy” stage, followed 

by the fifth stage which is “moderate diabetic retinopathy with maculopathy”. The 

histogram also generated the mean (2.83) and the standard deviation (2.269) for the 

1,800 images used for the ground truth.  

 

 

Figure 5.2 Histogram assessment 
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iii. Oneway ANOVA 

The analysis of variance or the ANOVA test is an inferential analysis that can be 

performed on the expert diagnosis ground truth. The test produces a one-way analysis of 

variance for a quantitative dependent variable by a single factor or independent variable. 

The analysis of variance is used to test the hypothesis that several means are equal. The 

test generated shows a p-value of 0.000. The post-hoc test is then performed to 

determine which means are different. Table 5.2 presents the output of the post-hoc test, 

showing the multiple comparisons of the experts’ means. It can be concluded from 

Table 5.2, that there are differences between the first expert and the second and third 

expert, however there is also similarity between the second and the third expert.  

 

Table 5.2 ANOVA multiple comparisons 

 

 

 

 

 

iv. Chi-Square 

The Chi-square test tabulates a variable into categories and computes a Chi-square 

statistic. It compares the observed and expected frequencies in each category in order to 

test whether or not all categories contain the same proportion of values. It can also test 

that each category contains a user-specified proportion of values. In this case, the Chi-

square is useful for determining if there is a relationship among the experts. Table 5.3 

shows the cross tabulation results of the Chi-square test. The inferential statistic with a 

p-value of 0.000 indicates that there is no relationship among the three experts. Table 

5.3 represents the number of images in each category for the three experts alongside the 

percentage within the method of assessment (expert). The given percentage is calculated 

by dividing the count for each of the retinopathy stages with the total numbers of 

images for each expert – a total of 600 images. It can be seen that the distribution of 

counts and percentages for each expert for no diabetic retinopathy stage is not 

Method of Assessment p-value 

Expert 1 Expert 2 0.001 

 Expert 3 0.001 

Expert 2 Expert 1 0.001 

 Expert 3 1.000 

Expert 3 Expert 1 0.001 

 Expert 2 1.000 
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significantly different. However, for mild diabetic retinopathy without maculopathy 

stage for example, the count and percentage for the third expert (14, 2.3%) show a 

significant difference compared to the first expert (55, 9.2%) and the second expert (58, 

9.7%).  

 

Table 5.3 Chi-square analysis  

Results   Method of Assessment  

Expert 1 Expert 2 Expert 3 

 Count % Count % Count % 

No DR 326 54.3 267 44.5 314 52.3 

Mild DR without maculopathy 55 9.2 58 9.7 14 2.3 

Mild DR with maculopathy 21 3.5 12 2.0 31 5.2 

Moderate DR without maculopathy 79 13.2 90 15.0 43 7.2 

Moderate DR with maculopathy 90 15.0 127 21.2 143 23.8 

Severe DR without maculopathy 5 0.8 6 1.0 0 0.0 

Severe DR with maculopathy 3 0.5 6 1.0 19 3.2 

PDR without maculopathy 6 1.0 9 1.5 2 0.3 

PDR with maculopathy 8 1.3 20 3.3 25 4.2 

ADED 7 1.2 5 0.8 9 1.5 

Total 600 100 600 100 600 100 

p-value 0.000 

 

5.2 System Results Analysis 
The results of the developed systems testing can be categorised into two types of 

analysis. A confusion matrix (contingency table) is used to define the classification 

model performance of test data. Meanwhile the statistical test is useful in providing a 

mechanism for making quantitative decisions about a process or processes.  

 

5.2.1 Confusion Matrix 

The confusion matrix is chosen as a way to represent the results to analyse the 

capability of the proposed system. The confusion matrix consists of information about 

the actual and predicted classifications, namely, true positives, false negatives, false 

positives and true negatives, which were explained earlier in Section 3.6 above. These 

values will contribute to the calculation of the sensitivity (percentage of abnormal 

fundus images classified as abnormal), specificity (percentage of normal fundus images 
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classifies as normal) and also the accuracy (overall correctness) of the proposed system. 

The formulas of the sensitivity, specificity and accuracy calculation are shown in 

Section 3.6. The confusion matrix is useful to present the classifier’s ability to correctly 

predict or separate the classes and shows how the classification model predictions are 

made. Table 5.4 shows the confusion matrix analysis for the developed systems. The 

values of the true positives (TP), false negatives (FN), false positives (FP) and true 

negatives (TN) from the generated confusion matrix for the first experiment from 

System I (2 classes) and the first experiment from System VI (10 classes) are marked as 

an example for how to calculate the sensitivity, specificity and the accuracy. The TP and 

FN values are required for the calculation of the sensitivity, while the TN and FP values 

are required for the specificity calculation.  

 

5.2.2 Statistical Analysis 

In addition to the confusion matrix, a statistical test can be performed to analyse the 

system performance. Inferential statistical analysis, such as the analysis of variance 

(ANOVA) test, t-test, Chi-square and other statistical tests can be performed. The 

particular use of the statistical test depends on the nature of independent and dependent 

variables analysed, such as categorical or continuous values, in addition to the number 

of variables and normality. The different inferential statistical analysis presents the 

variation of the system results analysis. Table 5.5 summarises the statistical tests output 

on the developed systems results. 
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Overall, there are seven systems developed for the detection of diabetic retinopathy, 

comprising one system for its general detection, four systems for the detection of 

microaneurysms and finally, two systems for the detection of maculopathy. Figure 5.3 

represents the workflow of all the developed systems, which provides better 

visualisation and understanding about the developed systems proposed in this research 

work. Firstly, a basic system for the detection of diabetic retinopathy using a 

combination of non-fuzzy techniques is proposed. Next, four individual systems for the 

automatic detection of microaneurysms in colour fundus images for diabetic retinopathy 

screening are developed. The first system highlights the automatic detection of 

microaneurysms in colour fundus images using segmentation and feature extraction. 

Later, two subsystems for the automatic detection of microaneurysms in colour fundus 

images using the Circular Hough Transform method for the localisation of 

microaneurysms are proposed, due to the ability of the proposed method to detect 

circular shapes. The first subsystem proposed a combination of image processing 

techniques and Circular Hough Transform, while the second subsystem presented the 

detection of microaneurysms using fuzzy image processing. The first subsystem, which 

applies a non-fuzzy technique for image preprocessing, is compared to the second 

system, which implements a fuzzy image preprocessing technique. Due to the promising 

results in the implementation of the fuzzy histogram equalisation technique in the 

detection of microaneurysms, the development of the microaneurysms detection system 

is further enhanced by applying other fuzzy techniques in the image preprocessing of a 

new dataset developed at Melaka Hospital. The implementation of fuzzy filtering and 

fuzzy edge detection separately, in addition to the fuzzy histogram equalisation as 

mentioned above, are proposed for the automatic detection of microaneurysms. The 

capabilities of a combination of different fuzzy image processing techniques for the 

detection of diabetic retinopathy and maculopathy in eye fundus images was 

investigated (in System VI and System VII), where the proposed system implemented a 

combination of fuzzy techniques in image preprocessing, which combine fuzzy filtering, 

followed by the fuzzy histogram equalisation and fuzzy edge detection. The final 

system proposed a combination of fuzzy techniques for image preprocessing, in 

addition to the localisation and detection of four retinal structures, which are the optic 

disc, the blood vessels, the macula and the fovea. 
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5.3 Discussion 

The findings of this study, pertaining to the development of the effective diabetic 

retinopathy automatic screening and classification using eye fundus images show, some 

common issues: 

 

i. Imbalanced dataset 

A balanced dataset is an advantage for the purpose of classification. In the field of 

medical imaging however, it is difficult to achieve such a balanced dataset as there are 

not usually a large number of normal cases. This limitation therefore presents problems 

in the classification phase. For diabetic retinopathy diagnosis, this problem of imbalance 

also occurs in the available public databases, as stated in Section 3.8. For example, the 

popular dataset Standard Diabetic Retinopathy Database Calibration Level 0 

(DIARETDB0), offers only 20 normal images compared to 110 images with signs of 

diabetic retinopathy. Meanwhile, the Standard Diabetic Retinopathy Database 

Calibration Level 1 (DIARETDB1) consists of only five normal images while the 

remaining 84 images are diabetic retinopathy case. In order to overcome this limitation, 

duplication is required, where the minority class is oversampled several times in order 

to avoid the imbalance problem. The ensemble of classifiers is another solution that can 

overcome the imbalanced dataset limitation.  

 

As presented in this research work, a new dataset was introduced. The new dataset 

managed to overcome this imbalanced data problem, in that it provides 276 normal 

images and 324 diabetic retinopathy images; almost a balanced total number of No 

DR/Normal and DR/Abnormal images. However, the imbalance problem still occurs 

when dealing with the more detailed categorisation, which classifies data into ten cases 

(no retinopathy, mild DR without maculopathy, mild DR with maculopathy, moderate 

DR without maculopathy, moderate DR with maculopathy, severe DR without 

maculopathy, severe DR with maculopathy, proliferative DR without maculopathy, 

proliferative DR with maculopathy and advanced diabetic eye disease). The total 

numbers of severe and proliferative cases are significantly imbalanced due to the fact 

that in severe cases, the patient will be referred directly for laser treatment rather than 
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for the capturing of their fundus images. Another reason is that diabetic retinopathy 

takes a long time to progress to the severe stage of diabetes mellitus. 

 

ii. Detection of exudates 

As presented in Section 4.3 the localisation of exudates are important aspects to be 

considered for detecting maculopathy. The detection of maculopathy is based on the 

exudates finding, due to the fact that the maculopathy represents the exudates found in 

the macula region. Therefore, the detection of exudates, as an input, is vital to ensure 

the efficient detection of maculopathy. In addition, the fovea and the region of macula 

detection is another important aspect that should be accounted for. 

 

The research work implemented a thresholding method to detect the exudate lesions in 

System VII. Since maculopathy detection depends on the successful location of 

exudates, a precise exudate detection method is required. The proposed threshold values 

used for the global thresholding should be both suitable and applicable to all the tested 

images, as each image consists of different contrast values. An inappropriate threshold 

value will result in a poor detection rate for exudates.   

 

iii. Fuzzy techniques combination capability 

Several fuzzy techniques have been implemented in the research work used for the 

automatic screening and classification of diabetic retinopathy. Among the proposed 

fuzzy techniques are the fuzzy histogram equalisation, fuzzy filtering and fuzzy edge 

detection. Fuzzy median filtering was proved not to work well individually in the 

detection of microaneurysms in System V(c). Fuzzy histogram and fuzzy edge detection 

however were proved to work well individually in System V(b) and System V(d), 

respectively.  

 

On the other hand, the fuzzy median filter was working well with the combination of 

other fuzzy techniques, such as the fuzzy histogram equalisation and fuzzy edge 

detection. These combinations of fuzzy techniques were working well for the detection 

of diabetic retinopathy and maculopathy as presented in System VI. Other fuzzy 

filtering techniques should also be proposed and investigated in order to overcome the 
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limitations of the Noise Adaptive Fuzzy Switching Median (NAFSM) filter, which was 

used in the proposed system. 

 

iv. Variety of diabetic retinopathy categorisation 

It can be seen that for the diabetic retinopathy and maculopathy detection, there are two 

types of classification involved. The first categorisation is based on two cases, which 

are termed “normal” and “diabetic retinopathy”. The second categorisation is more 

detailed compared to the first as it consists of ten cases, i.e., No Diabetic Retinopathy 

(DR) and the other nine detailed cases of diabetic retinopathy: Mild DR without 

maculopathy, Mild DR with maculopathy, Moderate DR without maculopathy, 

Moderate DR with maculopathy, Severe DR without maculopathy, Severe DR with 

maculopathy, Proliferative DR without maculopathy, Proliferative DR with 

maculopathy and Advanced Diabetic Eye Disease (ADED). These two types of 

categorisation offer a variety of results and performance analysis of the system.  

 

The most important reason for implementing the second categorisation (the ten cases) is 

in order to follow the current practice observed by ophthalmologists in the diabetic 

retinopathy and maculopathy classification and grading. This detailed categorisation has 

been acknowledged by the experts during the data collection and the ground truth 

preparation process.  

 

v. Variety of system configurations 

A variety of system configurations have been presented in this research work, which 

aim to develop an automatic screening and classification system for diabetic 

retinopathy, in order to reduce the workload for the screening team. It can be concluded 

therefore that all the proposed systems are related. The research work began with the 

preliminary system for automatic screening and the classification of diabetic retinopathy 

using fundus images. The research work continued with the detection of one of the 

diabetic retinopathy important features, which are microaneurysms. Since the detection 

of maculopathy is vital for the urgency of referral, the research work has continued with 

the detection of diabetic retinopathy and maculopathy based on current practice for 
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ophthalmologists. The earlier proposed techniques are reused for the following system 

configurations due to their good performance.  

 

Other researchers focus on the maculopathy detection on the eye fundus images and 

suggest several solutions. They have proposed a variety of ways to detect and classify 

the fundus images into different stages of maculopathy, such as mild, moderate and 

severe maculopathy. However, this research work presented different mechanisms of 

maculopathy detection based on ophthalmologists’ practice, which combine the 

detection of both diabetic retinopathy and maculopathy, based on the discovery of 

diabetic retinopathy signs. The severity level is based on the diabetic retinopathy 

features, rather than the severity of the maculopathy. The classification refers to whether 

maculopathy is present (with maculopathy) or not (without maculopathy). As a result, 

the generated cases are: No Diabetic Retinopathy (DR), Mild DR with/without 

maculopathy, Moderate DR with/without maculopathy, Severe DR with/without 

maculopathy, Proliferative DR with/without maculopathy and Advanced Diabetic Eye 

Disease (ADED). This categorisation is useful as two important aspects can be detected 

in just one screening process. Moreover, the urgency of the referral which should 

happen within four weeks, as presented in Table 2.14 by the National Institute for 

Clinical Excellence, is applied to those who have any form of maculopathy, whether 

mild, moderate or severe. The severity of the maculopathy is therefore not significant in 

this case, provided that its presence or absence has been determined. 

 

5.4 Summary 

To conclude, this chapter has discussed the analysis performed on the developed data. 

The overall analyses of the developed systems are also presented. Various techniques 

can be used to analyse the data. The confusion matrix is one of the ways to represent the 

performance of the classification task. It would also be useful to determine the 

performance of the screening system. In addition, statistical analysis is an alternative 

way to represent the relationship and capability of the data and the proposed system 

results. The chapter also presented some common issues resulting from the findings of 

the research.  
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6 CONCLUSIONS AND FUTURE WORK 

The development of an automatic diabetic retinopathy screening system is a very 

challenging task. The system development involves not only an advanced understanding 

of image processing procedures, but also requires essential medical input, including 

expert knowledge related to diabetic retinopathy and its screening procedure, in addition 

to the eye fundus photography process. Efficient and cost-effective approaches in the 

field of digital retinal imaging should be established. Diabetic retinopathy and 

maculopathy screening is necessary to identify persons at risk of visual impairment. 

Effective screening of diabetic retinopathy therefore is vital for early action, alongside 

an effective diabetic complications preventive management.  

 

This chapter concludes the thesis and provides a summary of the research. Section 6.1 

reviews the performance of the research work, discusses the research contribution and 

further reiterates the advancement offered by this thesis. Section 6.2 presents 

suggestions for future research work that can provide further improvements in the field, 

in addition to directions for such future research studies. Finally, Section 6.3 

summarises and concludes this chapter.  

 

6.1 Review of the Work and Contributions 

The automatic grading of diabetic retinopathy is a rising research field aimed to 

decrease the workload inherent in the conventional grading process. An automatic 

diabetic retinopathy system would enable faster and more efficient diagnosis. Moreover, 

preventive action to protect vision can be taken earlier. The output results generated 

from the research work have answered the primary research aim detailed in Chapter 1, 

where the computer-based imaging tool developed through this research has proven to 

be effective in detecting important diagnostic features and classifying individuals into 

the correct retinopathy stage. 

 

The research main objective was to develop an automatic system for the diabetic 

retinopathy detection and to classify images into retinopathy stages, based on diabetic 
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retinopathy severity standard. In order to achieve this, the research can be summarised 

as follows: 

 

i. The development of an automatic diabetic retinopathy screening system for 

general detection 

ii. The development of an automatic microaneurysms detection system, the first 

important signs of diabetic retinopathy. 

iii. The development of an automatic diabetic retinopathy and diabetic 

maculopathy detection systems. 

 

The introductory chapter of the thesis highlighted the issues of diabetic retinopathy 

screening globally and in Malaysia in particular. Based on the objectives previously 

presented, the following represent the undertakings and the main contributions of this 

research: 

 

 The research developed several systems for the automatic diabetic 

retinopathy detection, in addition to the identification of features of diabetic 

retinopathy and maculopathy lesions (Rahim et al., 2014; 2015a; 2015b; 

2015c; 2016) 

 The developments of the system introduced novel use of image processing 

techniques for the fundus images handling in the screening process of 

diabetic retinopathy (Rahim et al., 2014; 2015a; 2015b; 2015c; 2016) 

 A new dataset of fundus images was developed, as an input for the research 

development, which is not only beneficial in the screening of diabetic 

retinopathy process, but for other retinal disease screenings, such as 

cataracts, glaucoma and hypertensive retinopathy among others. The new 

dataset is available at http://creative.coventry.ac.uk/fundus (Rahim et al., 

2015b; 2015c; 2016) 

 A thorough system performance analysis was undertaken, which compared 

the performance of automatic systems to the manual diagnosis performed by 

the expert 
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 Based on the proposed techniques and system configurations, the research 

designed a complete process for the automatic diabetic retinopathy 

screening, where the proposed system development framework can also be 

implemented for the automatic detection of other retinal diseases with only 

slightly different features involved 

 The research developed several automatic detection systems for the 

microaneurysms, the earliest visible and most important sign of diabetic 

retinopathy (Rahim et al., 2015a; 2015b) 

 The development of the systems employed fuzzy image processing 

techniques as a core contribution to the performance of the research work 

(Rahim et al., 2015a; 2015b; 2015c; 2016) 

 

Results from this research will benefit a number of areas; most notably, it will 

significantly improve the detectability of human eye diabetic retinopathy. Preventative 

action therefore can be taken to decrease the rates of diabetic retinopathy problems, in 

addition to the blindness risk. It also aims to assist clinicians to diagnose diabetic 

retinopathy at an early stage by using the developed detection techniques. The decision 

support system for clinical diagnosis would contribute greatly in assisting with the 

management and detection of diabetic retinopathy. The automated system will assist an 

ophthalmologist (or optometrist) to detect diabetic retinopathy (and its detailed 

classification) in a more efficient and faster way, compared to manual analysis. In 

addition to the classification of diabetic retinopathy, the system will indirectly assist in 

the provision of recommended follow-up schedules and treatment for each category of 

diabetic retinopathy, based on the generated classification. The crucial aim of diabetic 

retinopathy is to identify any sight threatening conditions and to make sure prompt 

treatment in order to avoid vision loss. Such appropriate ophthalmologist referrals 

should therefore be facilitated with the adoption of this system. 

 

Moreover, this research provides a significant contribution to knowledge in the area of 

medical image processing. This is achieved by proposing a novel use of image 

processing techniques in diabetic retinopathy screening, as listed in Chapter 1 and above 

in this chapter. The research proposes the image processing techniques combination for 
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the general diabetic retinopathy detection (System I). In addition, the research proposed 

a fuzzy technique-based eye screening system to detect the microaneurysms (System II, 

System III, System IV and System VI), one of the most important diabetic retinopathy 

signs. The developed system for the detection of microaneurysms could be a benchmark 

for the detection of other diabetic retinopathy signs development systems, such as 

exudates, haemorrhages and neovascularisation. Furthermore, the research presents a 

novel automatic diabetic retinopathy and maculopathy detection in retinal images using 

fuzzy image processing (System VI and System VII), which classifies retinopathy into 

stages based on the actual practice of the screening team (i.e., drawing from 

conventional practices). The proposed fuzzy-based image processing decision support 

system will help the screening of diabetic retinopathy and decrease the workload of the 

screening personnel. 

 

The development of an online novel dataset, which consists of 600 colour fundus 

images, alongside expert diagnosis is another important contribution of the research 

(System V, System VI and System VII). The normal and diabetic retinopathy fundus 

images combination from a new dataset representing the South East Asian population, 

in particular the Malaysian demographic, was a major part of this research work. One 

significant attribute of the dataset is that unlike other publicly available datasets, it 

represents the Asian population, as large numbers of such data are uncommon. The 

developed dataset is useful for researchers in promoting research on the area of retinal-

imaging, particularly in the field of diabetic retinopathy screening. 

 

6.2 Future Work 
As highlighted in an earlier section, the research work has produced several novelties 

that were embedded in the variants of the developed systems. Despite the fact that the 

promising results in the several techniques implementation showed in the this study, it 

is important to state that there is still room for improvement and some new directions 

for future research are listed below. 
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i. Combination of diabetic retinopathy features detection 

Diabetic retinopathy screening is a complicated process, as there are various signs of 

that need to be identified and detected in order to achieve a complete screening system. 

This research study however, concentrated on microaneurysms, the earliest and the most 

important diabetic retinopathy signs. Other important diabetic retinopathy features, such 

as exudates, haemorrhages, cotton wool spots and neovascularisation also need to be 

identified, according to the standard clinical severity scales for diabetic retinopathy. For 

each of the diabetic retinopathy features listed above, novel use of techniques should be 

proposed for their effective detection. In addition to these features, there are some 

exclusion criteria that need to be considered for the task of diabetic retinopathy 

detection, for example polyps, bleeding and drusen. The combination of all these 

features of diabetic retinopathy into a single system will provide a complete automatic 

diabetic retinopathy detection system. The diabetic retinopathy screening process has 

immense scope because it involves many features and criteria that need to be taken into 

account. The research can be extended to identify the other remaining diabetic 

retinopathy features and combine them into a complete screening system. A complete 

and accurate system could be used to assist the team of diabetic retinopathy screening to 

perform in an improved and more efficient way. As a conclusion, diabetic retinopathy 

screening is not an easy task, as many criteria need to be thoroughly examined before 

any diagnoses can be made.  

 

ii. Counting constraints for microaneurysms 

The counting of microaneurysms by an expert is required for a precise analysis in the 

development of the system or model, in order to make a comparison between the system 

results and the system counting. The number of microaneurysms given by the expert for 

the novel developed dataset is required as an input for the statistical tests, for example 

the T-test and Chi-square test. However, according to the expert from the Department of 

Ophthalmology, Melaka Hospital, Malaysia, the microaneurysms counting is almost 

impossible due to the following constraints. For example, if microaneurysms are 

present, they are numerous in number and the counting would no longer be accurate. 

This is further complicated when there is some overlapping among the microaneurysms. 

Furthermore, another constraint is the fact that microaneurysms could be easily 
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confused with blot haemorrhages of about the same size. A solution would be to group 

the microaneurysms into two main classifications, which are “No” for microaneurysms 

not detected and “Yes” for microaneurysms detected. For the “Yes” choice, would be 

another three sub-choices, i.e., “Low”, “Moderate/Medium” and “Severe”, according to 

the approximate microaneurysms number estimated by the expert. If there are just a few 

microaneurysms detected, then it is classified as “Low”, if there are several, it is 

classified as “Moderate”, and if there are many, then the classification will be “Severe”. 

The choice of these three cases is dependent on the threshold value for each class which 

can be fixed in advance. Based on the three sub-choices of microaneurysms detected, 

fuzzy logic may be used. This approach is an alternative to overcome the constraints to 

the accurate counting of microaneurysms. It can be applied to a novel developed 

dataset, that can in turn be proposed for future use of an automatic microaneurysms 

detection system development.  

 

iii. Combination of other fuzzy image processing techniques 

In addition to the proposed techniques of image processing, the research can be 

improved by the implementation of other different preprocessing techniques 

combinations, including those based on fuzzy approaches. The fuzzy image processing 

can be applied to fully explore the variety of fuzzy techniques capabilities. In order to 

produce a more reliable screening system, fuzzy image processing in addition to the 

extraction of retinal structure can be employed in diabetic retinopathy screening. An 

alternative technique for the future detection of optic disc, Fuzzy Circular Hough 

Transform, will be implemented. 

 

iv. Widely accessible developed dataset 

The research is not merely proposing an automatic diabetic retinopathy screening 

detection system, but has also introduced a new dataset of eye fundus images. The new 

dataset would be beneficial to researchers and practitioners working in the retinal 

imaging area, especially the diabetic retinopathy screening field. For future work, the 

online dataset can be made more widely accessible by integrating the dataset with other 

popular databases, for example the University of California Irvine (UCI) Machine 

Learning Repository, among others. 
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6.3 Summary 
One of the main health threats is diabetes mellitus, as it leads to a severe and enduring 

complications, as well as sight-threatening conditions. Diabetic retinopathy is a diabetes 

complication that affects the blood vessels damage inside the retina. Thus, both initial 

detection and timely treatment is essential for this retinal problem. Such an effective 

diagnosis and the diabetic retinopathy grading can assist in early detection of diabetic 

retinopathy and may decrease its prevalence. It is envisaged that a decision support 

system for clinical screening would contribute to and greatly assist in the management 

as well as the detection of diabetic retinopathy. It is also hoped that the developed 

detection technique will assist clinicians to diagnose diabetic retinopathy at an early 

stage.  

 

This research project examined the use of fundus images and techniques of image 

processing to detect the diabetic retinopathy presence in the eye. This is a particularly 

challenging problem and this research has made novel use of image processing 

techniques to automatically detect the retinopathy stages. Highly efficient and accurate 

image processing techniques must be used in order to produce an effective diagnosis of 

diabetic retinopathy. As such, this research proposed a new mechanism that could 

provide ophthalmologists with a novel way to identify and treat those who are most 

vulnerable to vision loss from diabetic retinopathy. Specific image processing 

techniques have been proposed and developed to test the efficiency of this approach 

compared to others. As a conclusion, the implementation of fuzzy image processing 

techniques play a significant role in generating better quality of image and enhanced 

performance. Eventually it can contribute to producing a more reliable screening 

system. 
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APPENDICES 

Appendix A Data Collection 

A.1 Data Collection Process 

Figure A.1 Data collection and diabetic retinopathy screening process 

 

 

Eye Clinic,  Melaka Hospital, Malaysia 

 

 
 

 

 

 

 

Fundus Camera VX-10 

 

 

 

 
 

 

 
 

Screening Process 

 

 

 

 
 

 

 

This item has been removed 
due to Data Protection. The 
unabridged version of the 
thesis can be found in the 

Lancester Library, Coventry 
University.
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No Diabetic Retinopathy 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

Figure A.2 No diabetic retinopathy images 

Mild DR without maculopathy 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

Figure A.3 Mild DR without maculopathy images 
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Mild DR with maculopathy 

 

 

 

 

 

 
 

 

 

 
 

 

 

 

Figure A.4 Mild DR with maculopathy images 

Moderate DR without maculopathy 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

Figure A.5 Moderate DR without maculopathy images 
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Moderate DR with maculopathy 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

Figure A.6 Moderate DR with maculopathy images 

Severe DR without maculopathy 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

Figure A.7 Severe DR without maculopathy images 
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Severe DR with maculopathy 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

Figure A.8 Severe DR with maculopathy images 

Proliferative DR without maculopathy 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

Figure A.9 Proliferative DR without maculopathy images 
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Proliferative DR with maculopathy 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

Figure A.10 Proliferative DR with maculopathy images 

Advanced Diabetic Eye Disease (ADED) 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

Figure A.11 Advanced diabetic eye disease images 
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Appendix B Online Developed Dataset Screenshots 

B.1 Website Screenshots (http://creative.coventry.ac.uk/fundus) 

 

Figure B.1 ‘Home’ page 

 

Figure B.2 ‘About’ page 

This item has been removed due to 3rd Party Copyright. The 
unabridged version of the thesis can be found in the Lancester 

Library, Coventry University.

This item has been removed due to 3rd Party Copyright. The 
unabridged version of the thesis can be found in the Lancester 

Library, Coventry University.
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Figure B.3 ‘Team’ page 

 

 

Figure B.4 ‘Publications’ page 

 

This item has been removed due to 3rd Party Copyright. The 
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Library, Coventry University.
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Library, Coventry University.
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