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Age estimation is a fundamental task in forensic anthropology for both the living and the
dead. The procedure consists of analyzing properties such as appearance, ossification pat-
terns, and morphology in different skeletonized remains. The pubic symphysis is exten-
sively used to assess adults’ age-at-death due to its reliability. Nevertheless, most
methods currently used for skeleton-based age estimation are carried out manually, even
though their automation has the potential to lead to a considerable improvement in terms
of economic resources, effectiveness, and execution time. In particular, explainable
machine learning emerges as a promising means of addressing this challenge by engaging
forensic experts to refine and audit the extracted knowledge and discover unknown pat-
terns hidden in the complex and uncertain available data. In this contribution we address
the automation of the decision making process of Todd’s pioneering age assessment
method to assist the forensic practitioner in its application. To do so, we make use of the
pubic bone data base available at the Physical Anthropology lab of the University of
Granada. The machine learning task is significantly complex as it becomes an imbalanced
ordinal classification problem with a small sample size and a high dimension. We tackle it
with the combination of an ordinal classification method and oversampling techniques
through an extensive experimental setup. Two forensic anthropologists refine and validate
the derived rule base according to their own expertise and the knowledge available in the
area. The resulting automatic system, finally composed of 34 interpretable rules, outper-
forms the state-of-the-art accuracy. In addition, and more importantly, it allows the foren-
sic experts to uncover novel and interesting insights about how Todd’s method works, in
particular, and the guidelines to estimate age-at-death from pubic symphysis characteris-
tics, generally.
� 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Personal identity is a key element for the preservation and defense of Human Rights. Forensic anthropology (FA) applies
skeletal analysis to medico-legal investigations [1]. The development of precise, fast, robust, and automatic methods for age
estimation is currently an area with a strong research interest in FA [2]. Such methods support the forensic practitioner for
the correct human identification (ID) of the dead (e.g., disaster victim identification scenarios) and the living (e.g., minors in
border control).

There are several accepted methods for age-at-death estimation that are based on the standard bone development and
degenerative processes in different skeletal remains [3]. There is a broad consensus in the fact that the analysis of pubic sym-
physis is especially reliable to assess adult age-at-death [4,5]. This analysis is performed using phase-based methods that
estimate the subject’s age-at-death from morphological characteristics related to the pubic changes experienced along life.
In particular, Todd’s method [6] is recognized as the first of these proposed methods. It has constituted the basis for later
proposals (such as [7–9]) that have either modified the pubic bone characteristics or the age phases considered. Neverthe-
less, this family of methods mainly continues to be applied routinely in a similar, if not identical way to that followed when
they were proposed. They mainly rely on the experience, expertise, and skills of the forensic practitioner. Hence, skeleton-
based age estimation is a relevant but difficult task due to the limitations on the definition of the methods and the current
technology [3].

Artificial intelligence (AI) tools can be applied to exploit all the potentials of current ID approaches. Specifically, eXplain-
able Artificial Intelligence (XAI) [10] can fill the technological gap required to move from current subjective observational
approaches to a new paradigm based on accurate, reliable, and understandable ID methods in FA.

Our goal in this contribution is thus twofold. First, we aim to design an explainable rule-based system which automates
the decision making process of Todd’s pubic symphysis age estimation method. The method’s operation will be systematized
based on the expert knowledge expressed in the general procedure enunciated by Todd in its seminal paper, thus assisting
the practitioner. We also aim to uncover new knowledge from Todd’s method itself by combining the expertise of the foren-
sic practitioner and the insights uncovered by the explainable machine learning (ML) approach, explicitly represented in the
rule-base description. This will allow us to revisit the method to objectively analyze its operation.

We face the associated ML task as an ordinal classification problem [11]. This is a more natural approach as Todd’s age-at-
death phases are ranked and an error in an estimated phase is definitively more relevant when the distance with the true
phase is greater. We will consider an ordinal classification ML algorithm which has recently reported good performance,
New Structural Learning algorithm in a Vague environment for Ordinal classification (NSLVOrd) [12]. The learning task
includes additional challenges. First, the ordered set of classes is rather big (10 phases), thus making difficult to achieve high
accuracy degrees. Second, it is significantly difficult to obtain an appropriate dataset. We will use an extensive and well dis-
tributed pubic bone collection, by the Physical Anthropology Lab at the University of Granada. However, the number of
instances is small for a ML method considering the large number of pubic bone traits and classes used. The dataset is also
strongly imbalanced as: i) the number of deceased people naturally increases with age; ii) the last degenerative stage is over-
populated since it corresponds to an age interval starting at 50 (as Todd’s method was proposed when life expectancy was
definitively shorter).

Thus, we must deal with an especially complex ML problem: an imbalanced ordinal classification problem with a small
sample size and a high dimension [13,14]. It is well known that minimum-error oriented classifiers tend to ignore the less
populated classes, leading to wrong conclusions and deceptive intelligent systems [15]. We will thus apply oversampling
methods [14,16] to balance the number of instances in each of the 10 age-at-death phases before applying NSLVOrd.

Both the accuracy and the interpretability of every rule base obtained by NSLVOrd through an extensive experimentation
will be evaluated and compared with two widely used ML methods, decision trees (in particular, C4.5 (J48) [17]) and random
forests [18]. A deep neural network [19] will also be considered to determine an accuracy threshold on the problem com-
plexity even if this classifier would not be useful for the forensic expert due to its low explainability. Finally, an expert anal-
ysis of the obtained explainable rule-based system will be developed by two forensic anthropologists to validate it and
evaluate its reliability when compared with previous approaches and existing findings in the area.
2. Background

2.1. Skeleton-based age estimation

Age estimation from the study of bone remains is a fundamental tool for ID in numerous contexts as missing persons,
multiple accidents, fires, natural disasters, acts of terrorism, mass graves, crimes of lessa humanity, etc. [3,2]. Assessing
age of an adult person from skeletal remains is a complex task and there are different methods in FA to be applied depending
on the evolution of the normal bone degenerative processes in the individual [3]. The most useful anatomic regions are thus
those less affected by external factors as physical activity or job. Age assessment methods based on the pubic symphysis
[6,8,9], the auricular surface of the ilium [20], and the sternal end of fourth rib [21] have shown a good accuracy. The analysis
of pubic bone development and degenerative processes is the most extended when applicable, being recognized as the most
reliable alternative [4,5].
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2.2. Todd’s family of methods for age estimation

The first studies using the pubic symphysis to estimate age-at-death date from 1920 and correspond to Todd, who ana-
lyzed 306 skeletons of Caucasian males in the range of 18–60 years (obtained from autopsies) to establish 10 development
and degenerative stages [6]. To do so, Todd defined a morphological description of the pubic symphysis in each of the age-at-
death phases and accompanied them with photographs to facilitate comparisons when applying the method.

In general, there is a clear consensus regarding the methodological limitations of Todd’s proposal, starting with the reli-
ability of the sample used, composed mostly of unidentified corpses whose age was estimated during the autopsy. In addi-
tion, those pubic symphyses that did not meet the expected standards were eliminated from the sample, which distorts the
results, showing a lower variability than the actual one. Finally, the obtained results were analyzed only based on his expe-
rience, without any statistical analysis, and very narrow age ranges were used for the phases, so even if the method may be
precise it is not accurate. Nevertheless, despite these criticisms regarding the design of the method, the criteria that Todd
used to describe the degenerative process of the pubic bone more than 100 years ago are still used by the methodology rec-
ommended in the area nowadays.

Due to these limitations, numerous studies have tested Todd’s method performance and proposed adaptations. Gilbert
and McKern [7] adapted the method to work with a continuous age-at-death variable derived from the aggregation of
numerical values attributed to each bone trait but at the cost of a lower accuracy. At present, the most accepted adaptation
by the scientific community is the Suchey-Brooks’ method [8], based on reducing the age-at-death phases to 6, slightly mod-
ifying the criteria to define them, and introducing error margins in the phases based on the 95% confidence intervals
obtained from the sample of subjects analyzed. Some authors have proposed new population-specific adaptations
[9,22,23]. They mainly involve slight modifications of the age estimation intervals or of the pubic bone traits that define each
phase. Nevertheless, more recent studies point to the possibility that these population differences are not such and are due to
methodological errors in the validation studies [24].

Despite all the validation studies and adaptations made in the last 100 years, Todd’s method and its variants continue to
be applied routinely in a similar way to that of the original proposal. This means it involves the subjective assessment of the
morphological traits of the pubic symphyses and its correspondence with the most similar of the pre-established age-at-
death phases, according to the experience of the forensic anthropologist. Hence, the main limitation posed by Todd’s method
and its subsequent adaptations is the high subjectivity inherent both in the morphological description of the pubic symphy-
ses and in the choice of the corresponding development and degenerative phase [5]. This subjectivity derives mainly from
the lack of systematization of the method, which offers overly generic descriptions that make discrimination between phases
difficult.

Skeleton-based age assessment methods should offer the same result regardless the observer applying them. However,
numerous authors have shown that the methods’ effectiveness depends almost exclusively on the expertise of the forensic
anthropologist [22,25]. Without despising the necessary experience of the observer, there is a need to use methods which
allow us to reduce the subjectivity of these processes, offering measurable tools assisting the decision making. The use of
advanced techniques such as AI in FA can benefit the area in terms of the systematization of the methods, thus extending
their application by expert forensic anthropologists but also for practitioners. Some methods have shown that the error is
significantly reduced when avoiding the subjective phase selection process and analyzing each trait independently
[26,27]. In our work we also avoid the subjective process of phase selection by the specialist, with the difference that we
do not use transition analysis to evaluate each trait independently, as the aforementioned works do, but instead we opt
for the use of explainable ML techniques. It would ease their validation and permit the development of new methods with
a higher degree of certainty and discriminant capability. Future works will be necessary to compare the performance of the
two different approaches.

Our main goal in this contribution is thus to reduce the existing subjectivity in the decision making of the age-at-death
phase thanks to the use of a ordinal classifier learned from examples and refined by forensic anthropology experts. After ana-
lyzing the different alternatives, we finally decided to consider the original Todd’s method [6] to carry out our study. The
reasons underlying this decision is that it is the method that analyzes the highest number of variables (pubic bone traits)
and considers the greater number of age-at-death phases. These characteristics make it the most suitable choice for extract-
ing the underlying knowledge on the existing age estimation procedures from the pubic symphysis. Furthermore, this
involves starting from scratch from the origin of the problem statement, thus eliminating possible uncontrolled inferences.

2.3. State of the art in computer and artificial intelligence approaches for pubic symphysis-based age assessment

Different computer-based methods have been considered with the goal of objectifying and in some cases automating age
estimation methods from the pubic symphysis. The main advances have been aimed at replacing the direct study of dry bone
with the use of digitized 3D models, either considering the same criteria used by the original methods [28] or the use of new
traits.

A significantly relevant work is [29] where Slice and Algee-Hewitt introduce the SAH score, an index to quantify the vari-
ation of the pubic symphysis surface morphology associated with aging in Todd’s method. It is computed from a principal
component analysis of the laser scans and is used to design a linear regression model evaluated in a study considering 41
modern American male skeletons. It obtains a similar performance to Suchey-Brooks’ method, reporting a root mean square
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error (RMSE) of 17.15 years. Later, in [30], Stoyanova et al. design another linear model that estimates age from a single vari-
able automatically extracted from the pubic symphysis 3D models, the bending energy. This approach is tested with scans
from 44 documented white modern American male skeletons and 12 casts representing the Suchey-Brooks phases in the
range of 16–100 years, reporting an RMSE of around 19 years. In [31], they extend their previous work by extracting new
curvature-based features from the 3D model and integrating all the latter into two multi-variate regression models. The val-
idation over a dataset of 93 white male individuals in 16–90 years (68 individuals and 25 casts) obtains an RMSE between
13.7 and 16.5 years.

Koterova et al. propose 9 automatic regression methods for age estimation jointly considering 3 traits from the pubic
symphysis and 4 from the auricular surface of the ilium [32]. The methods are validated on a multi-ethnic dataset of 941
adult individuals in the range of 19–100 years. Classical regression approaches, K-nearest neighbors, Bayesian models,
regression trees, and neural networks were considered. Multi-linear regression was the best predictor with an RMSE of
12.1 years and a mean absolute error (MAE) value of 9.7 years.

Dudzik and Langley focus on the uncertainty arising the bone trait definitions and the difficulty of forensic anthropolo-
gists to understand them [5]. The bone characteristics in the stages prior to advanced degenerative changes are analyzed in
237 American individuals. Multinomial logistic regression and decision trees are applied over a small sample of 47 young
individuals in the range of 18–40 years using 5 pubic symphysis traits. They report a 94% of accuracy but only consider 3
different phases.

In [33], we modeled the problem as a classical classification ML task with 10 independent age-at-death phases. The main
morphological traits of the bone described by Todd were analyzed andmodeled as 9 linguistic variables based on the forensic
expert knowledge. A small set of pubic symphyses from 74 individuals were manually labeled by two different forensic
anthropologists. Compact rule bases composed of 17 to 20 rules were obtained using fuzzy decision trees, reporting an ordi-
nal MAE of 1.07 in the whole dataset and of 1.68 in the test set in a 10-fold cross validation. Nevertheless, the derived rules
did not cover all the phases. Hence, the validation process was clearly not trustful due to the limitations in the dataset (small
and not balanced) and the ML approach followed.

Meanwhile, there are few related studies that apply ML to automate other kinds of skeleton-based age assessment meth-
ods. Stepanovsky et al. propose 22 automatic methods for dental age estimation in children and adolescents [34]. The meth-
ods are based on the analysis of categorical variables by means of ML or basic mathematical operations. An experimental
comparison is made in terms of both accuracy and ‘‘usability” to support forensic anthropologists’ work. The results obtained
on a sample of 976 orthopantomographs from Czech kids show that 3 methods based on multiple linear regressions, regres-
sion trees, and support vector machines provided the best accuracy while remaining user-friendly.

Alternatively, in [35] Aja-Fernández et al. deal with the RUS Tanner-Whitehouse 3 method [36] automation by means of
fuzzy decision trees. The method explores hand radiographs of pediatric patients and classifies them in 8 or 9 maturity
stages, depending on the specific bones considered. Each bone undergoes a shape analysis process by the expert, being indi-
vidually classified into one or several maturity phases, and the final decision is taken from an overall aggregation of those
partial decisions. This is the most similar proposal to the one in the current contribution as the authors take the descriptive
nature of the automatic classifier as an advantage to extract the underlying expert knowledge and to refine the predictions.
3. Proposal

3.1. Definition of the machine learning task to be solved to automate Todd’s age estimation method

The existing age estimation methods from skeletal remains can be distinguished by either providing a specific age-at-
death value or interval as output. To automate any of those methods there is a need to define the appropriate ML task.
Component-scoring methods providing an estimated age-at-death value as Gilbert-McKern’s [7] must be modeled as a
regression problem. Meanwhile, phase-based methods reporting an estimated age-at-death interval as Todd’s [6] and
Suchey-Brooks’ [8] involve a classification problem.

We will consider an advanced approach to automate Todd’s method, ordinal classification [11]. The assumption is that the
natural ordinal structure of the 10 age-at-death phases can be specifically exploited for the problem solving. We will apply
NSLVOrd, an ordinal classification method that has shown good performance (see Section 3.3).

There are some additional issues to be considered. The most important is related to the quality of the dataset. We have
available an extensive and well distributed collection of pubic bones (see Section 4.1). Nevertheless, the number of instances
is reduced for a ML method considering the 9 traits characterizing the development and degenerative processes in the pubic
bone (see Section 3.2) and the 10 output classes. Besides, the dataset is strongly imbalanced. The number of samples in the
first phases is significantly smaller than in the last phases, and the last phase naturally includes more than twice as many
samples as the previous one. This makes the ML even more complex. The amount of false negatives must be reduced while
not increasing excessively the number of false positives. We thus use oversampling [16] to rebalance the number of
instances in the 10 phases (see Section 3.4).

Problems like ours that combine imbalanced data, small sample sizes and high dimensionality have been recognized as
especially difficult in the specialized ML literature [13]. Learning algorithms often fail to derive general rules due to the dif-
ficultly to form conjunctions over the large number of input features with limited samples, leading to the extraction of too
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specific rules and thus of overfitted rule-based systems [14]. Our age assessment problem is even more complex because of
the phase order in the output. A careful ML design like the one proposed is crucial to handle it correctly.

3.2. Identification and modeling of the pubic symphysis’ features and categorical values

In [6], Todd provided a really thorough description of the morphological aspects of the pubic symphysis. However, such
descriptions are sometimes imprecise and they can lead to confusion between age groups, especially for new practitioners.
There are some main traits focused on the development and degenerative changes in the bone but they are not clearly estab-
lished. For the sake of both objectivity and systematization, we consider 9 variables whose categorical values describe a mor-
phological characteristic of the pubic symphysis analyzed by Todd (see Table 1).

Fig. 1 shows a graphical representation of some of these morphological aspects. The descriptions of the different variables
and categorical values are as follows:

� V1: Articular face describes the obliteration process of the epiphysis on the symphyseal surface and has been divided into
6 levels according to the presence of ridges and grooves.

� V2: Irregular porosity describes the extensive erosion of the bone surface, characterized by the progressive appearance of
irregular porosity. Divided into 3 levels.

� V3: Upper symphysial extremity; V5: Lower symphysial extremity; V6: Dorsal margin; and V9: Ventral margin
describe the formation of the upper, lower, dorsal and ventral margins, respectively. Each variable has 2 values for the
presence or absence of the respective margin, but variable 9 which includes 3 more levels to describe the degenerative
process of the ventral margin.

� V4: Bony nodule describes the formation of the ossification nodule in the upper margin. It considers 2 values for presence
or absence.

� V7: Dorsal plateau indicates the presence or absence of texture difference between the dorsal half and the ventral half. It
thus considers 2 values.

� V8: Ventral bevel describes the progressive and bevelled elevation of the ventral area. Divided into 3 levels.

3.3. Rule-based learning method considered: NSLVOrd

NSLVOrd [12] is a fuzzy/categorical ordinal rule learning algorithm based on the Iterative Rule Learning approach. It gen-
erates rules one by considering the instance covering the rule base already generated produce on the dataset. In each iter-
ation, a genetic algorithm searches in the combinatorial space of tentative rules to derive the best one under the current
conditions. An example of a possible rule for our age estimation system would be:

Rule1: Example of a tentative rule
Table 1
Pubic symphysis’ features and categorical values.

Variable Name Categorical Values

V1 Articular Face Regular Porosity Ridges Formation
Ridges And Grooves Grooves Shallow
Grooves Remains No Grooves

V2 Irregular Porosity Absence Medium
Much

V3 Upper Symphysial Ext. NotSpecified Defined
V4 Bony Nodule Absent Present
V5 Lower Symphysial Ext. NotSpecified Defined
V6 Dorsal Margin Absent Present
V7 Dorsal Plateau Absent Present
V8 Ventral Bevel Absent In Process

Present
V9 Ventral Margin Absent Partially Formed

Formed Without Bony Outgrowths Formed With Few Bony Outgrowths
Formed With Recesses And Protrusions
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Fig. 1. Some example of traits defining the typical development and degenerative morphological changes in the pubic symphysis during growth. Regions of
interest are highlighted in red.
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Each candidate rule is represented as an individual in the genetic population. The coding scheme has 3 different parts. The
real-coded ‘‘variable part” is used to define the variables in the rule antecedent (e.g. Articular Face). The binary-coded ‘‘value
part” represents the specific values for the selected variables (e.g. Grooves Remains). The integer-coded ‘‘consequent part”
encodes the rule consequent (e.g. Ph05-27–30). NSLVOrd uses an embedded feature selection mechanism at rule level by
means of the ‘‘variable part”. An information measure is used to determine an initial relevance of each variable in relation
to the consequent. A numerical threshold (that also undergoes evolution) determines the variables that will eventually
appear in the rule, that is, all the variables whose associated value in the ‘‘variable part” is greater o equal to the threshold
value will be considered in the description of the rule. The remainder will be considered irrelevant.

Fig. 2 illustrates a possible encoding for Rule 1. The ‘‘variable part” is composed of 9 values, one for each variable involved
in the problem. The order of the variable coding is the same showed in Table 1 (1-Articular Face, 2-Irregular Porosity, . . .).
Only 5 variables present a relevance greater than the threshold value (0.21). These variables are thus selected: the first
(Articular Face), fourth (Bony Nodule), and seventh to ninth (Dorsal Plateau, Ventral Bevel, Ventral Margin). The ‘‘value
part” encodes the categorical values for these variables. The first of them is Articular Face and its associated value in the
‘‘value part” is 000010, where each bit represents each value it can take and an 1 indicates it is actually taken. Thus, the
domain of Articular Face has six categorical values and only the fifth (Grooves Remains) is taken. When more than one value
is taken, the rule considers the OR operation over the values (as for Ventral Margin). Finally, the ‘‘consequent part” (with
value 4) is representing the fifth phase (Ph05-27–30) since the 10 age-at-death phases are encoded in {0; . . . ;9}.

The weight represents the confidence of the rule and it is calculated as nþðRÞ
nðRÞ , with nþðRÞ and nðRÞ being the number of

instances from the training set that are correctly classified and the total number of instances fired by the rule, respectively.
The classifiers derived from NSLVOrd always return an output value by considering a default rule. It is used when no other

rule in the rule base is fired. We have chosen to set the default rule to the majority class and to add this rule at the end of the
learning process. When the dataset is balanced, the intermediate class in the order is considered instead.

Several metrics from the specialized literature in ordinal classification have been considered [11,14]. For a better under-
standing, we start from a standard confusion matrix:
Fig. 2. Coding scheme for the example rule.
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of a classification problem with Q classes and N instances; nij is the number of instances of the i� th class which have been
predicted as belonging to the j� th class by the classifier; ni� is the number of instances of the i� th class; and n�j is the num-
ber of instances classified as the j� th class.

� Accuracy or Correct Classification Rate (CCR): rate of correctly classified instances in the dataset: CCR ¼ 1
N

PQ
i¼1nii.

� Precision: Rate of i-th class instances correctly classified considering the predicted instances as the i-th class:
Precisioni ¼ nii

n�i
.

� Recall: rate of i-th class instances correctly classified considering the actual instances in i-th class: Recalli ¼ nii
ni�
.

� F1-Score: balance between Precision and Recall, thus also defined in [0,1]: F1� Scorei ¼ 2 � Precisioni � Recalli
PrecisioniþRecalli

.

� Ordinal Mean Absolute Error (OMAE): average deviation in absolute value between predicted and actual class, thus defined

in [0,Q-1]: OMAEi ¼ 1
ni�

PQ
k¼1ji� kjnik.

Precision, Recall, F1-Score and OMAE can be computed over the whole dataset as an average of the values for each class,
either weighted by the number of instances in each class or not. They can also be computed over the whole dataset but then
they take the same value and are equivalent to the CCR.

Ordinal classifiers can also be evaluated using regression metrics, such as the following ones, where Ŷ i is the predicted
value (usually taken as a representative value from the elements in the corresponding class) and Yi is the actual value:

� Mean Absolute Error (MAE): average deviation in absolute value between predicted values and actual values:

MAE ¼ 1
N

PN
i¼1jŶ i � Yij.

� Root Mean Square Error (RMSE): square root of the average deviation in squared differences: RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1ðŶ i � YiÞ

2
q

.

3.4. Imbalanced classification problem issues: oversampling

There is an extensive list of strategies to deal with imbalanced classification [14]. The complexity of the current ML task
advises against the use of complex and specific imbalanced learning approaches. In our case, the use of oversampling based
on generating a balanced dataset by adding instances from the minority class seems to be the best alternative. There are
many different oversampling variants [14,16]. Synthetic Minority Oversampling Technique (SMOTE) [37] is the de facto stan-
dard. It generates new instances of the minority classes by interpolating the feature values from selected neighboring
instances of the respective class. The resulting balanced dataset, both composed of the original real instances and some
new artificial but real-like instances, can improve the generalization capability of the classifier.

We will use 7 different oversampling methods [16]. First, two simple alternatives based on the uniform (basic oversam-
pling) and random replication (random oversampling) of the existing instances in each of the first 9 age-at-death phases
until obtaining a balanced distribution with respect to the number of instances of the majority class (phase Ph10-50+).
The other methods include the original SMOTE and 4 variants: Support Vectors SMOTE (SVMSMOTE), Borderline SMOTE
(Borderline-SMOTE), ADAptive SYNthetic sampling approach for imbalanced learning (ADASYN), and Kmeans-SMOTE. Their
composition is out of the scope of this contribution and the interested reader is referred to [16] for specific details. As they
deal with numerical variables, the original variable values are first transformed into an integer representation, the oversam-
pling technique is run, and the inverse transformation is applied to achieve the artificially generated nominal value. The
implementation used is available at https://github.com/scikit-learn-contrib/imbalanced-learn (scikit-learn Python ML pack-
age developed at INRIA).
520
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4. Experiments and analysis of results

4.1. Dataset: The Pubic Symphysis Collection at the University of Granada Physical Anthropology Lab

The sample considered is part of the collection of skeletonized pubic symphyses available in the Physical Anthropology
lab at the University of Granada, Spain. It results from autopsy studies developed since 1991 under a collaboration with the
Institute of Legal Medicine and Forensic Sciences: 837 individuals in the range of 17–82 years, 197 women and 637 men (the
other 3 have not been identified). Detailed information is available regarding sex, age, cause of death and, in many cases,
additional information such as approximate weight, alcohol or drug consumption, and population origin, which may be
important for future studies. The collection was acquired following the criteria of the Ethics Committee of the University
of Granada.

To avoid sex bias in our study, we restrict the sample to the 637 males, since this is the majority sex group and Todd’s
method was originally proposed for men [6]. We consider incomplete or unreliable ante mortem information and a deficient
state of conservation as additional exclusion criteria, reducing the sample to 566 individuals (1,127 adding left and right
sides, with a few individuals lacking one piece).

The pubic symphysis traits and categorical labels in Section 3.2 have been considered by two forensic anthropologists to
label each pubis, thus building the dataset used by the ML methods. They first practiced with a total of 200 pubic symphyses,
both to avoid the bias associated with the acquisition of habits during data collection and to identify possible refinements in
the definitions. After that, they labeled the whole sample, including both pubis sides, always in random order and without
knowing the real age-at-death of the individual.
4.2. Experimental setup

We restrict the age range of the sample to 18–60 years, a similar interval to the one used by Todd. The final dataset is thus
composed of 439 samples of left laterality and 453 samples of right laterality with the distribution shown in Table 2. The
strong imbalance ratio of the minority class (Ph04-25-26) can be clearly observed.

We first develop in Sections 4.3 and 4.4 two different ML experiments (with and without oversampling) by considering
the dataset with instances of one laterality as training set and that of the other laterality as test set and vice versa. Apart from
being sensible from a ML perspective, this separation of the analysis by laterality is justified by possible differences in the
development and degenerative processes of the right and left pubic symphyses due to genetic determinants, biomechanical
factors, and environmental stress, as observed in previous studies [38].

Later, in Section 4.5 we develop another experiment with the whole original dataset and some oversampled ones in a
5�2-cross validation (5�2-cv) [39]. This test is based on randomly partitioning the dataset into two halves of the same size
five different times, ensuring a balanced partition of the instances for each phase. Each half is respectively used for training
and test in two different experiments, and the test results from the 10 experiments are averaged.

We have used the NSLVOrd implementation available at https://isg.ugr.es/descargas/ with the default parameters defined
in [12]. Three extended ML approaches are considered for benchmarking. The Weka [40] implementation of the C4.5 (J48)
algorithm [17] is used to derive different decision tree-based classifiers, considering tree pruning. Several random forests
[18] are also generated using Weka with 10, 50, and 100 trees, each one built using 4 random features. Notice that, a small
number of trees (10) has been considered to reduce the resulting number of rules in order to preserve interpretability. A deep
neural network [19] is also considered to estimate a quality threshold for the problem. We have followed the one-hot or
dummy encoding [41], where each column of the input dataset was transformed into as many columns as categorical values
that pubis characteristic has associated (see Section 3.2). A �1 value is assigned to every categorical value but the correct one
that gets a +1. Likewise, the output class is transformed into an integer output in f0; . . . ;9g. A fully connected network is
considered with two hidden layers of size 64 without bias using the LeakyReLU activation function with a negative slope
of 0.01. The network is trained for 64 epochs with Adam as optimizer [19] (chapter 8), b1 ¼ 0:9; b2 ¼ 0:999, and learning rate
of 10�3. The cost function directly takes the MAE metric, thus solving a regression problem. Once the network is trained, its
output is approximated to the nearest integer in f0; . . . ;9g to calculate the different metric values. The Pytorch deep learning
library in Python (https://pytorch.org/) has been used.

The system accuracy is evaluated using ordinal (CCR, OMAE, F1-Score) metrics (see Section 3.3). For the interpretability,
we analyze the complexity of the rules (apart from the final expert analysis in Section 5). The decision trees derived by ran-
dom forests are transformed into the corresponding sets of rules. The ensemble nature of random forests provides additional
Table 2
Final distribution of the dataset considered, including the available pubic bone lateralities.

Ph1 Ph2 Ph3 Ph4 Ph5 Ph6 Ph7 Ph8 Ph9 Ph10 Tot.

Left 14 10 11 9 32 29 75 56 65 138 439
Right 12 10 13 10 35 31 75 57 69 141 453
Both 26 20 24 19 67 60 150 113 134 279 892
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degrees of freedom to the model, increasing its accuracy but significantly reducing its interpretability with respect to our
approach.
4.3. Todd’s automatic age assessment learning task with independent pubis laterality and not considering oversampling

Table 3 reports the results obtained by NSLVOrd considering one laterality to generate the rule set and the other to test
the accuracy of the system. The best values in each table are highlighted in bold. The performance of the automatic age esti-
mation systems derived from each laterality is similar, with a slight advantage for the left one. Both rule bases show a small
complexity, 17 and 24 rules, allowing an easy interpretation by the forensic anthropologists. Table 4 and Table 5 respectively
include the results obtained by C4.5 and random forests with 10 trees over the two datasets. Training with right laterality
shows a better test performance in those cases. The accuracy of C4.5 is similar to that of NSLVOrd, being worse in the left side
training dataset and slightly better in the right side training dataset. The number of rules is also similar: 17 and 24 rules in
the NSLVOrd classifiers vs. 21 and 13 rules for C4.5. As expected, a higher test accuracy is obtained by random forests at the
cost of generating more complex classifiers comprised by a significantly larger number of rules (936 and 837 rules, between
40 and 50 times higher than NSLVOrd). Even so, the accuracy of the NSLVOrd is still very competitive with respect to that of
random forests.

Nevertheless, a more detailed analysis shows that the error metrics are leading us to draw a deceptive conclusion. The
obtained rule bases are not covering some of the 10 Todd’s method phases. This issue is clearly recognized in the confusion
matrix reported in Table 6 for phases Ph04-25–26, Ph06-31–34, and Ph08-40–44. It is a consequence of the dataset imbal-
ance that the learning method tries to compensate both ignoring some of the phases and including a default rule on the
majority class. Note that the decision tree-based classifier in Table 7 is even less reliable as it does not cover 4 of the 10
phases: Ph03-22–24, Ph04-25–26, Ph08-40-44, and Ph09-44-50. Finally, the random forest behaves almost in the same
way (see Table 8) as, even if it does not show any ‘‘empty” phase thanks to having around 900 rules, several phases are
strongly under-represented and the obtained rule-based system is also extremely biased towards the last phase. The same
situation stands for the other laterality. Hence, we confirm this undesired behavior is not a consequence of the learning
method used and the number of rules derived but of the dataset composition.

In summary, the global error could be competitive, but the obtained rules are not reliable since they do not properly cover
the input space due to the class imbalance problem.
4.4. Todd’s automatic age assessment learning task with independent pubis laterality and incorporating oversampling

The oversampling methods described in Section 3.4 have been run with the same random seed and the default parame-
ters to obtain balanced datasets. Tables 9 and 10 include the results obtained by applying NSLVOrd on the oversampled data-
sets for the left and right laterality, respectively, considering the original dataset of the other laterality for validation.

As expected, each of the 10 age-at-death phases is now covered by at least one rule for both lateralities in every rule base.
For the case of the left laterality, the number of rules generated is around the double for most of the oversampling methods.
In the right laterality, the increase is a little bit smaller but still significant.

All the oversampling methods improve the original values in every metric for both laterality datasets in Table 3.
Borderline-SMOTE and SVMSMOTE achieve very similar, highly accurate results in the three metrics. Random oversampling
performs remarkably well as it even achieves the best value in the F1-Score for both lateralities overall.

However, the accuracy does not seem to be as good in the test sets. Every oversampling variant reports low values of the
CCR and OMAE metrics. Although this could imply the presence of some overfitting, it is probably due to the use of the
default rule. The ranking of methods is pretty similar to the one obtained in training for both laterality datasets. SVMSMOTE
is again the best performing method, followed by Borderline-SMOTE, while the basic oversampling shows the worst results.

Nevertheless, the situation changes in the third metric, F1-Score, for which the original classifiers are outperformed by
almost every oversampling method. This results from the fact that this measure clearly accounts for the wrong decisions
taken when applying the default rule and thus it uncovers the wrong behavior of the classifiers obtained from the original
datasets. In the left laterality, only ADASYN obtains a worse value than the original system (0.211 vs. 0.225) while the best
results are obtained by Kmeans-SMOTE and random oversampling (0.28 and 0.264). In the right laterality, the basic oversam-
pling and SMOTE are the only two methods worsening the original system result (0.207 and 0.213 vs. 0.219) while
Borderline-SMOTE and, curiously, ADASYN obtain the best values (0.264 both). Focusing on the latter method, its perfor-
Table 3
Results obtained by NSLVOrd.

CCR F1-Score OMAE #rules

Training: left side 0.412 0.307 1.478 17
Test: right side 0.369 0.225 1.545 –

Training: right side 0.402 0.332 1.572 24
Test: left side 0.367 0.219 1.631 –
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Table 4
Results obtained by C4.5.

CCR F1-Score OMAE #rules

Training: left side 0.399 0.239 1.544 21
Test: right side 0.358 0.185 1.576 —

Training: right side 0.393 0.282 1.468 13
Test: left side 0.383 0.231 1.54 —

Table 5
Results obtained by random forests with 10 trees.

CCR F1-Score OMAE #rules

Training: left side 0.444 0.385 1.358 936
Test: right side 0.322 0.288 1.536 —

Training: right side 0.45 0.434 1.278 837
Test: left side 0.362 0.234 1.506 —

Table 6
Confusion matrix of the automatic age assessment system obtained by NSLVOrd on the left laterality dataset.

Predicted phase

Ph1 Ph2 Ph3 Ph4 Ph5 Ph6 Ph7 Ph8 Ph9 Ph10 Total

Ph1 12 2 0 0 0 0 0 0 0 0 14
Ph2 2 6 2 0 0 0 0 0 0 0 10
Ph3 4 1 5 0 0 0 1 0 0 0 11
Ph4 0 0 0 0 1 0 2 0 0 6 9

Actual Ph5 0 0 0 0 5 0 3 0 0 24 32
phase Ph6 0 0 0 0 0 0 4 0 0 25 29

Ph7 0 0 0 0 0 0 18 0 0 57 75
Ph8 0 0 0 0 0 0 8 0 0 48 56
Ph9 0 0 0 0 0 0 4 0 1 60 65
Ph10 0 0 0 0 1 0 3 0 0 134 138

Total 18 9 7 0 7 0 43 0 1 354 439

Table 7
Confusion matrix of the automatic age assessment system obtained by C4.5 on the left laterality dataset.

Predicted phase

Ph1 Ph2 Ph3 Ph4 Ph5 Ph6 Ph7 Ph8 Ph9 Ph10 Total

Ph1 12 2 0 0 0 0 0 0 0 0 14
Ph2 4 6 0 0 0 0 0 0 0 0 10
Ph3 5 5 0 0 0 0 1 0 0 0 11
Ph4 1 0 0 0 0 0 2 0 0 6 9

Actual Ph5 1 0 0 0 5 0 1 0 0 25 32
phase Ph6 0 0 0 0 0 0 3 1 0 25 29

Ph7 1 0 0 0 1 1 15 0 0 57 75
Ph8 0 0 0 0 1 2 5 0 0 48 56
Ph9 0 0 0 0 2 0 2 0 0 61 65
Ph10 0 0 0 0 1 1 2 0 0 134 138

Total 24 13 0 0 10 7 29 0 0 356 439
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mance appears to be highly dependent on the composition of the dataset, as it shows significantly worse results on the left
laterality than on the right laterality. The same happens for SMOTE but in the opposite direction.
4.5. Todd’s automatic age assessment learning task with both pubis lateralities and incorporating oversampling

We conclude that oversampling is actually required for our ML task and that the system accuracy could be competitive. To
confirm this assumption, we design a final experiment with the whole pubis dataset. This makes sense from both the ML and
the FA viewpoints as the application guidelines of Todd’s method are independent of the specific pubic symphysis laterality.
NSLVOrd, random forests, and a deep neural network [19] are run over the original dataset and two oversampled datasets
generated by Borderline-SMOTE (the best performing method, also with a moderate number of rules) and random oversam-
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Table 8
Confusion matrix of the automatic age assessment system obtained by random forests on the left laterality dataset.

Predicted phase

Ph1 Ph2 Ph3 Ph4 Ph5 Ph6 Ph7 Ph8 Ph9 Ph10 Total

Ph1 13 0 1 0 0 0 0 0 0 0 14
Ph2 4 6 0 0 0 0 0 0 0 0 10
Ph3 4 2 4 1 0 0 0 0 0 0 11
Ph4 0 0 0 2 1 0 1 0 1 4 9

Actual Ph5 0 0 0 0 8 0 2 0 2 20 32
phase Ph6 0 0 0 1 0 4 1 0 0 23 29

Ph7 0 0 0 1 3 1 21 0 2 47 75
Ph8 0 0 0 1 1 2 4 1 5 42 56
Ph9 0 0 0 1 4 0 3 0 9 48 65
Ph10 0 0 0 2 2 2 2 0 3 127 138

Total 21 8 5 9 19 9 34 1 22 311 439
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pling (only considering original instances, with a good accuracy and a reasonable number of rules). C4.5 is not considered in
this comparison as its performance was inferior to NSLVOrd in the previous experiment in Section 4.3 and random forests
clearly showed an upper quality threshold for a decision tree-based classifier. Besides, even if we should keep the derived
random forest model simple for interpretability preservation, three different results are reported for this classifier consider-
ing an incremental complexity with 10, 50, and 100 trees.

The 5 � 2-cv test results in Table 11 are alike those obtained until now, thus reinforcing the conclusions already drawn
after performing a sounder experimental design. The test values for the original dataset are very similar to those in Table 3.
There is a significant accuracy increase when considering oversampling. Random forests reports a slightly better accuracy
than NSLVOrd but at the cost of a huge interpretability decrease: 1091 vs. 34.8 rules when considering the simplest model
with 10 trees, increasing this number up to ten times more when using 100 trees. What is more, the complexity increase in
the random forest classifiers does not result in any significant performance improvement, even showing a slight overfitting
in some cases. This makes sense as we are applying a ML model with a high number of freedom degrees on a small dataset, as
analyzed in Section 3.1. Meanwhile, the differences in the metric values between using Borderline-SMOTE and random over-
sampling for NSLVOrd with respect to random forests are also small, in the ranges of 6.28% for CCR, 5.88% for F1-Score, and
3.89% for OMAE. The network performs similarly to random forests, slightly better in OMAE (as expected since its learning
process is guided by MAE) and slightly worse in the other two metrics. NSLVOrd keeps on being competitive, even improving
the deep neural network in CCR and F1-Score in several cases (of course not in OMAE), despite being the model with less
freedom degrees and thus the most explainable as desired.

We can thus conclude that NSLVOrd with oversampling shows a good accuracy and provides an explainable model. Since
random oversampling works with real-world instances, being more confident for the forensic experts, we will take this as the
final design for our automatic age assessment system as a trade-off between accuracy, interpretability, and reliability.
5. Expert validation and knowledge extraction from the automatic Todd’s age assessment system

In this section we will develop a human-based reliability study of the intelligent system derived using our ML approach.
To do so, we design three different variants using NSLVOrd over three oversampled datasets obtained with random oversam-
pling (left laterality, right laterality, and both lateralities instances). Since the guidelines of Todd’s method are independent
from the specific laterality of the pubic symphysis, the three options are valid from the FA viewpoint.

The automatic age assessment system providing the best accuracy has been selected. That corresponds to the right lat-
erality dataset (OMAE = 1.214), with slight difference with the left laterality one (OMAE = 1.254) and a larger difference with
the whole dataset (OMAE = 1.408). The expert validation has been developed by two different forensic anthropologists from
the Physical Anthropology lab at the University of Granada. They first made a thorough analysis of the obtained rules inde-
pendently and later discussed their individual conclusions to reach the common agreements presented in this section.

Note that an alternative procedure to obtain a rule-based description of Todd’s method operation would be to provide the
forensic anthropologists with the pubic bone characteristics in Section 3.2 and ask them to directly explicit their expert
knowledge. That was done in [33] and it did not work since it was difficult for the forensic experts to define the rules. They
tended to build complete rules considering every variable and the obtained system was thus complex. What is more, the
intelligent system did not properly cover all the instances, thus becoming deceptive and not reliable. The approach provided
in the current contribution, making use of explainable ML to derive an initial rule base and involving the expert in the loop to
refine it [10], is significantly more effective.
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Table 9
Results of the oversampling methods with NSLVOrd for the left laterality dataset.The metric values are shown following a color scale (green = best values,
red = worst values) Orig = Original; Bas = Basic; Rand = Random; SMT = SMOTE; SVM-S = SVM-SMOTE, BL-S = BorderLine-SMOTE; AD = ADASYN; K-S = KMeans-
SMOTE

Table 10
Results of the oversampling methods with NSLVOrd for the right laterality dataset.The metric values are shown following a color scale (green = best values,
red = worst values) Orig = Original; Bas = Basic; Rand = Random; SMT = SMOTE; SVM-S = SVM-SMOTE, BL-S = BorderLine-SMOTE; AD = ADASYN; K-S = KMeans-
SMOTE.

Table 11
Results of the 5 � 2-cv test.

Original CCR F1-Score OMAE #rules

NSLVOrd 0.352 0.212 1.576 27.6
Random forests 10 0.337 0.222 1.580 915
Random forests 50 0.336 0.229 1.557 4749.4
Random forests 100 0.332 0.224 1.571 9433.3
Deep neural network 0.245 0.231 1.282 —

Random CCR F1-Score OMAE #rules

NSLVOrd 0.373 0.336 1.337 39
Random forests 10 0.432 0.414 1.271 1134
Random forests 50 0.432 0.413 1.280 5771.1
Random forests 100 0.432 0.412 1.270 11593.8
Deep neural network 0.340 0.334 1.148 —

BorderLine CCR F1-Score OMAE #rules

NSLVOrd 0.398 0.357 1.285 34.8
Random forests 10 0.437 0.422 1.156 1091
Random forests 50 0.439 0.421 1.147 5415.9
Random forests 100 0.439 0.420 1.146 9433.3
Deep neural network 0.363 0.358 1.063 —
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5.1. Human expert intervention to derive and validate Todd’s automatic age assessment method

The final rule base is derived from an iterative human loop in the XAI process both involving the AI and forensic experts.
The original rule base obtained from NSLVOrd was composed of 35 rules. The forensic anthropologists were asked to eval-
uate these rules following a ‘‘traffic light” procedure involving tagging each rule as green, yellow, or red according to its
coherence. The green tag stands for those rules that are fully consistent with expert knowledge. Alternatively, the yellow
tag stands for those rules showing a general coherent composition but including any inappropriate or inaccurate character-
istic. Finally, the red tag is for not meaningful rules.
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The forensic experts identified 20 rules as green, 10 as yellow, and 4 as red, apart from the default rule (R34). Note that,
even if the rules were presented grouped by age-at-death phase, the rule number (starting at R0) stands for the order in
which they were generated. That becomes an additional indicator of the confidence of the rule as more important rules
are generated earlier. The red rules were those obtained at the late stages of the learning process: R29, R30, R31, and
R33. The first 3 of them were extremely specific and only covered 2 and 4 instances from the dataset. The latter was too
generic, covering 783 instances but with a high number of negative instances (418), and acted as a modifier of the default
rule. The yellow rules were mostly due to the fact that some consecutive categorical values have been selected for any vari-
able but leaving a gap in the natural order, as in R2, R4, R8, and R23 (e.g. in R4, Articular Face was originally assigned Ridges
Formation OR Grooves Shallow but not the intermediate value Ridges and Grooves). The existence of rules with these traits
contradicts the continuous nature of the development and degenerative process that is being evaluated. This is a conse-
quence that NSLVOrd does not explicitly require including the intermediate values.

The AI experts manually refined the rule base by adding/removing categorical values which make the rule more coherent
but did not modify the instances covered and thus the inference process. Besides, they removed R33 as it did not show any
specific influence on the classifier operation. The final rule base was evaluated again by the forensic experts resulting the 29
green and 4 yellow rules (R10, R14, R24, and R29), plus the default rule, collected in the Appendix.

We discuss the coherence of these rules in depth as follows:

� The main conclusion is that 29 rules are fully coherent with the available forensic expert knowledge about pubic symph-
ysis development process, thus showing the good behavior of the explainable ML procedure applied.

� Every age-at-death phase is properly represented in the rule base, ranging from a minimum of 2 rules for Ph03-22–24 and
Ph07-35–39 to 5 rules for Ph02-20–21.

� Rules R14 and R24 use Dorsal Plateau = Present as criterion to assign phase Ph09-45–49. This trait should appear in young
individuals and disappear after the age of 30. However, the dorsal platform is a confusing characteristic since it can be
observed in both young and older people (see Section 5.3). That is probably a consequence of this trait not having a con-
crete definition in Todd’s guidelines.

� Rules R10 and R29 serve as examples in which we observe small inconsistencies according to the normal processes of the
pubic bone, such as the not defined lower extremity of the symphysis in phase Ph04-25–26 (R10) or the absent ventral
margin in Ph07-35–39 (R29). Rules like these are beneficial as they identify ‘‘unusual” pubic symphyses in the sample,
which probably present alterations produced by pathological conditions or certain habits such as drug addiction, alco-
holism, extreme values in body mass index, etc. Note that, these rules are only covering 14 and 2 instances, respectively,
with a perfect matching. They can be manually reviewed in the future, under careful expert evaluation, to refine the auto-
matic age assessment method using expert knowledge.

Table 12 reports the confusion matrix of our classifier. All the age-at-death phases are properly covered. It shows a well
balanced behavior, with phases Ph05-27–30 and Ph09-44–50 being the most represented. Fig. 3 collects the number of
instances classified by each rule. The default rule, associated to phase Ph05-27–30, is never fired. Rules R1, R19 and R33
are also not triggered as the instances covered by them are also covered by other rules with a higher confidence. The con-
fusion matrix of the random forests classifier with 10 trees in Table 13 shows a similar behavior, equal in the first two phases
and with the main difference of having phase Ph04-25-26 as the most populated instead of phase Ph05-27-30. This is a sig-
nificant behavior keeping in mind that our system only has 34 rules while the random forests classifier has 1034 rules.

Table 14 shows very similar values in the different performance metrics with respect to the random forest (Table 15),
even if the latter considers more than 1000 rules. Both classifiers achieve the same result in F1-Score, NSLVOrd is slightly
worse value in CCR, and it reports a slightly better value in OMAE, the most trustworthy metric.
Table 12
Confusion matrix of the automatic age assessment system over the original right laterality dataset using NSLVOrd.

Predicted phase

Ph1 Ph2 Ph3 Ph4 Ph5 Ph6 Ph7 Ph8 Ph9 Ph10 Total

Ph1 10 2 0 0 0 0 0 0 0 0 12
Ph2 3 7 0 0 0 0 0 0 0 0 10
Ph3 2 2 8 1 0 0 0 0 0 0 13
Ph4 0 0 0 5 5 0 0 0 0 0 10

Actual Ph5 0 0 0 5 26 1 0 0 2 1 35
phase Ph6 0 0 0 3 19 4 0 0 4 1 31

Ph7 0 0 0 13 28 0 2 2 24 6 75
Ph8 0 0 0 3 28 1 0 3 17 5 57
Ph9 0 0 0 0 27 0 0 0 39 3 69
Ph10 0 0 0 4 47 0 0 5 57 28 141

Total 15 11 8 34 180 6 2 10 143 44 453
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Fig. 3. Number of examples classified by each rule.

Table 13
Confusion matrix of the automatic age assessment system over the original right laterality dataset using random forests with 10 trees.

Predicted phase

Ph1 Ph2 Ph3 Ph4 Ph5 Ph6 Ph7 Ph8 Ph9 Ph10 Total

Ph1 10 2 0 0 0 0 0 0 0 0 12
Ph2 3 7 0 0 0 0 0 0 0 0 10
Ph3 2 2 9 0 0 0 0 0 0 0 13
Ph4 0 0 0 9 1 0 0 0 0 0 10

Actual Ph5 0 0 0 12 10 10 0 1 2 0 35
phase Ph6 0 0 0 9 4 14 0 0 3 1 31

Ph7 0 0 0 21 11 9 4 4 17 9 75
Ph8 0 0 0 14 3 13 1 10 11 5 57
Ph9 0 0 0 11 9 8 2 2 31 6 69
Ph10 0 0 0 27 14 15 3 7 32 43 141

Total 15 11 9 103 52 69 10 24 96 64 453

Table 14
Metric values for the automatic age assessment system over the original right laterality dataset (NSLVOrd).

Table 15
Metric values for the automatic age assessment system over the original right laterality dataset (random forests with 10 trees).
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Making a deeper expert analysis of the performance of the classifier, we can observe that it correctly classifies 68% of the
cases when focusing on individuals under 30 years of age (phases Ph01-18–19 to Ph05-27–30), with suitable F1-Score and
OMAE values per class (ranging from 0.762 to 0.227 and from 0.167 to 0.5, respectively). This shows that our automatic clas-
sifier has a consistent behavior with respect to the existing knowledge in the discipline. Nevertheless, above this age the per-
centage drops to 19.5%. The loss of efficacy in older people has been widely discussed in the context of FA. As early as 1986,
Katz and Suchey found that the error increases much after the age of 40 [42], a conclusion that other authors have also
reached later [23]. There is also a tendency to underestimate the older subjects as clearly seen in the confusion matrix from
phase Ph06-30–35 on. This effect is all the more pronounced the older the age of the subject, being more balanced in phase
Ph07-35–39 and more extreme in Ph09-44–50 and Ph10-50+. Once again, this trend is shared by most of the validation stud-
ies of other authors [22,43].

Underestimation of age-at-death in older people could be attributed to factors as the greater morphological variability of
the pubis in advanced ages or the ineffectiveness of the morphological characteristics used for this age group, as proposed by
recent studies [32]. The appearance of specific degenerative features in the pubic symphysis, such as bone erosion, irregu-
larities in the surface of the symphysis, sclerosis, and cyst formation, are conditioned by numerous biochemical and biome-
chanical factors and different pathologies [44]. The influence of these factors will be cumulative with age, so many of the
traits analyzed by Todd may lose their usefulness in advanced ages due to increased variability. The main solution to this
problem will be to analyze each trait in detail, as well as to propose newmorphological analysis methods, until finding those
that show a more stable relationship with age.

Brooks and Suchey proposed a new method considering the fusion of Todd’s age-at-death phases Ph01-18-19, Ph02-20-
21 and Ph03-22-24; Ph04-25-26 and Ph05-27-30; and Ph07-35-39 and Ph08-39-44, thus reducing the final number of
phases to 6 [8]. Our explainable ML method provides us with objective information for a possible restructuring of Todd’s
phases (with an alternative grouping) and criteria, which will be treated in detail in future works. However, by way of exam-
ple, we can observe that phases Ph01-18-19, Ph02-20-21 and Ph03-22-24 show especially acceptable percentages of correct
classification, so merging these phases would only cause a reduction in the accuracy of the automatic age estimation system.
On the contrary, phase Ph05-27-30 houses the majority of individuals in phases Ph04-25-26 and Ph06-30-35, so the perfor-
mance could be improved by merging these phases.

Likewise, for older people, the classifier is able to distinguish two clearly differentiated groups: one in phase Ph09-44-50,
which we could attribute to middle-aged adults, characterized mainly by pubic symphyses with irregular porosity of med-
ium degree and the beginning of the formation of bony outgrowths in the ventral margin (rule R9); and another in phase
Ph10-50+, which we could attribute to older adults and in which the abundant presence of irregular porosity and bony out-
growths on the ventral margin stands out (rules R22 and R32).

5.2. Comparison with results from the state of the art

Wewill also perform a comparison with state-of-the-art results, considering the age estimationmethods reviewed in Sec-
tion 2.3. Notice that, those methods are not phase-based but directly estimate the age-at-death value. To compare our accu-
racy, a transformation has been made from a phase-based age-at-death estimation to a numerical value based on the mean
of the range in each Todd’s phase, which will clearly degrade the performance of our methods. This approximation is only
made for comparison purposes. Besides, the existing methods are not based on automating the operation of a classical
skeleton-based age estimation method but consider advanced design methodologies involving the use of 3D models and
which in some cases consider different pubic symphysis traits from those used by Todd. For example, the best performing
method by Koterova et al.’s [32] uses both pubic symphysis and ilium bone traits. Even so, we think that the comparison,
although very generic, can allow us to benchmark the accuracy of our proposal.Table 16 collects the comparative results.
Two different rows are reported both for our method and for random forests with 10 trees (i.e., the classifiers described
in the previous section), corresponding to the values obtained over the right laterality dataset (the one considered to learn
the current models, after the application of the oversampling technique, i.e. a training error) and the left laterality dataset
(i.e. a test error). It can be seen how even if our method does not directly compute an age-at-death value but an age-at-
death range (i.e. one of the Todd’s phases), it is in the state-of-the-art accuracy ranges, outperforming all of them but Koter-
ova et al.’s in the RMSE test errors and providing a MAE value rather close to that method. Besides, our method outperforms
the random forests classifier both in training and test errors, with the additional advantage of its simplicity and higher inter-
pretability. Of course, the benchmarking with the state-of-the-art methods must be taken as a rough comparison as the sam-
ple considered in each case actually has an influence on the different results obtained. The size, age range, and composition
of the samples considered significantly vary in each case. The number of samples ranges between 41 and 941, with some
methods dealing with a very small number of instances; there are different age ranges, with our method having the shortest
range; and some experiments use a single-ethnic population while others deal with a multi-ethnic one, some consider a sin-
gle sex and others the two of them, and some make use of casts representing prototypical samples while others do not. It can
be seen how our method is dealing with the smallest age range among the reported samples. This decision was taken to bet-
ter reproduce the original scenario tackled by Todd in his seminal paper [6] (see Section 4.2). Even so, in order to develop the
fairest possible comparison with the existing approaches, we have also validated the obtained phase-based classifier using
the whole available sample. To do so, we have also incorporated the pubic symphysis from those subjects whose age-at-
death was over 60 years (i.e. 34 left laterality and 34 right laterality instances in the 61–82 years range). Notice that, the
528



Table 16
Comparison between NSLVOrd, random forests with 10 trees, and state-of-the-art results.

Method # samples age range RMSE MAE

Slice and Algee-Hewitt [29] 41 19–96 17.15 —
Stoyanova et al. [30] 56 (44 real + 12 casts) 16–100 19 —
Stoyanova et al. [31] 93 (68 real + 25 casts) 16–90 13.7–16.5 —
Koterova et al. [32] 941 19–100 12.1 9.7
NSLVOrd (train: right laterality) 453 18–60 12.35 9.13
NSLVOrd (test: left laterality) 439 18–60 13.19 10.38
RF 10 (train: right laterality) 453 18–60 12.65 9.19
RF 10 (test: left laterality) 439 18–60 13.82 10.85

Table 17
Confusion matrix of the NSLVOrd automatic age assessment system over the whole original right laterality dataset: 18–82 years age range.

Predicted phase

Ph1 Ph2 Ph3 Ph4 Ph5 Ph6 Ph7 Ph8 Ph9 Ph10 Total

Ph1 10 2 0 0 0 0 0 0 0 0 12
Ph2 3 7 0 0 0 0 0 0 0 0 10
Ph3 2 2 8 1 0 0 0 0 0 0 13
Ph4 0 0 0 5 5 0 0 0 0 0 10

Actual Ph5 0 0 0 5 26 1 0 0 2 1 35
phase Ph6 0 0 0 3 19 4 0 0 4 1 31

Ph7 0 0 0 13 28 0 2 2 24 6 75
Ph8 0 0 0 3 28 1 0 3 17 5 57
Ph9 0 0 0 0 27 0 0 0 39 3 69
Ph10 0 0 0 4 54 1 0 5 70 41 175

Total 15 11 8 34 187 7 2 10 156 57 487

Table 18
Metric values for the NSLVOrd automatic age assessment system over the whole original right laterality dataset: 18–82 years age range.
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rule base considered is the same that has been derived from the 18–60 years sample (i.e. no new training process has been
developed) and the new instances have only been considered to validate the already designed classifier.

Table 17 reports the confusion matrix of our classifier over the whole right laterality sample. Of course, the main differ-
ence with respect to that in Table 12 is in the last phase, Ph10-50+, now including 34 more samples which are mainly clas-
sified as Ph9-44-50 (13) and Ph10-50+ (13) although 7 are also classified as Ph5-27-30 and 1 as Ph6-30-35.

Table 18 shows very similar values in the different performance metrics with respect to the original ones in Table 14. The
CCR value increases from 0.291 to 0.298, as a consequence of a better classification of the Ph10-50 + instances thanks to the
increase of samples (of course, the other nine phases stay on the same classification percentage). As regards F1-Score, there is
a slight decrease in the values for age-at-death phases Ph5-27-30, Ph6-30-35, and Ph9-44-50 (as a consequence of the said
21 new instances wrongly classified) that is compensated by the right classification of 13 new instances in phase Ph10-50+.
The overall value of the measure slightly increases. Finally, the OMAE value slightly increases as well as a result of the error
decrease in the last phase. Finally, we also make the approximate computation of the numeric age-at-death values to bench-
mark again our automatic estimation methods with those from the literature. Table 19 reports the obtained values for
NSLVOrd and random forests in the 18–82 age range. To get them, the representative numerical value associated to the last
Todd’s phase is now considered as 66 (the average in the new age range 50–82) instead of the previous 55 (average in the
previous 50–60 age range). This is very harmful for the numerical errors of our methods as now the last Todd’s phase covers a
very large age-at-death range, 50–82 years, and the mean value is very far from the interval extents. Of course, that is a con-
sequence of the original Todd’s method definition, that was less influential in its performance by the time the technique was
defined. Anyway, we should recall again this computation is just an approximation for a rough comparison and must be trea-
ted in such way. As expected, the obtained test errors are higher than the previous ones: 1.43 and 1.24 years higher in RMSE
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Table 19
Comparison between NSLVOrd, random forests, and state-of-the-art results in the 18–82 years age range.

Method # samples age range RMSE MAE

Slice and Algee-Hewitt [29] 41 19–96 17.15 —
Stoyanova et al. [30] 56 (44 real + 12 casts) 16–100 19 —
Stoyanova et al. [31] 93 (68 real + 25 casts) 16–90 13.7–16.5 —
Koterova et al. [32] 941 19–100 12.1 9.7
NSLVOrd (train: right laterality) 487 18–82 13.89 10.51
NSLVOrd (test: left laterality) 473 18–82 14.61 11.62
RF 10 (train: right laterality) 487 18–82 14.66 11.15
RF 10 (test: left laterality) 473 18–82 15.98 12.9

Table 20
Relation between pubic bone traits and age-at-death phase identification in the derived rule base (NSLVOrd) AF = Articular Face; IP = Irregular Porosity;
USE = Upper Symphysial Extremity; BN = Bony Nodule; LSE = Lower Symphysial Extremity; DM = Dorsal Margin; DP = Dorsal Plateau; VB = Ventral Bevel;
VM = Ventral Margin.

AF IP USE BN LSE DM DP VB VM NumRules

Ph1 2 3 2 2 1 2 4
Ph2 10 1 2 3 3 5
Ph3 3 1 1 1 2
Ph4 6 2 1 1 1 4 5 4
Ph5 2 1 2 4 3
Ph6 2 2 1 4 3 3
Ph7 1 1 2 3 2
Ph8 1 2 4 4 3
Ph9 4 1 2 4 3 4
Ph10 3 1 1 4 4

Table 21
Relation between pubic bone traits and age-at-death phase identification in the derived rule base (random forests) AF = Articular Face; IP = Irregular Porosity;
USE = Upper Symphysial Extremity; BN = Bony Nodule; LSE = Lower Symphysial Extremity; DM = Dorsal Margin; DP = Dorsal Plateau; VB = Ventral Bevel;
VM = Ventral Margin.

AF IP USE BN LSE DM DP VB VM NumRules

Ph1 425 261 69 66 80 187 336 394 444
Ph2 51 31 38 26 39 22 26 53
Ph3 53 5 18 34 43 17 31 43 62
Ph4 55 36 5 11 31 25 52 52 58
Ph5 56 45 17 32 57 58 59
Ph6 40 49 5 26 47 48 51
Ph7 56 52 2 4 23 52 63 63
Ph8 55 51 9 31 55 57 57
Ph9 71 65 4 48 7 69 73
Ph10 88 106 1 5 10 107 114
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and MAE for NSLVOrd, and 2.16 and 2.05 years higher in RMSE and MAE for random forests. Nevertheless, the Todd-based
classifier obtained by NSLVOrd stays competitive with respect to the state of the art when the age range is increased 22 years.
It is only clearly surpassed by Koterova et al.’s method even our approach is automating an existing a phase-based age esti-
mation method and it considers a much larger number of instances in the considered samples than the remaining methods.
Again, it clearly outperforms the random forests solution.
5.3. Knowledge extraction from the Todd’s automatic age assessment method designed

One of the most interesting contributions of our study is that it allows us to know which pubic symphysis traits are
more/less useful to estimate age-at-death, as well as to uncover the hidden relation between characteristics and phases.

Table 20 provides a global vision of the use of each variable in the derived rule base. This table allows us to segment dif-
ferent groups of variables. The Dorsal Margin is never used, thus showing up as an irrelevant trait in Todd’s method, an
extremely remarkable finding. Besides, there are some variables which are considered to estimate age-at-death along almost
the whole individual’s age-at-death range: Articular Face, Dorsal Plateau, and Ventral Margin. Finally, there is another
group of variables which are mainly focused on the identification of either young individuals: Upper Symphysial Extremity,
Bony Nodule and Lower Symphysial Extremity; or older individuals: Irregular Porosity and Ventral Bevel.
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Table 21 collects the statistics on the use of the variables for the random forests classifier. The behavior is very similar
even using 30 times more rules. In particular, the Dorsal Margin is never used again, confirming the previous conclusion.
The only two differences, highlighted in bold font, are on the use of Irregular Porosity and Ventral Bevel in the first three
phases (especially in the first one). However, we should remind the performance of both classifiers was the same in those
phases, hence that use can be considered as redundant as the same knowledge is being captured by other traits.

As a practical example, we can focus on the importance of the Bony Nodule, a discarded characteristic in the adaptation
of Todd’s method developed by Brooks and Suchey [8]. According to them, it is an inconstant trait that may or may not
appear. However, our results show that, in those cases in which it is observed, it is actually a useful morphological charac-
teristic to identify the early stages of development.

The uncovered information can be so useful for the design of new age estimation methods from the pubic symphysis,
regardless their manual or automatic nature. The fact that different subsets of pubic symphysis traits are used to estimate
age-at-death for different age groups seems to recommend the design of hierarchical methods considering partial decisions
to segment those age groups instead of examining all the features at the same level as in Todd’s method and its variants.
6. Conclusions and future works

Age-at-death estimation is a fundamental task in FA. The pubic symphysis is extensively used due to its reliability. Todd
defined 10 age-at-death phases characterized by different pubic bone traits such as appearance, ossification patterns, and
morphology, which has been later used by a family of methods. In this contribution, we propose the automation of Todd’s
age assessment method. This involves an especially complex explainable ML task: an imbalanced ordinal classification prob-
lem with a small sample size and a high dimension. We apply an ordinal classification method (NSLVOrd) over a good col-
lection of pubic symphysis. A thorough experimental study is developed considering the whole pubis dataset and both
subsets with a single laterality, the use or not of oversampling, and different training-test partitions. A final experiment con-
sidered 3 datasets, 3 ML methods (NSLVOrd, random forests, and a deep neural network), and a 5�2-cv test.

A compact set of 34 rules with state-of-the-art performance is derived from an iterative XAI process loop with the forensic
anthropologists. Thanks to the explainable nature of the intelligent system, a human-based reliability study is faced allowing
them to identify which pubic symphysis traits are more useful to estimate age-at-death, as well as to uncover the hidden
relation between characteristics and phases. As a consequence, we consider that the proposed explainable ML design can
be a good alternative for the automation of the decision process in many other phase-based methods frequently used in
forensic anthropology.

Despite the successful automation of the decision-making process of the method, it can still be ineffective for accurately
estimating age-at-death in forensic contexts, mainly due to the limitation derived from the narrow definition of the ranges
for each phase. We thus plan to exploit the extracted knowledge to design new age estimation methods from the pubic sym-
physis, considering new age ranges and the longer life expectancy of the current population. We also aim to design new
component-based age estimation methods based on Todd’s pubic symphysis traits from the problem modeling presented
in Section 3.2. To do so, we will make use of genetic programming methods [45] to develop symbolic regression over those
traits, also developing feature selection in an automatic way. We also aim to study the impact of intra and interobserver error
in our future age estimation method proposals. Finally, we will explore the automatic extraction of the morphological traits
to facilitate the fast and objective characterization of this crucial bone for age-at-death estimation.
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