34 research outputs found

    Automated Bone Age Assessment: Motivation, Taxonomies, and Challenges

    Get PDF
    Bone age assessment (BAA) of unknown people is one of the most important topics in clinical procedure for evaluation of biological maturity of children. BAA is performed usually by comparing an X-ray of left hand wrist with an atlas of known sample bones. Recently, BAA has gained remarkable ground from academia and medicine. Manual methods of BAA are time-consuming and prone to observer variability. This is a motivation for developing automated methods of BAA. However, there is considerable research on the automated assessment, much of which are still in the experimental stage. This survey provides taxonomy of automated BAA approaches and discusses the challenges. Finally, we present suggestions for future research

    A Survey on Artificial Intelligence Techniques for Biomedical Image Analysis in Skeleton-Based Forensic Human Identification

    Get PDF
    This paper represents the first survey on the application of AI techniques for the analysis of biomedical images with forensic human identification purposes. Human identification is of great relevance in today’s society and, in particular, in medico-legal contexts. As consequence, all technological advances that are introduced in this field can contribute to the increasing necessity for accurate and robust tools that allow for establishing and verifying human identity. We first describe the importance and applicability of forensic anthropology in many identification scenarios. Later, we present the main trends related to the application of computer vision, machine learning and soft computing techniques to the estimation of the biological profile, the identification through comparative radiography and craniofacial superimposition, traumatism and pathology analysis, as well as facial reconstruction. The potentialities and limitations of the employed approaches are described, and we conclude with a discussion about methodological issues and future research.Spanish Ministry of Science, Innovation and UniversitiesEuropean Union (EU) PGC2018-101216-B-I00Regional Government of Andalusia under grant EXAISFI P18-FR-4262Instituto de Salud Carlos IIIEuropean Union (EU) DTS18/00136European Commission H2020-MSCA-IF-2016 through the Skeleton-ID Marie Curie Individual Fellowship 746592Spanish Ministry of Science, Innovation and Universities-CDTI, Neotec program 2019 EXP-00122609/SNEO-20191236European Union (EU)Xunta de Galicia ED431G 2019/01European Union (EU) RTI2018-095894-B-I0

    Segmentation of Carpal Bones Using Gradient Inverse Coefficient of Variation with Dynamic Programming Method

    Get PDF
    Segmentation of the carpal bones (CBs) especially for children above seven years old is a challenging task in computer vision mainly because of poor definitions of the bone contours and the occurrence of the partial overlapping of the bones. Although active contour methods are widely employed in image bone segmentation, they are sensitive to initialization and have limitation in segmenting overlapping objects.  Thus, there is a need for a robust segmentation method for bone segmentation. This paper presents an automatic active boundary-based segmentation method, gradient inverse coefficient of variation, based on dynamic programming (DP-GICOV) method to segment carpal bones on radiographic images of children age 5 to 8 years old. A mapping procedure is designed based on a priori knowledge about the natural growth and the arrangement of carpal bones in human body. The accuracy of the DP-GICOV is compared qualitatively and quantitatively with the de-regularized level set (DRLS) and multi-scale gradient vector flow (MGVF) on a dataset of 20 images of carpal bones from University of Southern California. The presented method is capable to detect the bone boundaries fast and accurate. Results show that the DP-GICOV is highly accurate especially for overlapping bones, which is more than 85% in many cases, and it requires minimal user’s intervention. This method has produced a promised result in overcoming both issues faced by active contours method; initialization and overlapping objects

    On the segmentation and classification of hand radiographs

    Get PDF
    This research is part of a wider project to build predictive models of bone age using hand radiograph images. We examine ways of finding the outline of a hand from an X-ray as the first stage in segmenting the image into constituent bones. We assess a variety of algorithms including contouring, which has not previously been used in this context. We introduce a novel ensemble algorithm for combining outlines using two voting schemes, a likelihood ratio test and dynamic time warping (DTW). Our goal is to minimize the human intervention required, hence we investigate alternative ways of training a classifier to determine whether an outline is in fact correct or not. We evaluate outlining and classification on a set of 1370 images. We conclude that ensembling with DTW improves performance of all outlining algorithms, that the contouring algorithm used with the DTW ensemble performs the best of those assessed, and that the most effective classifier of hand outlines assessed is a random forest applied to outlines transformed into principal components

    Automating the decision making process of Todd’s age estimation method from the pubic symphysis with explainable machine learning

    Get PDF
    Age estimation is a fundamental task in forensic anthropology for both the living and the dead. The procedure consists of analyzing properties such as appearance, ossification patterns, and morphology in different skeletonized remains. The pubic symphysis is extensively used to assess adults’ age-at-death due to its reliability. Nevertheless, most methods currently used for skeleton-based age estimation are carried out manually, even though their automation has the potential to lead to a considerable improvement in terms of economic resources, effectiveness, and execution time. In particular, explainable machine learning emerges as a promising means of addressing this challenge by engaging forensic experts to refine and audit the extracted knowledge and discover unknown patterns hidden in the complex and uncertain available data. In this contribution we address the automation of the decision making process of Todd’s pioneering age assessment method to assist the forensic practitioner in its application. To do so, we make use of the pubic bone data base available at the Physical Anthropology lab of the University of Granada. The machine learning task is significantly complex as it becomes an imbalanced ordinal classification problem with a small sample size and a high dimension. We tackle it with the combination of an ordinal classification method and oversampling techniques through an extensive experimental setup. Two forensic anthropologists refine and validate the derived rule base according to their own expertise and the knowledge available in the area. The resulting automatic system, finally composed of 34 interpretable rules, outperforms the state-of-the-art accuracy. In addition, and more importantly, it allows the forensic experts to uncover novel and interesting insights about how Todd’s method works, in particular, and the guidelines to estimate age-at-death from pubic symphysis characteristics, generally.Ministry of Science and Innovation, Spain (MICINN) Spanish GovernmentAgencia Estatal de Investigacion (AEI) PID2021-122916NB-I00 Spanish Government PGC2018-101216-B-I00Junta de AndaluciaUniversity of Granada P18 -FR -4262 B-TIC-456-UGR20European CommissionUniversidad de Granada/CBU

    Predictive Modelling of Bone Ageing

    Get PDF
    Bone age assessment (BAA) is a task performed daily by paediatricians in hospitalsworldwide. The main reasons for BAA to be performed are: fi�rstly, diagnosis of growth disorders through monitoring skeletal development; secondly, prediction of final adult height; and fi�nally, verifi�cation of age claims. Manually predicting bone age from radiographs is a di�fficult and time consuming task. This thesis investigates bone age assessment and why automating the process will help. A review of previous automated bone age assessment systems is undertaken and we investigate why none of these systems have gained widespread acceptance. We propose a new automated method for bone age assessment, ASMA (Automated Skeletal Maturity Assessment). The basic premise of the approach is to automatically extract descriptive shape features that capture the human expertise in forming bone age estimates. The algorithm consists of the following six modularised stages: hand segmentation; hand segmentation classifi�cation; bone segmentation; feature extraction; bone segmentation classifi�cation; bone age prediction. We demonstrate that ASMA performs at least as well as other automated systems and that models constructed on just three bones are as accurate at predicting age as expert human assessors using the standard technique. We also investigate the importance of ethnicity and gender in skeletal development. Our conclusion is that the feature based system of separating the image processing from the age modelling is the best approach, since it off�ers flexibility and transparency, and produces accurate estimates

    An artifacts removal post-processing for epiphyseal region-of-interest (EROI) localization in automated bone age assessment (BAA)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Segmentation is the most crucial part in the computer-aided bone age assessment. A well-known type of segmentation performed in the system is adaptive segmentation. While providing better result than global thresholding method, the adaptive segmentation produces a lot of unwanted noise that could affect the latter process of epiphysis extraction.</p> <p>Methods</p> <p>A proposed method with anisotropic diffusion as pre-processing and a novel Bounded Area Elimination (BAE) post-processing algorithm to improve the algorithm of ossification site localization technique are designed with the intent of improving the adaptive segmentation result and the region-of interest (ROI) localization accuracy.</p> <p>Results</p> <p>The results are then evaluated by quantitative analysis and qualitative analysis using texture feature evaluation. The result indicates that the image homogeneity after anisotropic diffusion has improved averagely on each age group for 17.59%. Results of experiments showed that the smoothness has been improved averagely 35% after BAE algorithm and the improvement of ROI localization has improved for averagely 8.19%. The MSSIM has improved averagely 10.49% after performing the BAE algorithm on the adaptive segmented hand radiograph.</p> <p>Conclusions</p> <p>The result indicated that hand radiographs which have undergone anisotropic diffusion have greatly reduced the noise in the segmented image and the result as well indicated that the BAE algorithm proposed is capable of removing the artifacts generated in adaptive segmentation.</p

    Predicción de edad ósea con red basada en VGG-16 y Transfer Learning

    Get PDF
    Para el diagnósticó de enfermedades hereditarias y desórdenes endocrinos en ninños y jóvenes suele utilizarse el calculó de la edad ósea a través de una evaluación visual de una radiógrafía de la muñeca y de la mano. La presente investigación se ha centrado en el desarrollo de un modelo de Deep Learning para la predicción de la edad ósea utilizandó 12611 imágenes radiólógicas de niñós y jóvenes de 0 a 18 años de la Sóciedad de Radiólógía de Norte América (RSNA). Para lograrlo se realizaron tres procesos: preprocesamiento mediante una red neuronal convolucional U-Net para la generación de máscaras que permitan eliminar el fondo de las imágenes y su posterior ecualización; el desarrollo de una de red neuronal convolucional basada en VGG-16, transfer learning, cuyós pesós fuerón óbtenidós de ImageNet y un mecanismó de atención con la que se entrenaron 6 modelos con imágenes preprocesadas y óriginales; y una cómparación entre la predicción de 230 imágenes locales, con la edad ósea determinada por médicos para dicho subconjuntó. Con la validación del Dataset de la RSNA, se obtuvo un MAE en meses promedio de 9.4 para el modelo propuesto de hómbres. Por el lado de la validación local, se alcanzó un MAE en meses promedio de 13.7 en hombres contando todos los grups de edad y se alcanzó un MAE en meses de 12.4 en mujeres de 2 a 13 años
    corecore