1,548 research outputs found

    Instruction-Level Abstraction (ILA): A Uniform Specification for System-on-Chip (SoC) Verification

    Full text link
    Modern Systems-on-Chip (SoC) designs are increasingly heterogeneous and contain specialized semi-programmable accelerators in addition to programmable processors. In contrast to the pre-accelerator era, when the ISA played an important role in verification by enabling a clean separation of concerns between software and hardware, verification of these "accelerator-rich" SoCs presents new challenges. From the perspective of hardware designers, there is a lack of a common framework for the formal functional specification of accelerator behavior. From the perspective of software developers, there exists no unified framework for reasoning about software/hardware interactions of programs that interact with accelerators. This paper addresses these challenges by providing a formal specification and high-level abstraction for accelerator functional behavior. It formalizes the concept of an Instruction Level Abstraction (ILA), developed informally in our previous work, and shows its application in modeling and verification of accelerators. This formal ILA extends the familiar notion of instructions to accelerators and provides a uniform, modular, and hierarchical abstraction for modeling software-visible behavior of both accelerators and programmable processors. We demonstrate the applicability of the ILA through several case studies of accelerators (for image processing, machine learning, and cryptography), and a general-purpose processor (RISC-V). We show how the ILA model facilitates equivalence checking between two ILAs, and between an ILA and its hardware finite-state machine (FSM) implementation. Further, this equivalence checking supports accelerator upgrades using the notion of ILA compatibility, similar to processor upgrades using ISA compatibility.Comment: 24 pages, 3 figures, 3 table

    From FPGA to ASIC: A RISC-V processor experience

    Get PDF
    This work document a correct design flow using these tools in the Lagarto RISC- V Processor and the RTL design considerations that must be taken into account, to move from a design for FPGA to design for ASIC

    Unbounded safety verification for hardware using software analyzers

    Get PDF
    Demand for scalable hardware verification is ever-increasing. We propose an unbounded safety verification framework for hardware, at the heart of which is a software verifier. To this end, we synthesize Verilog at register transfer level into a software-netlist, represented as a word-level ANSI-C program. The proposed tool flow allows us to leverage the precision and scalability of state-of-the-art software verification techniques. In particular, we evaluate unbounded proof techniques, such as predicate abstraction, k-induction, interpolation, and IC3/PDR; and we compare the performance of verification tools from the hardware and software domains that use these techniques. To the best of our knowledge, this is the first attempt to perform unbounded verification of hardware using software analyzers

    Reusing RTL assertion checkers for verification of SystemC TLM models

    Get PDF
    The recent trend towards system-level design gives rise to new challenges for reusing existing RTL intellectual properties (IPs) and their verification environment in TLM. While techniques and tools to abstract RTL IPs into TLM models have begun to appear, the problem of reusing, at TLM, a verification environment originally developed for an RTL IP is still under-explored, particularly when ABV is adopted. Some frameworks have been proposed to deal with ABV at TLM, but they assume a top-down design and verification flow, where assertions are defined ex-novo at TLM level. In contrast, the reuse of existing assertions in an RTL-to-TLM bottom-up design flow has not been analyzed yet, except by using transactors to create a mixed simulation between the TLM design and the RTL checkers corresponding to the assertions. However, the use of transactors may lead to longer verification time due to the need of developing and verifying the transactors themselves. Moreover, the simulation time is negatively affected by the presence of transactors, which slow down the simulation at the speed of the slowest parts (i.e., RTL checkers). This article proposes an alternative methodology that does not require transactors for reusing assertions, originally defined for a given RTL IP, in order to verify the corresponding TLM model. Experimental results have been conducted on benchmarks with different characteristics and complexity to show the applicability and the efficacy of the proposed methodology
    • …
    corecore