5 research outputs found

    Graphics Processing Unit–Accelerated Nonrigid Registration of MR Images to CT Images During CT-Guided Percutaneous Liver Tumor Ablations

    Get PDF
    Rationale and Objectives: Accuracy and speed are essential for the intraprocedural nonrigid MR-to-CT image registration in the assessment of tumor margins during CT-guided liver tumor ablations. While both accuracy and speed can be improved by limiting the registration to a region of interest (ROI), manual contouring of the ROI prolongs the registration process substantially. To achieve accurate and fast registration without the use of an ROI, we combined a nonrigid registration technique based on volume subdivision with hardware acceleration using a graphical processing unit (GPU). We compared the registration accuracy and processing time of GPU-accelerated volume subdivision-based nonrigid registration technique to the conventional nonrigid B-spline registration technique. Materials and Methods: Fourteen image data sets of preprocedural MR and intraprocedural CT images for percutaneous CT-guided liver tumor ablations were obtained. Each set of images was registered using the GPU-accelerated volume subdivision technique and the B-spline technique. Manual contouring of ROI was used only for the B-spline technique. Registration accuracies (Dice Similarity Coefficient (DSC) and 95% Hausdorff Distance (HD)), and total processing time including contouring of ROIs and computation were compared using a paired Student’s t-test. Results: Accuracy of the GPU-accelerated registrations and B-spline registrations, respectively were 88.3 ± 3.7% vs 89.3 ± 4.9% (p = 0.41) for DSC and 13.1 ± 5.2 mm vs 11.4 ± 6.3 mm (p = 0.15) for HD. Total processing time of the GPU-accelerated registration and B-spline registration techniques was 88 ± 14 s vs 557 ± 116 s (p < 0.000000002), respectively; there was no significant difference in computation time despite the difference in the complexity of the algorithms (p = 0.71). Conclusion: The GPU-accelerated volume subdivision technique was as accurate as the B-spline technique and required significantly less processing time. The GPU-accelerated volume subdivision technique may enable the implementation of nonrigid registration into routine clinical practice

    Parallel Computation of Nonrigid Image Registration

    Get PDF
    Automatic intensity-based nonrigid image registration brings significant impact in medical applications such as multimodality fusion of images, serial comparison for monitoring disease progression or regression, and minimally invasive image-guided interventions. However, due to memory and compute intensive nature of the operations, intensity-based image registration has remained too slow to be practical for clinical adoption, with its use limited primarily to as a pre-operative too. Efficient registration methods can lead to new possibilities for development of improved and interactive intraoperative tools and capabilities. In this thesis, we propose an efficient parallel implementation for intensity-based three-dimensional nonrigid image registration on a commodity graphics processing unit. Optimization techniques are developed to accelerate the compute-intensive mutual information computation. The study is performed on the hierarchical volume subdivision-based algorithm, which is inherently faster than other nonrigid registration algorithms and structurally well-suited for data-parallel computation platforms. The proposed implementation achieves more than 50-fold runtime improvement over a standard implementation on a CPU. The execution time of nonrigid image registration is reduced from hours to minutes while retaining the same level of registration accuracy

    Automated analysis and visualization of preclinical whole-body microCT data

    Get PDF
    In this thesis, several strategies are presented that aim to facilitate the analysis and visualization of whole-body in vivo data of small animals. Based on the particular challenges for image processing, when dealing with whole-body follow-up data, we addressed several aspects in this thesis. The developed methods are tailored to handle data of subjects with significantly varying posture and address the large tissue heterogeneity of entire animals. In addition, we aim to compensate for lacking tissue contrast by relying on approximation of organs based on an animal atlas. Beyond that, we provide a solution to automate the combination of multimodality, multidimensional data.* Advanced School for Computing and Imaging (ASCI), Delft, NL * Bontius Stichting inz Doelfonds Beeldverwerking, Leiden, NL * Caliper Life Sciences, Hopkinton, USA * Foundation Imago, Oegstgeest, NLUBL - phd migration 201

    Modelling and verification of doses delivered to deformable moving targets in radiotherapy

    Get PDF
    During the last two decades, advanced treatment techniques have been developed in radiotherapy to achieve more conformal beam targeting of cancerous lesions. The advent of these techniques, such as intensity modulated radiotherapy (IMRT), volumetric modulated arc radiothreapy (VMAT), Tomotherapy etc., allows more precise localisation of higher doses to complex-shaped target volumes, thereby sparing more healthy tissue. In this context, motion management is a critical issue in contemporary radiotherapy (RT). That anatomic structures move during respiration is well known and much research is presently being devoted to strategies to contend with organ motion. However, moving structures are typically regarded as rigid bodies. The fact that many structures deform as a result of motion makes their resultant dose distributions difficult to measure and calculate, and has not been fully accounted for. The potential for ineffective treatments that do not take into account motion and anatomic deformation is self-evident. This thesis addresses the pressing need to investigate dose distributions in targets that deform during and/or between treatments, to ensure robust calculations for dose accumulation and delivery, thus providing the most positive outcomes for patients. This involves the direct measurement of complex and re-distributed dose in deforming objects (an experimental model), as well as calculations of the deformed dose distribution (a mathematical model). The comparison thereof aims to validate the dose deformation technique, thereby to apply the method to a clinical example such as liver stereotactic body radiotherapy. To facilitate four-dimensional deformable dosimetry for both external beam radiotherapy and brachytherapy, methodologies for three-dimensional deformed dose measurements were developed and employed using radiosensitive polymer gel combined with a cone beam optical computed tomography (CT) scanner. This includes the development of a novel prototype deformable target volume using a tissue-equivalent, deformable gel dosimetric phantom, dubbed &amp;ldquo;defgel&amp;rdquo;. This can reproducibly simulate targets subject to a range of mass- and density-conserving deformations representative of those observable in anatomical targets. This novel tool was characterised in terms of its suitability for the measurement of dose in deforming geometries. It was demonstrated that planned doses could be delivered to the deformable gel dosimeter in the presence of different deformations and complex spatial re-distributions of dose in all three dimensions could be quantified. For estimating the cumulative dose in different deformed states, deformable image registration (DIR) algorithms were implemented to &amp;lsquo;morph&amp;rsquo; a dose distribution calculated by a treatment planning system. To investigate the performance of DIR and dose-warping technique, two key studies were undertaken. The first was to systematically assess the accuracy of a range of different DIR algorithms available in the public domain and quantitatively examine, in particular, low-contrast regions, where accuracy had not previously been established. This work investigates DIR algorithms in 3D via a systematic evaluation process using defgel suitable for verification of mass- and density-conserving deformations. The second study was a full three-dimensional experimental validation of the dose-warping technique using the evaluated DIR algorithm and comparing it to directly measured deformed dose distributions from defgel. It was shown that the dose-warping can be accurate, i.e. over 95% passing rate of 3D-gamma analysis with 3%/3mm criteria for given extents of deformation up to 20 mm For the application of evaluating patient treatment planning involving tumour motion/deformation, two key studies were undertaken in the context of liver stereotactic body radiotherapy. The first was a 4D evaluation of conventional 3D treatment planning, combined with 4D computed tomography, in order to investigate the extent of dosimetric differences between conventional 3D-static and path-integrated 4D-cumulative dose calculation. This study showed that the 3D planning approach overestimated doses to targets by &amp;le; 9% and underestimated dose to normal liver by &amp;le; 8%, compared to the 4D methodology. The second study was to assess a consequent reduction of healthy tissue sparing, which may increase risk for surrounding healthy tissues. Estimates for normal tissue complications probabilities (NTCP) based on the two dose calculation schemes are provided. While all NTCP were low for the employed fractionation scheme, analysis of common alternative schemes suggests potentially larger uncertainties exist in the estimation of NTCP for healthy liver and that substantial differences in these values may exist across the different fractionation schemes. These bodies of work have shown the potential to quantify such issues of under- and/or over-dosages which are quite patient dependent in RT. Studies presented in this work consolidate gel dosimetry, image guidance, DIR, dose-warping and consequent dose accumulation calculation to investigate the dosimetric impact and make more accurate evaluation of conventional 3D treatment plans. While liver stereotactic body radiotherapy (SBRT) was primarily concerned for immediate clinical application, the findings of this thesis are also applicable to other organs with various RT techniques. Most importantly, however, it is hoped that the outcomes of this thesis will help to improve treatment plan accuracy. By considering both computation and measurement, it is also hoped that this work will open new windows for future work and hence provide building blocks to further enhance the benefit of radiotherapy treatment
    corecore