111 research outputs found

    Surgical Management of the Aortic Root

    Get PDF

    Aortic root dimension changes during systole and diastole: evaluation with ECG-gated multidetector row computed tomography

    Get PDF
    Cardiac pulsatility and aortic compliance may result in aortic area and diameter changes throughout the cardiac cycle in the entire aorta. Until this moment these dynamic changes could never be established in the aortic root (aortic annulus, sinuses of Valsalva and sinotubular junction). The aim of this study was to visualize and characterize the changes in aortic root dimensions during systole and diastole with ECG-gated multidetector row computed tomography (MDCT). MDCT scans of subjects without aortic root disease were analyzed. Retrospectively, ECG-gated reconstructions at each 10% of the cardiac cycle were made and analyzed during systole (30–40%) and diastole (70–75%). Axial planes were reconstructed at three different levels of the aortic root. At each level the maximal and its perpendicular luminal dimension were measured. The mean dimensions of the total study group (n = 108, mean age 56 ± 13 years) do not show any significant difference between systole and diastole. The individual dimensions vary up to 5 mm. However, the differences range between minus 5 mm (diastolic dimension is greater than systolic dimensions) and 5 mm (vice versa). This variability is independent of gender, age, height and weight. This study demonstrated a significant individual dynamic change in the dimensions of the aortic root. These results are highly unpredictable. Most of the healthy subjects have larger systolic dimensions, however, some do have larger diastolic dimensions

    Computational analysis of blood flow and stress patterns in the aorta of patients with Marfan syndrome

    Get PDF
    Personalised external aortic root support (PEARS) was designed to prevent progressive aortic dilatation, and the associated risk of aortic dissection, in patients with Marfan syndrome by providing an additional support to the aorta. The objective of this thesis was to understand the biomechanical implications of PEARS surgery as well as to investigate the altered haemodynamics associated with the disease and its treatment. Finite element (FE) models were developed using patient-specific aortic geometries reconstructed from pre and post-PEARS magnetic resonance (MR) images of three Marfan patients. The wall and PEARS materials were assumed to be isotropic, incompressible and linearly elastic. A static load on the inner wall corresponding to the patients’ pulse pressure was applied with a zero-displacement constraint at all boundaries. Results showed that peak aortic stresses and displacements before PEARS were located at the sinuses of Valsalva but following PEARS surgery, they were shifted to the aortic arch, at the intersection between the supported and unsupported aorta. The zero-displacement constraint at the aortic root was subsequently removed and replaced with downward motion measured from in vivo images. This revealed significant increases in the longitudinal wall stress, especially in the pre-PEARS models. Computational fluid dynamics (CFD) models were developed to evaluate flow characteristics. The correlation-based transitional Shear Stress Transport (SST-Tran) model was adopted to simulate potential transitional and turbulence flow during part of the cardiac cycle and flow waveforms derived from phase-contrast MR images were imposed at the inlets. Qualitative patterns of the haemodynamics were similar pre- and post-PEARS with variations in mean helicity flow index (HFI) of -10%, 35% and 20% in the post-PEARS aortas of the three patients. A fluid-structure interaction (FSI) model was developed for one patient, pre- and post-PEARS in order to examine the effect of wall compliance on aortic flow as well as the effect of pulsatile flow on wall stress. This model excluded the sinuses and was based on the laminar flow assumption. The results were similar to those obtained using the rigid wall and static structural models, with minor quantitative differences. Considering the higher computational cost of FSI simulations and the relatively small differences observed in peak wall stress, it is reasonable to suggest that static structural models would be sufficient for wall stress prediction. Additionally, aortic root motion had a more profound effect on wall stress than wall compliance. Further studies are required to assess the statistical significance of the findings outlined in this thesis. Recommendations for future work were also highlighted, with emphasis on model assumptions including material properties, residual stress and boundary conditions.Open Acces

    4D flow imaging of the thoracic aorta: is there an added clinical value?

    Get PDF
    Four-dimensional (4D) flow MRI has emerged as a powerful non-invasive technique in cardiovascular imaging, enabling to analyse in vivo complex flow dynamics models by quantifying flow parameters and derived features. Deep knowledge of aortic flow dynamics is fundamental to better understand how abnormal flow patterns may promote or worsen vascular diseases. In the perspective of an increasingly personalized and preventive medicine, growing interest is focused on identifying those quantitative functional features which are early predictive markers of pathological evolution. The thoracic aorta and its spectrum of diseases, as the first area of application and development of 4D flow MRI and supported by an extensive experimental validation, represents the ideal model to introduce this technique into daily clinical practice. The purpose of this review is to describe the impact of 4D flow MRI in the assessment of the thoracic aorta and its most common affecting diseases, providing an overview of the actual clinical applications and describing the potential role of derived advanced hemodynamic measures in tailoring follow-up and treatment

    Etude morphologique et métrologique des sinus de Valsalva par traitement d'images tomographiques

    Get PDF
    L'objectif de cette thèse est l'élaboration et l'application de traitements d'images pour permettre une étude objective et fiable des sinus de Valsalva, importantes cavités de la base de l'aorte. Les méthodes proposées s'appliquent aux séquences ciné-IRM et aux examens de scanner sans qu'il n'y ait à modifier le paramétrage entre deux examens. Pour cela, nous avons d'abord étudié la morphologie de cette zone anatomique puis détaillé les différentes propriétés communes à toutes les images de sinus. Ceux-ci font en l'occurrence partie des principaux organes clairs et peu mobiles. Nous avons donc développé un algorithme qui détecte ces éléments et caractérise chacun d'entre eux par une trajectoire unique. Divers outils de morphologie mathématique ont été utilisés à cette occasion, tout comme pour l'extraction du contour des sinus dans chaque image. L'étape de segmentation repose elle sur la reconstruction géodésique, qui s'avère plus efficace et surtout plus robuste que l'usage de contours actifs usuels. L'intérieur des sinus forme un domaine simplement connexe et étoilé. Grâce à ce postulat, nous avons conçu une nouvelle reconstruction, nommée transformée en aurore, qui limite la propagation des intensités aux supports radiaux et présente les résultats dans un repère polaire pour une meilleure lecture des contours.Les points caractéristiques des sinus ont également été détectés, par étude de rayons et détermination de points dominants. Ces points fournissent les éléments nécessaires à une mesure automatique des sinus, mesure cohérente avec les mesures actuellement réalisées manuellement et les variations intra et inter-observateurs de celles-ci. D'autres outils sont enfin esquissés pour modéliser le contour par coniques, classer les images d'examens cinétiques en fonction du moment du cycle et suivre le mouvement des valves dans ces mêmes examens.L'ensemble de ces travaux ont amené à la réalisation d'un logiciel d'aide au diagnostic qui intègre nos méthodes et dont l'interface est également présentée dans le présent mémoire.This Phd thesis deals with the design and the use of image processing tools in order to allow a reliable and objective study of the sinuses of Valsalva which are important cavities of the aortic root. The proposed methods can be applied on cine-MR sequences and CT examinations without any change in the settings between two examinations.Firstly, we studied the morphology of this anatomical area and its constant properties in all images of the dataset. Sinuses are one of the main bright organs with limited movements. Hence a new algorithm has been designed. It detects and characterizes each bright organ by a single trajectory. Various tools of mathematical morphology are used for this step, as for the extraction of the contour of the sinuses in each image.The segmentation step is based on the geodesic reconstruction, which is more effective and more robust than the usual active contours. The shape depicting the sinuses is simply connected and a star domain. With this assumption, a new reconstruction is proposed, called the Aurora transform. This transform limits the spread of intensities only on the radial lines and shows its results in a polar space for a better reading of edges.The relevant points of the sinuses are also detected by a study of radii and the determination of dominant points along edges. An automatic measurement of the sinuses is deduced from these points. The values are very close to the manual measures currently done according to the intra-and inter-observer variations.Some other tools are finally outlined. They includes the modeling of edges by conics, the image classification depending on the time of the cycle in sequences and the tracking of the aortic valves in these examinations.This work led to the devlopement of a diagnostic aid software based on our methods. Its interface is also presented herein.DIJON-BU Doc.électronique (212319901) / SudocSudocFranceF

    Cardiovascular Magnetic Resonance in Marfan syndrome

    Full text link

    4D Flow cardiovascular magnetic resonance consensus statement: 2023 update

    Full text link
    Hemodynamic assessment is an integral part of the diagnosis and management of cardiovascular disease. Four-dimensional cardiovascular magnetic resonance flow imaging (4D Flow CMR) allows comprehensive and accurate assessment of flow in a single acquisition. This consensus paper is an update from the 2015 '4D Flow CMR Consensus Statement'. We elaborate on 4D Flow CMR sequence options and imaging considerations. The document aims to assist centers starting out with 4D Flow CMR of the heart and great vessels with advice on acquisition parameters, post-processing workflows and integration into clinical practice. Furthermore, we define minimum quality assurance and validation standards for clinical centers. We also address the challenges faced in quality assurance and validation in the research setting. We also include a checklist for recommended publication standards, specifically for 4D Flow CMR. Finally, we discuss the current limitations and the future of 4D Flow CMR. This updated consensus paper will further facilitate widespread adoption of 4D Flow CMR in the clinical workflow across the globe and aid consistently high-quality publication standards

    4D Flow cardiovascular magnetic resonance consensus statement: 2023 update

    Get PDF
    4D Flow MRI; Hemodynamics; RecommendationsRessonància magnètica de flux 4D; Hemodinàmica; RecomanacionsResonancia magnética de flujo 4D; Hemodinámica; RecomendacionesHemodynamic assessment is an integral part of the diagnosis and management of cardiovascular disease. Four-dimensional cardiovascular magnetic resonance flow imaging (4D Flow CMR) allows comprehensive and accurate assessment of flow in a single acquisition. This consensus paper is an update from the 2015 ‘4D Flow CMR Consensus Statement’. We elaborate on 4D Flow CMR sequence options and imaging considerations. The document aims to assist centers starting out with 4D Flow CMR of the heart and great vessels with advice on acquisition parameters, post-processing workflows and integration into clinical practice. Furthermore, we define minimum quality assurance and validation standards for clinical centers. We also address the challenges faced in quality assurance and validation in the research setting. We also include a checklist for recommended publication standards, specifically for 4D Flow CMR. Finally, we discuss the current limitations and the future of 4D Flow CMR. This updated consensus paper will further facilitate widespread adoption of 4D Flow CMR in the clinical workflow across the globe and aid consistently high-quality publication standards.1R01HL149787-01A1 (S. Schnell, M. Markl), 1R21NS122511-01 (S. Schnell), 1R01CA233878-01 (J.Collins) J.Sotelo thanks to ANID–Millennium Science Initiative Program–ICN2021_004 and FONDECYT de iniciación en investigación #11200481. Dr. Oechtering receives funding from the German Research Foundation (OE 746/1-1)

    Feasibility of rapid and automated importation of 3D echocardiographic left ventricular (LV) geometry into a finite element (FEM) analysis model

    Get PDF
    BACKGROUND: Finite element method (FEM) analysis for intraoperative modeling of the left ventricle (LV) is presently not possible. Since 3D structural data of the LV is now obtainable using standard transesophageal echocardiography (TEE) devices intraoperatively, the present study describes a method to transfer this data into a commercially available FEM analysis system: ABAQUS(©). METHODS: In this prospective study TomTec LV Analysis TEE(© )Software was used for semi-automatic endocardial border detection, reconstruction, and volume-rendering of the clinical 3D echocardiographic data. A newly developed software program MVCP FemCoGen(©), written in Delphi, reformats the TomTec file structures in five patients for use in ABAQUS and allows visualization of regional deformation of the LV. RESULTS: This study demonstrates that a fully automated importation of 3D TEE data into FEM modeling is feasible and can be efficiently accomplished in the operating room. CONCLUSION: For complete intraoperative 3D LV finite element analysis, three input elements are necessary: 1. time-gaited, reality-based structural information, 2. continuous LV pressure and 3. instantaneous tissue elastance. The first of these elements is now available using the methods presented herein

    Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phase contrast cardiovascular magnetic resonance (CMR) is able to measure all three directional components of the velocities of blood flow relative to the three spatial dimensions and the time course of the heart cycle. In this article, methods used for the acquisition, visualization, and quantification of such datasets are reviewed and illustrated.</p> <p>Methods</p> <p>Currently, the acquisition of 3D cine (4D) phase contrast velocity data, synchronized relative to both cardiac and respiratory movements takes about ten minutes or more, even when using parallel imaging and optimized pulse sequence design. The large resulting datasets need appropriate post processing for the visualization of multidirectional flow, for example as vector fields, pathlines or streamlines, or for retrospective volumetric quantification.</p> <p>Applications</p> <p>Multidirectional velocity acquisitions have provided 3D visualization of large scale flow features of the healthy heart and great vessels, and have shown altered patterns of flow in abnormal chambers and vessels. Clinically relevant examples include retrograde streams in atheromatous descending aortas as potential thrombo-embolic pathways in patients with cryptogenic stroke and marked variations of flow visualized in common aortic pathologies. Compared to standard clinical tools, 4D velocity mapping offers the potential for retrospective quantification of flow and other hemodynamic parameters.</p> <p>Conclusions</p> <p>Multidirectional, 3D cine velocity acquisitions are contributing to the understanding of normal and pathologically altered blood flow features. Although more rapid and user-friendly strategies for acquisition and analysis may be needed before 4D velocity acquisitions come to be adopted in routine clinical CMR, their capacity to measure multidirectional flows throughout a study volume has contributed novel insights into cardiovascular fluid dynamics in health and disease.</p
    corecore