270 research outputs found

    TotalSegmentator: robust segmentation of 104 anatomical structures in CT images

    Full text link
    We present a deep learning segmentation model that can automatically and robustly segment all major anatomical structures in body CT images. In this retrospective study, 1204 CT examinations (from the years 2012, 2016, and 2020) were used to segment 104 anatomical structures (27 organs, 59 bones, 10 muscles, 8 vessels) relevant for use cases such as organ volumetry, disease characterization, and surgical or radiotherapy planning. The CT images were randomly sampled from routine clinical studies and thus represent a real-world dataset (different ages, pathologies, scanners, body parts, sequences, and sites). The authors trained an nnU-Net segmentation algorithm on this dataset and calculated Dice similarity coefficients (Dice) to evaluate the model's performance. The trained algorithm was applied to a second dataset of 4004 whole-body CT examinations to investigate age dependent volume and attenuation changes. The proposed model showed a high Dice score (0.943) on the test set, which included a wide range of clinical data with major pathologies. The model significantly outperformed another publicly available segmentation model on a separate dataset (Dice score, 0.932 versus 0.871, respectively). The aging study demonstrated significant correlations between age and volume and mean attenuation for a variety of organ groups (e.g., age and aortic volume; age and mean attenuation of the autochthonous dorsal musculature). The developed model enables robust and accurate segmentation of 104 anatomical structures. The annotated dataset (https://doi.org/10.5281/zenodo.6802613) and toolkit (https://www.github.com/wasserth/TotalSegmentator) are publicly available.Comment: Accepted at Radiology: Artificial Intelligenc

    Semi-Automatic Segmentation of Normal Female Pelvic Floor Structures from Magnetic Resonance Images

    Get PDF
    Stress urinary incontinence (SUI) and pelvic organ prolapse (POP) are important health issues affecting millions of American women. Investigation of the cause of SUI and POP requires a better understand of the anatomy of female pelvic floor. In addition, pre-surgical planning and individualized treatment plans require development of patient-specific three-dimensional or virtual reality models. The biggest challenge in building those models is to segment pelvic floor structures from magnetic resonance images because of their complex shapes, which make manual segmentation labor-intensive and inaccurate. In this dissertation, a quick and reliable semi-automatic segmentation method based on a shape model is proposed. The model is built on statistical analysis of the shapes of structures in a training set. A local feature map of the target image is obtained by applying a filtering pipeline, including contrast enhancement, noise reduction, smoothing, and edge extraction. With the shape model and feature map, automatic segmentation is performed by matching the model to the border of the structure using an optimization technique called evolution strategy. Segmentation performance is evaluated by calculating a similarity coefficient between semi-automatic and manual segmentation results. Taguchi analysis is performed to investigate the significance of segmentation parameters and provide tuning trends for better performance. The proposed method was successfully tested on both two-dimensional and three-dimensional image segmentation using the levator ani and obturator muscles as examples. Although the method is designed for segmentation of female pelvic floor structures, it can also be applied to other structures or organs without large shape variatio

    Semi-Automatic Segmentation of Normal Female Pelvic Floor Structures from Magnetic Resonance Images

    Get PDF
    Stress urinary incontinence (SUI) and pelvic organ prolapse (POP) are important health issues affecting millions of American women. Investigation of the cause of SUI and POP requires a better understand of the anatomy of female pelvic floor. In addition, pre-surgical planning and individualized treatment plans require development of patient-specific three-dimensional or virtual reality models. The biggest challenge in building those models is to segment pelvic floor structures from magnetic resonance images because of their complex shapes, which make manual segmentation labor-intensive and inaccurate. In this dissertation, a quick and reliable semi-automatic segmentation method based on a shape model is proposed. The model is built on statistical analysis of the shapes of structures in a training set. A local feature map of the target image is obtained by applying a filtering pipeline, including contrast enhancement, noise reduction, smoothing, and edge extraction. With the shape model and feature map, automatic segmentation is performed by matching the model to the border of the structure using an optimization technique called evolution strategy. Segmentation performance is evaluated by calculating a similarity coefficient between semi-automatic and manual segmentation results. Taguchi analysis is performed to investigate the significance of segmentation parameters and provide tuning trends for better performance. The proposed method was successfully tested on both two-dimensional and three-dimensional image segmentation using the levator ani and obturator muscles as examples. Although the method is designed for segmentation of female pelvic floor structures, it can also be applied to other structures or organs without large shape variatio

    Semi-Automatic Segmentation of Normal Female Pelvic Floor Structures from Magnetic Resonance Images

    Get PDF
    Stress urinary incontinence (SUI) and pelvic organ prolapse (POP) are important health issues affecting millions of American women. Investigation of the cause of SUI and POP requires a better understand of the anatomy of female pelvic floor. In addition, pre-surgical planning and individualized treatment plans require development of patient-specific three-dimensional or virtual reality models. The biggest challenge in building those models is to segment pelvic floor structures from magnetic resonance images because of their complex shapes, which make manual segmentation labor-intensive and inaccurate. In this dissertation, a quick and reliable semi-automatic segmentation method based on a shape model is proposed. The model is built on statistical analysis of the shapes of structures in a training set. A local feature map of the target image is obtained by applying a filtering pipeline, including contrast enhancement, noise reduction, smoothing, and edge extraction. With the shape model and feature map, automatic segmentation is performed by matching the model to the border of the structure using an optimization technique called evolution strategy. Segmentation performance is evaluated by calculating a similarity coefficient between semi-automatic and manual segmentation results. Taguchi analysis is performed to investigate the significance of segmentation parameters and provide tuning trends for better performance. The proposed method was successfully tested on both two-dimensional and three-dimensional image segmentation using the levator ani and obturator muscles as examples. Although the method is designed for segmentation of female pelvic floor structures, it can also be applied to other structures or organs without large shape variatio

    Deep learning for unsupervised domain adaptation in medical imaging: Recent advancements and future perspectives

    Full text link
    Deep learning has demonstrated remarkable performance across various tasks in medical imaging. However, these approaches primarily focus on supervised learning, assuming that the training and testing data are drawn from the same distribution. Unfortunately, this assumption may not always hold true in practice. To address these issues, unsupervised domain adaptation (UDA) techniques have been developed to transfer knowledge from a labeled domain to a related but unlabeled domain. In recent years, significant advancements have been made in UDA, resulting in a wide range of methodologies, including feature alignment, image translation, self-supervision, and disentangled representation methods, among others. In this paper, we provide a comprehensive literature review of recent deep UDA approaches in medical imaging from a technical perspective. Specifically, we categorize current UDA research in medical imaging into six groups and further divide them into finer subcategories based on the different tasks they perform. We also discuss the respective datasets used in the studies to assess the divergence between the different domains. Finally, we discuss emerging areas and provide insights and discussions on future research directions to conclude this survey.Comment: Under Revie

    Focal Spot, Winter 2009/2010

    Get PDF
    https://digitalcommons.wustl.edu/focal_spot_archives/1113/thumbnail.jp
    • …
    corecore