5,975 research outputs found

    Automatic Diagnosis for Prostate Cancer Using Run-Length Matrix Method

    Get PDF
    Prostate cancer is the most common type of cancer and the second leading cause of cancer death among men in US1. Quantitative assessment of prostate histology provides potential automatic classification of prostate lesions and prediction of response to therapy. Traditionally, prostate cancer diagnosis is made by the analysis of prostate-specific antigen (PSA) levels and histopathological images of biopsy samples under microscopes. In this application, we utilize a texture analysis method based on the run-length matrix for identifying tissue abnormalities in prostate histology. A tissue sample was collected from a radical prostatectomy, H&E fixed, and assessed by a pathologist as normal tissue or prostatic carcinoma (PCa). The sample was then subsequently digitized at 50X magnification. We divided the digitized image into sub-regions of 20 X 20 pixels and classified each sub-region as normal or PCa by a texture analysis method. In the texture analysis, we computed texture features for each of the sub-regions based on the Gray-level Run-length Matrix(GL-RLM). Those features include LGRE, HGRE and RPC from the run-length matrix, mean and standard deviation of the pixel intensity. We utilized a feature selection algorithm to select a set of effective features and used a multi-layer perceptron (MLP) classifier to distinguish normal from PCa. In total, the whole histological image was divided into 42 PCa and 6280 normal regions. Three-fold cross validation results show that the proposed method achieves an average classification accuracy of 89.5% with a sensitivity and specificity of 90.48% and 89.49%, respectively

    Adjacent Slice Prostate Cancer Prediction to Inform MALDI Imaging Biomarker Analysis

    Get PDF
    Prostate cancer is the second most common type of cancer among men in US [1]. Traditionally, prostate cancer diagnosis is made by the analysis of prostate-specific antigen (PSA) levels and histopathological images of biopsy samples under microscopes. Proteomic biomarkers can improve upon these methods. MALDI molecular spectra imaging is used to visualize protein/peptide concentrations across biopsy samples to search for biomarker candidates. Unfortunately, traditional processing methods require histopathological examination on one slice of a biopsy sample while the adjacent slice is subjected to the tissue destroying desorption and ionization processes of MALDI. The highest confidence tumor regions gained from the histopathological analysis are then mapped to the MALDI spectra data to estimate the regions for biomarker identification from the MALDI imaging. This paper describes a process to provide a significantly better estimate of the cancer tumor to be mapped onto the MALDI imaging spectra coordinates using the high confidence region to predict the true area of the tumor on the adjacent MALDI imaged slice

    Predicting Pancreatic Cancer Using Support Vector Machine

    Get PDF
    This report presents an approach to predict pancreatic cancer using Support Vector Machine Classification algorithm. The research objective of this project it to predict pancreatic cancer on just genomic, just clinical and combination of genomic and clinical data. We have used real genomic data having 22,763 samples and 154 features per sample. We have also created Synthetic Clinical data having 400 samples and 7 features per sample in order to predict accuracy of just clinical data. To validate the hypothesis, we have combined synthetic clinical data with subset of features from real genomic data. In our results, we observed that prediction accuracy, precision, recall with just genomic data is 80.77%, 20%, 4%. Prediction accuracy, precision, recall with just synthetic clinical data is 93.33%, 95%, 30%. While prediction accuracy, precision, recall for combination of real genomic and synthetic clinical data is 90.83%, 10%, 5%. The combination of real genomic and synthetic clinical data decreased the accuracy since the genomic data is weakly correlated. Thus we conclude that the combination of genomic and clinical data does not improve pancreatic cancer prediction accuracy. A dataset with more significant genomic features might help to predict pancreatic cancer more accurately

    An Adaptive Algorithm to Identify Ambiguous Prostate Capsule Boundary Lines for Three-Dimensional Reconstruction and Quantitation

    Get PDF
    Currently there are few parameters that are used to compare the efficiency of different methods of cancerous prostate surgical removal. An accurate assessment of the percentage and depth of extra-capsular soft tissue removed with the prostate by the various surgical techniques can help surgeons determine the appropriateness of surgical approaches. Additionally, an objective assessment can allow a particular surgeon to compare individual performance against a standard. In order to facilitate 3D reconstruction and objective analysis and thus provide more accurate quantitation results when analyzing specimens, it is essential to automatically identify the capsule line that separates the prostate gland tissue from its extra-capsular tissue. However the prostate capsule is sometimes unrecognizable due to the naturally occurring intrusion of muscle and connective tissue into the prostate gland. At these regions where the capsule disappears, its contour can be arbitrarily reconstructed by drawing a continuing contour line based on the natural shape of the prostate gland. Presented here is a mathematical model that can be used in deciding the missing part of the capsule. This model approximates the missing parts of the capsule where it disappears to a standard shape by using a Generalized Hough Transform (GHT) approach to detect the prostate capsule. We also present an algorithm based on a least squares curve fitting technique that uses a prostate shape equation to merge previously detected capsule parts with the curve equation to produce an approximated curve that represents the prostate capsule. We have tested our algorithms using three shapes on 13 prostate slices that are cut at different locations from the apex and the results are promisin

    Multi-Features Classification of Prostate Carcinoma Observed in Histological Sections: Analysis of Wavelet-Based Texture and Colour Features

    Get PDF
    Microscopic biopsy images are coloured in nature because pathologists use the haematoxylin and eosin chemical colour dyes for biopsy examinations. In this study, biopsy images are used for histological grading and the analysis of benign and malignant prostate tissues. The following PCa grades are analysed in the present study: benign, grade 3, grade 4, and grade 5. Biopsy imaging has become increasingly important for the clinical assessment of PCa. In order to analyse and classify the histological grades of prostate carcinomas, pixel-based colour moment descriptor (PCMD) and gray-level co-occurrence matrix (GLCM) methods were used to extract the most significant features for multilayer perceptron (MLP) neural network classification. Haar wavelet transformation was carried out to extract GLCM texture features, and colour features were extracted from RGB (red/green/blue) colour images of prostate tissues. The MANOVA statistical test was performed to select significant features based on F-values and P-values using the R programming language. We obtained an average highest accuracy of 92.7% using level-1 wavelet texture and colour features. The MLP classifier performed well, and our study shows promising results based on multi-feature classification of histological sections of prostate carcinomas.ope

    Multiparametric MRI and Radiomics in Prostate Cancer: A Review of the Current Literature

    Get PDF
    Prostate cancer (PCa) represents the fourth most common cancer and the fifth leading cause of cancer death of men worldwide. Multiparametric MRI (mp-MRI) has high sensitivity and specificity in the detection of PCa, and it is currently the most widely used imaging technique for tumor localization and cancer staging. mp-MRI plays a key role in risk stratification of naive patients, in active surveillance for low-risk patients, and in monitoring recurrence after definitive therapy. Radiomics is an emerging and promising tool which allows a quantitative tumor evaluation from radiological images via conversion of digital images into mineable high-dimensional data. The purpose of radiomics is to increase the features available to detect PCa, to avoid unnecessary biopsies, to define tumor aggressiveness, and to monitor post-treatment recurrence of PCa. The integration of radiomics data, including different imaging modalities (such as PET-CT) and other clinical and histopathological data, could improve the prediction of tumor aggressiveness as well as guide clinical decisions and patient management. The purpose of this review is to describe the current research applications of radiomics in PCa on MR images

    The value of MR textural analysis in prostate cancer

    Get PDF
    Current diagnosis and treatment stratification of patients with suspected prostate cancer relies on a combination of histological and magnetic resonance imaging (MRI) findings. The aim of this article is to provide a brief overview of prostate pathological grading as well as the relevant aspects of multiparametric (MRI) mpMRI, before indicating the potential that magnetic resonance textural analysis (MRTA) offers within prostate cancer. A review of the evidence base on MRTA in prostate cancer will enable discussion of the utility of this field while also indicating recommendations to future research. Radiomic textural analysis allows the assessment of spatial inter-relationships between pixels within an image by use of mathematical methods. First-order textural analysis is better understood and may have more clinical validity than higher-order textural features. Textural features extracted from apparent diffusion coefficient maps have shown the most potential for clinical utility in MRTA of prostate cancers. Future studies should aim to integrate machine learning techniques to better represent the role of MRTA in prostate cancer clinical practice. Nomenclature should be used to reduce misidentification between first-order and second-order energy and entropy. Automated methods of segmentation should be encouraged in order to reduce problems associated with inclusion of normal tissue within regions of interest. The retrospective and small-scale nature of most published studies, make it difficult to draw meaningful conclusions. Future larger prospective studies are required to validate the textural features indicated to have potential in characterisation and/or diagnosis of prostate cancer before translation into routine clinical practice
    corecore