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Abstract The recent trend towards system-level design

gives rise to new challenges for reusing existing register-

transfer level (RTL) intellectual properties (IPs) and

their verification environment in transaction-level model-

ing (TLM). While techniques and tools to abstract RTL

IPs into TLM models have begun to appear, the problem

of reusing, at TLM, a verification environment originally

developed for an RTL IP is still under-explored, particu-

larly when assertion-based verification (ABV) is adopted.

Some frameworks have been proposed to deal with ABV at

TLM, but they assume a top-down design and verification

flow, where assertions are defined ex-novo at TLM level. In

contrast, the reuse of existing assertions in an RTL-to-TLM

bottom-up design flow has not been analyzed yet, except by

using transactors to create a mixed simulation between the

TLM design and the RTL checkers corresponding to the as-

sertions. However, the use of transactors may lead to longer

verification time due to the need of developing and veri-

fying the transactors themselves. Moreover, the simulation

time is negatively affected by the presence of transactors,

which slow down the simulation at the speed of the slow-
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est parts (i.e., RTL checkers). This article proposes an al-

ternative methodology that does not require transactors for

reusing assertions, originally defined for a given RTL IP, in

order to verify the corresponding TLM model. Experimental

results have been conducted on benchmarks with different

characteristics and complexity to show the applicability and

the efficacy of the proposed methodology.

Keywords Assertion-based verification, transaction-level

modelling, RTL abstraction.

1 Introduction

Several frameworks have been proposed in the past years to

deal with the design and verification of digital systems at

different abstraction levels. VHDL and Verilog have been

recognized to be the de-facto standard modeling languages

for design and verification at RTL [1]. On the other hand,

SystemC and TLM [2] have gained a broad consensus for

system-level design and verification, architectural explo-

ration and HW/SW co-simulation [3].

Such a language and paradigm heterogeneity in the to-

day’s design flows has led to the fact that IP models could

be available at different abstraction levels. This increases IP

reuse and integration among different projects at RTL and

TLM, ideally reducing design and verification time, partic-

ularly when an existing RTL model can be reused in a new

TLM context. However, the actual degree of IP reusability

heavily depends on the design and verification environment

adopted by the designers, which could require a significant

manual effort to plug the original model in the new abstrac-

tion level. The risk relies on the fact that an IP is imple-

mented and optimized twice, at RTL and TLM. At the state

of the art, the two implementations are developed by hands,

independently, and, often, by different people. This makes
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Fig. 1 Reuse of existing RTL IPs and assertions in SystemC TLM de-

sign flows.

it difficult to maintain consistency between the two mod-

els. While one of the two evolves for any reason (i.e., cus-

tomization, update, etc.), the other one needs to be manually

adapted. This approach is, from an industrial point of view,

expensive and not always convenient.

Methodologies and tools for the automatic generation of

SystemC TLM models starting from existing RTL IPs have

been recently proposed [4,5,6], and they represent a valu-

able support for the design of modern complex systems (see

left-most side of Figure 1).

On the other hand, the introduction of an automated

RTL-to-TLM abstraction flow requires verification strate-

gies to guarantee that the abstracted model is correct with

respect to the starting RTL IP, and that it behaves correctly

once plugged into the TLM system model. For this reason,

different strategies have been proposed to adapt RTL ver-

ification techniques at TLM. Formal equivalence checking

cannot be often applied being the process of abstraction in-

trinsically disruptive from a pure equivalence point of view

[7,8,9]. In contrast, some simulation-based techniques [10,

11,12,13] and frameworks [14,15,16] have been proposed

to allow designers to adopt ABV at transaction level.

ABV approaches require the definition of a set of (tem-

poral) assertions that formally represent the intent of the de-

signers (specification), and a static or dynamic-based deci-

sion procedure to check the consistency between such as-

sertions and the design under verification (DUV). Model

checking represents the main static approach to verify the

consistency between assertions and RTL designs [17]. How-

ever, due to its complexity, model checking is generally

adopted for verification of small, safety-critical compo-

nents, rather than for the whole DUV. Alternatively, a non-

exhaustive but less expensive, semi-formal approach is rep-

resented by dynamic ABV. In this case, assertions are con-

verted into checkers [11], i.e., components that monitor ob-

servable signals of the DUV during simulation and raise a

failure signal when counterexamples are found for the cor-

responding assertions (see right-most side of Figure 1).

Dynamic ABV relying on checkers has been extensively

applied to verify RTL models, where the trigger mechanism

to evaluate checkers is guaranteed by the presence of a clock

signal. In contrast, the application of dynamic ABV to more

abstracted models like, for instance, TLM designs, is not

straightforward. TLM models are represented with a set of

event-based, non-clocked, untimed or timed-annotated de-

scriptions that cannot easily fit with the concept of explicit

discrete time passing that underlies the semantics of tempo-

ral assertions [15]. Indeed, TLM lacks a synchronous tim-

ing reference that precisely identifies evaluation points for

checkers.

The techniques recently proposed to apply dynamic

ABV at TLM can be classified into two categories: ap-

proaches that define a way to specify temporal assertions

and that suppose the presence of an event-based triggering

mechanism for checkers [18], and approaches that oppor-

tunely synchronize checker activation and DUV simulation

[10]. Despite of their technical differences, all these works

assume a top-down design and verification flow, where as-

sertions definition is initially carried out at TLM level and

then refined towards RTL implementations. This requires, in

case of bottom-up flows based on RTL IP reuse, verification

engineers to redefine an ex-novo set of TLM assertion to

check the correctness of the abstracted TLM models, even

when RTL assertions are already available for the original

RTL implementations.

Up to now, no paper exists in the literature that pro-

poses a strategy for reusing, at TLM, assertions that have

been originally defined at RTL. This work is intended to fill

the gap by proposing an automatic methodology to reuse

RTL assertions into SystemC TLM models (see central part

of Figure 1). In this way, error-prone and time consuming

manual re-definition is avoided. Thus, verification engineers

can focus their attention on the definition of assertions for

checking the functionality of new components and the cor-

rect integration of the whole TLM system composed of new

and abstracted components. As a first step towards the

automatic abstraction of RTL assertions at TLM, this

work focuses on TLM cycle-accurate models. In particu-

lar, this work well applies when automatic tools for RTL-

to-TLM abstraction are used. An extension of this work

to support approximately-timed, loosely-timed and un-

timed TLM models, which may be modelled by hand, is

part of our current and future work.

Experimental results have been conducted on different

benchmarks and several RTL assertions have been synthe-

sized into checkers and plugged in to the system platform.

The results confirm the applicability of the methodology in
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reusing almost all the existing RTL assertions at TLM. They

also show that the overhead introduced by such checkers in

the TLM simulation platform is acceptable considering the

advantages of the automatic process.

The rest of this article is organized as follows. Section 2

presents a more accurate analysis of the related work. Sec-

tion 3 introduces the most important concepts of ABV and

RTL-to-TLM abstraction for a better understanding of the

proposed methodology. Section 4 presents the methodology.

Section 5 reports the experimental results, while Section 6 is

devoted to conclusions and remarks.

2 Related works

The problem of applying ABV at TLM has been investi-

gated first for cycle-accurate TLM models [3,19]. In [3] the

assertions and the DUV are modelled by using abstract state

machines and an approach is presented to perform static ver-

ification. In contrast, dynamic ABV is considered in [19],

where a way to wrap C++ checkers into SystemC cycle-

accurate descriptions is presented. However, these solutions

are not suited for higher (asynchronous, untimed or timed-

annotated) TLM levels whose semantics is not based over

discrete time steps.

ABV at higher levels is mainly addressed by defining

new synchronization mechanisms that replace, at TLM, the

traditional RTL synchronization based on clock events. In

[18,20], general concepts and requirements related to the

use of dynamic ABV at TLM are defined for the specific

case of TLM 1.0. Verification of TLM 1.0 models is pro-

posed also in [21], which defines a library of assertions to

allow self-checking of TLM channels, and in [22], where a

set of assertion primitives to handle the temporal logic be-

yond the cycle accurate level is defined. The last approach

offers interesting mechanisms to construct assertions syn-

chronized with events. Nevertheless, callbacks should be in-

serted in the original SystemC code to report event occur-

rences.

Synchronization policies between assertion checkers

and DUV have been proposed also in [23], where an event-

based synchronization mechanism is assumed instead of the

traditional clock-based approach adopted at RTL. This ap-

proach is supported by a specific assertion language that al-

lows to define assertions independently from the abstraction

level. A SystemC implementation of an ABV framework

that relies on such a language is then described in [14]. As-

sertions written by using this language are then compiled

and translated into SystemC modules. Transactions between

two modules are detected by proxy monitors such that asser-

tion modules receive events from these monitors and gener-

ate assertion results. Even if this approach is interesting, it

requires to redefine assertions by using a new specific lan-

guage, which could be unappealing for verification engi-

neers that are used to adopt standard ABV languages like

SystemVerilog Assertion (SVA) or Property Specification

Language (PSL).

A different ABV framework for SystemC TLM verifi-

cation is presented in [24]. The framework, implemented in

C++, takes PSL assertions and supports all coding styles of

standard TLM 2.0. Unfortunately, this approach requires to

instrument the code of the DUV.

Few modifications in the original SystemC code are re-

quired also by the technique proposed in [25] and imple-

mented in a tool called Horus. The authors use a model that

allows to observe the transactional events in the system and

to trigger the monitors at appropriate instants according to

the observer design pattern. Evolution of this approach aim-

ing at automatic generation of checkers suited to perform

dynamic ABV at TLM are also presented in [26,12,27,28].

In [26] the authors present a methodology that enables the

dynamic verification of temporal assertions for TLM speci-

fications by checking the validity of PSL assertions that ex-

press properties on communications. In [12] a correspond-

ing prototype tool, called ISIS, is described. The work in

[27] is devoted to present a formal, operational semantics

of PSL endowed with the modeling layer of PSL that has

been implemented in ISIS. Finally, the contribution reported

in [28] is intended to support reentrant assertions (i.e., differ-

ent instances of a same assertion evaluated on overlapping

evaluations cycles), through the use of multiple checker in-

stances, with local variables.

Approaches that do not require modifications of the orig-

inal SystemC code are presented in [29,30], where aspect-

oriented mechanisms are exploited to write temporal asser-

tions that fit TLM 2.0 requirements. Functional as well as

performance assertions are addressed.

A different synchronization policy between PSL check-

ers generated by using IBM FoCs [31] and SystemC TLM

designs is presented in [10], where checkers are evaluated at

the starting of each SystemC transaction.

A methodology to check the functional consistency be-

tween TLM and RTL models is instead proposed in [32],

where the reuse of TLM assertions at RTL is guarantee by

ad-hoc refinement rules.

Finally, a formal tool for assertion checking of TLM

SystemC descriptions is proposed in [15]. The description

is first converted into C code, then monitor logic is imple-

mented by means of C asserts and finite state machines.

Bounded model checking is finally employed to complete

the verification process.

Reuse of ABV properties in TLM-based design flows

has been addressed in [13,16,33]. In particular, [13,16]

present techniques to reuse TLM properties at RTL

through TLM/RTL transactors. Instead, [33] presents

a methodology to check the functional consistency be-

tween TLM and RTL models by reusing TLM properties
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at RTL through ad-hoc refinement rules. All these tech-

niques assume a top-down design and verification flow,

where properties are defined ex-novo at TLM level, and

then reused at RTL.

In contrast, our approach addresses a different problem

that fits bottom-up flows, i.e., how to reuse assertions de-

fined at RTL so that they can be used to verify a TLM design,

where abstracted versions of existing RTL intellectual prop-

erty (IP)-cores are plugged into SystemC TLM system plat-

forms. To the best of our knowledge, the only approach that

partially supports the reuse of RTL assertions at TLM has

been presented in [34]. [34] proposes to adopt transactors

to allow a TLM-RTL mixed simulation. A transactor works

as a translator from a TLM function call to an RTL sequence

of statements and vice versa, i.e., it provides the mapping

between transaction-level requests, made by TLM compo-

nents, and detailed signal-level protocols on the interface of

RTL IPs. In this way, checkers corresponding to assertions

defined at RTL can be connected to a TLM model through

opportune transactors. However, the implementation of the

transactor and its verification could be compared to rewrit-

ing assertions at TLM, from the point of view of the devel-

opment time. Some semi-automatic approaches have been

proposed for transactor generation [35], but a complete au-

tomatic tool has never been implemented. Anyway, simula-

tion time is negatively affected by the presence of transac-

tors that slow down the simulation at the speed of the slowest

(i.e., RTL) parts (i.e., checkers).

3 Assertion-based verification in TLM

This section firstly summarizes the preliminary concepts re-

lated to PSL [36], one of the most widespread language

for specification of temporal assertions. Then, the most im-

portant notions related to RTL-to-TLM abstraction are pre-

sented to better understand the assertion reuse technique

proposed in the following sections.

3.1 PSL assertions and assertion checkers

PSL is nowadays one of the most prominent standards

for formalizing specifications into assertions. Based on the

Sugar language by IBM, PSL has been proposed by the

Accellera consortium as a specification language to define

assertions with a concise syntax and a clearly-defined for-

mal semantics. PSL shows many similarities with respect

to SVA, the assertion sub-language of SystemVerilog. How-

ever, while SVA is strictly connected to SystemVerilog, PSL

is a multipurpose, multilevel, multiflavor language. It is in-

tended to be used for both functional verification and func-

tional specification. Assertions written in PSL can be seen

as an executable documentation for hardware and embedded

software design.

PSL is an extension of the standard temporal logics

Linear Time Temporal Logic (LTL) and Computation

Tree Logic (CTL). PSL assertions are built upon four lay-

ers which cooperate to guarantee the expressiveness of the

language:

– Boolean layer: it is adopted to build basic expressions

commonly used by the other layers.

– Temporal layer: it can be considered as the core of the

language since it gives the possibility of describing tem-

poral relations, which are verified over a set of evalua-

tion cycles.

– Verification layer: it provides the directives for using as-

sertions during a verification run.

– Modeling layer: it can be used to characterize the be-

havior of design inputs and to model auxiliary variables

representing the environment where the DUV lives.

To use PSL assertions for (dynamic) simulation-based

verification, it is necessary to map them into executable

specifications, i.e., assertion checkers, or simply checkers,

that must be connected to the DUV to monitor its behavior.

Checkers can be generated only from assertions compliant

with the simple subset of PSL, which conforms to the no-

tion of monotonic advancement of time, and it is close to

the concept of simulation itself.

In the past, checkers were manually written and embed-

ded within the system description. However, this was a time-

consuming and error-prone task. Thus, much effort has been

recently spent to make the checker synthesis from formal

specifications automatic. The most prominent technique to

generate checkers from assertions is based on automata [31,

11,37]. The simple subset of PSL subsumes the LTL by

introducing regular expressions and syntactic sugar. PSL

expressiveness is equivalent to omega-regular languages,

which are recognized by Büchi automata. Consequently, the

internal implementation of a checker strongly resembles the

structure of the automaton that recognizes the formula ex-

pressed in the assertion. To guarantee the evolution of the

automaton during simulation, the checker is interfaced with

the DUV. The actual implementation of the interface de-

pends on the target language, which is generally VHDL,

Verilog or SystemC/C++. From the user point of view, a

checker can be considered as a function invoked periodically

over the DUV I/O signals.

3.2 RTL-to-TLM abstraction

At the state of the art, Carbon Studio [4] and HIFSuite A2T

[5] are the main important and widespread tools for auto-

matic RTL-to-SystemC TLM abstraction. Despite techni-

cal differences, the abstraction process implemented by the
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Fig. 2 Dynamic scheduling overview: RTL model example (a), the corresponding graph of process syntchronization and communication (b), and

the process scheduling over simulation time (c).

tools involves two main aspects, namely the abstraction of

the I/O interface and the abstraction of the IP functionality.

Concerning the abstraction of the communication protocol,

a dedicated C++ data structure is created to store a field for

every port of the original RTL model. Such a data structure

is used to provide input data to the abstracted design and

to retrieve output data from it. To properly model RTL port

bindings at TLM, C++ pointers are exploited to introduce

a data sharing mechanism, which mimics the port binding

behavior typically featured in Hardware Description Lan-

guages (HDLs).

From the functionality point of view, the SystemC TLM

code is obtained by translating hardware description lan-

guage (HDL) statements into SystemC statements and by

handling the RTL concurrency through a dynamic schedul-

ing routine, which reproduces the behavior of the RTL pro-

cess scheduler.

Consider, as a simple example, the IP block in Fig-

ure 2. Figure 2(a) shows the VHDL code of the IP block.

Figure 2(b) represents the RTL IP model of such a block

through a graph, each process being a vertex and each

signal being an oriented edge. The graph represents

the synchronization and communication net among pro-

cesses. The RTL IP block consists of four synchronous

processes (ps1-ps4), one asynchronous processes (pa1),

two input ports (in1, in2), two output ports (out1, out2),

and internal signals (sig1- sig3). Figure 2(c) represents

the corresponding process execution order, by under-

lining update and evaluate steps, simulation cycles, and

delta cycles. In dynamic scheduling, the RTL processes

are activated whenever an event to which they are sensi-

tive occurs. Simulated time granularity equals one clock pe-

riod when the generated TLM model is cycle-accurate. Syn-

chronous processes are firstly run on the rising event of the

corresponding clock. Then, asynchronous processes, sensi-

tive to events triggered by previously executed synchronous

scheduler{

rising_edge();

while(events_triggered) {

delta_cycle(); 

}

falling_edge(); 

while(events_triggered) {

delta_cycle(); 

}

}

sig1 = a000; 

Statements (e.g., the

above assignement) in a

synch process are

executed in the clock

rising edge phase.

CLK

Fig. 3 Overview of the SystemC TLM scheduling activity.

processes, are executed. This last routine repeats until no

further event is triggered. Each of these iterations corre-

sponds to a delta cycle, which is a simulation cycle where

simulated time does not advance [38]. The same procedure

is then executed with respect to the falling edge of the clock.

When delta cycles have finished, the simulation advances to

the next clock cycle and the simulated time is updated.

According to such a simulation scheduling, Figure 3 pro-

vides a visual description of the scheduler activity for the

cycle accurate TLM model generated starting from a syn-

chronous RTL model. At each clock event, the scheduler

first invokes the synchronous functions sensitive to the ris-

ing edge of the clock (rising_edge() in Figure 3 rep-

resents these invocations). Then, the scheduler iteratively

invokes the asynchronous functions (delta_cycle()

invocation) and moves on to the falling edge phase

(falling_edge()) to invoke any process synchronized

to the falling edge of the clock.

To properly manage the process synchronization, the

RTL signals are converted into a pair of corresponding TLM

variables having the same type as the signal. One variable

stores the current value of the signal during the simulation

of a delta cycle, while the other contains the new value that

will be updated at the end of the delta cycle. The use of a pair

of variables is required to properly implement, at TLM, the

deferred assignment mechanism featured by RTL signals.
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Fig. 4 Mapping of RTL waveforms to TLM transaction sequences: example of scenario 1 (a) and scenario 2 (b).

C++ assignments are in fact immediate, and do not support

the typical delay mechanism of HDL concurrent processes.

Since functions corresponding to processes executing in the

same delta cycle are invoked sequentially by the main sched-

uler function, a separate variable is required to store the new

value of the signal. The code of the process functions is

modified so that every write operation on a signal has the

new value variable on the left-hand side. This prevents the

alteration of the current value being read by all other pro-

cesses executing in the same delta cycle.

4 Methodology

Independently from the approach/tool adopted to abstract

RTL IPs towards the TLM, we assume that the generated

SytemC TLM models are accurate enough to guarantee the

simulation of timing delays, i.e, only TLM cycle accurate

models compliant with the scheduling policy described in

Section 3.2.

Consider, for example, two cycle accurate RTL mod-

els that implement delay sensors, whose waveforms are

shown in Figure 4. The first sensor (Figure 4(a)) relies

on the Razor flip-flop (FF) [39]. The sensor aims at en-

hancing FFs of IP critical paths by introducing a shadow

latch that samples the FF input data on the negative level

of the delayed clock signal CLK. Since CLK is delayed by

half CLK period (TCLK

2
), the Razor working time win-

dow is bounded by the rising and falling edge of CLK.

If the values contained by FF and by the shadow latch

differ, an error signal E is asserted to notify the timing

failure. When the control signal R is high, the recovery

mechanism is executed and the error in the faulty FF is

corrected. The correction feature can be selectively ac-
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tivated on each modified Razor FF acting on the corre-

sponding signal R.

The second sensor relies on a simple counter to mea-

sure the propagation delay on IP critical paths. Com-

pared to the Razor FF, it provides an absolute measure

of delay rather than a timing failure detection. Using an

additional clock (i.e., HF_CLK) with higher frequency

multiple of the clock frequency of the IP (i.e., CLK),

the monitor enumerates the amount of HF_CLK periods

elapsed for the signal propagation from the path start

point to the path end point. The measurement is per-

formed during a predefined time window called observ-

ability window (i.e., OBS_WIN) where all signal transi-

tions are captured. The position in time and width of

OBS_WIN are chosen at design time according to the ex-

pected time interval where signal transitions may occur.

Two registers store the counter value on the occurrence

of both rising and falling transitions. The delay measure

is then selected according to the last captured transition.

A control block compares the obtained value with refer-

ence values determined at design time.

The two cycle-accurate examples differ for the num-

ber of clock signals (i.e., one clock signal for the Razor

FF, two clock signals for the counter-based sensor). In

this context, the methodology we propose to reuse RTL

assertions at TLM applies to two different scenarios:

1. The generated TLM model results from a RTL im-

plementation with a single clock signal. The gener-

ated SystemC TLM model is accurate to the clock

signal and in the SystemC simulation, a TLM trans-

action is run for each clock cycle. The digital IP pre-

sented in Figure 4(a) is an example of this scenario.

2. The generated TLM model results from a RTL im-

plementation with two clock signals. The SystemC

TLM model is accurate to one of them only. The sec-

ond clock signal is abstracted away, i.e., a number of

cycles of this clock are included into a single TLM

transaction. The digital IP presented in Figure 4(b)

is an example of this second scenario.

We explored two ways of reusing RTL assertions at TLM

for both scenarios. These approaches rely on the capability

of checker generators (e.g., IBM FoCs) of synthesizing an

assertion into an automaton that can be modeled either by a

set of RTL processes described through traditional HDL lan-

guages (e.g., VHDL, Verilog) or by a set of C++ functions.

1. Abstraction of RTL HDL checkers. In this case, PSL

assertions defined for the RTL IP are first converted

into RTL checkers (see Figure 5(a), step 1). Checker’s

behavior is implemented through HDL processes that

describe a synchronous state machine modeling the

semantics of the original PSL assertions. Such kind of

Fig. 5 Alternatives to reuse RTL assertions at TLM: The generation

of HDL checkers and the integration phase before the RTL-to-TLM

abstraction (a), and the generation of C++ checkers and the integration

phase in the abstracted TLM IP model (b).

checkers (which are called monitors in literature) can

be directly integrated into the RTL IP model (step 2).

The reuse of RTL assertions at TLM is then obtained

by abstracting the RTL IP model extended with RTL

checkers towards a SystemC TLM implementation,

by using any automatic RTL-to-TLM tool (step 3).

2. Generation of C++ checkers. The second approach con-

sists of generating C++ checkers (see Figure 5(b), step

1) that can be directly integrated into a SystemC TLM

IP model. In this case, only the RTL IP is abstracted

from RTL to SystemC TLM (step 2). On the con-

trary, C++ checkers do not required to be abstracted

since they are opportunely invoked by the SystemC

scheduler according with the TLM cycle accurate sim-

ulation semantics (step 3).

Both alternatives are automatic. The first one (Figure

5(a)) is straightforward, since it consists of applying ex-

isting tools in cascade (e.g., IBM FoCS for HDL monitor

generation and HIFSuite A2T for RTL-TLM abstrac-

tion). The second one (Figure 5(b)) still consists of apply-

ing two existing tools but, since the monitors are gener-

ated in C++ rather than HDL, it requires manipulating

the automatically generated SystemC TLM code to op-

portunely invoke C++ checkers. The methodology pro-

posed in this paper adopts the second alternative, since

it guarantees better simulation performance. To under-

stand the reason, we have to better detail the three steps

of the methodology, which are explained in Sections 4.1,

4.2 and 4.3. The comparison of the two alternatives will

be discussed in Section 4.4.
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4.1 Step 1: generation of C++ checkers

In the first phase, a checker generator is applied to automat-

ically generate run-time C++ checkers from a starting set of

assertions defined for the RTL model1.

Figure 6.1 on the top depicts an example of a PSL

RTL assertion, P1. It asserts, globally, whether A or B

is always followed in the next clock cycle by C. The @ −

clause at the end of the assertion specifies the RTL events

in which the property must be checked (in our example,

the rising edge of the clock). Given P1, the checker gen-

erator produces a C++ code (P1(){..}, in the exam-

ple) that implements the automaton corresponding to the

property semantics. To verify property P1 during sim-

ulation, the C++ checker must be called exactly in the

events specified by the @-clause of the original PSL as-

sertions.

In general, the checker code is composed of two rou-

tines. The first must be invoked at every event specified in

the @-clause of the original PSL assertion (e.g., the ris-

ing edge of the clock). This allows the checker to evolve

through the automaton and to assess the assertion (true

or false). The second routine must be called whenever

the abort condition of the assertion occurs.

4.2 Step 2: IP abstraction

In the second phase, the RTL model is abstracted into

SystemC TLM (see Figure 6.2). The RTL model con-

sists of a number of synchronous and asynchronous pro-

cesses, and its semantic relies on the scheduling of the

RTL processes. During simulation, the processes are woke

up only if necessary. Synchronous processes wake up at

each clock cycle. Asynchronous processes wake up if an

event to which they are sensitive has occurred. During

abstraction, RTL processes are translated into C++ func-

tions, which are scheduled exactly in the same way as at

RTL by a scheduler, which is embedded in the SystemC

TLM code (see Section 3.2).

The C++ checkers derived from step 1 are integrated

among the functions implementing the IP functionality

(Figure 6.3) and invoked by scheduler as explained in the

following Section.

4.3 Step 3: integration of checkers at TLM

After the checkers have been generated, the main focus of

the proposed methodology lies on where to integrate them

within the abstracted TLM description. A strategy is devised

to insert calls to the C++ routines that implement checkers

1 It is worth noting that the proposed methodology is independent

from the checker generator employed in this step.

by the process scheduler (see Figure 6.3) that is responsible

for carrying out the design functionality in the TLM descrip-

tion.

Since the process scheduler in the abstracted

description distinguishes between synchronous func-

tions and asynchronous functions, the checkers in-

vocations are inserted in the opportune scheduling

function i.e., rising_edge(), falling_edge() or

delta_cycle() (see Figure 3). In order to do so, the

@-clause of the corresponding PSL assertion is exam-

ined, since it regulates how timesteps are determined

during the evaluation of the assertion carried out by the

generated checker. Furthermore, if the assertion features

an abort clause, it must be also taken into account, as

such a clause is asynchronous with respect to the @-

clause.

If the @-clause refers to the rising edge (or the falling

edge) of the clock signal, then the invocation to the

C++ routine that implements the evolution of the checker

is added at the end of the rising_edge() (or the

falling_edge() scheduling functions). Otherwise, if

the @-clause refers to a non-clock signal, then an if-

condition checking whether the specified event occurred

is added at the end of the delta_cycle() scheduling

function. If such a condition evaluates to true, the checker

routine is invoked (once in the whole scheduling cycle)

to allow a proper evolution of the state machine within

the checker. Additionally, if the PSL assertion contains

an abort clause, then an if-condition checking whether

the abort condition occurred is added at the end of the

delta_cycle() scheduling function. If such condition

evaluates to true, the corresponding abort routine of the

checker is invoked.

For example, let us consider the following RTL assertion

written in PSL:

assert always ({[*1];

stable(stx)[*16]}) abort preset=’0’

@rising_edge(pclk)

Since the @-clause refers to the rising edge of the

pclk clock signal, an invocation to the C++ routine that

evolves the state machine is added at the end of the

rising_edge() scheduling function. In order to prop-

erly take into account the abort clause, an if-condition

checking whether the preset reset signal is low is added at

the end of the delta_cycle() scheduling function. An

invocation to the abort routine of the checker is then added

to this if-branch.
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Fig. 6 The three steps of the methodology: the checker generation through synthesis with an example (a), the RTL-to-TLM abstraction with an

example (b), and the checker integration in the SystemC TLM model

4.4 HDL vs C++ checkers integration

The two alternatives for reusing RTL assertions re-

ported in Figure 5 are equivalent from the functionality

point of view. As such, an invocation to the routine imple-

menting the evolution of the checker is performed by the

TLM dynamic scheduler whenever the corresponding

event specified in the @-clause occurs in both alterna-

tives. The correspondence between original RTL events

and TLM events is guaranteed whenever the clock accu-

racy is preserved and annotated in the TLM description

(i.e., in the two scenarios presented in Section 3.2).

However, alternatives number 2, which has been de-

scribed in details in Sections 4.1, 4.2 and 4.3 offers the

following advantages over alternative number 1, which

relies on the abstraction of the RTL description together

with RTL checkers:

– It is less time-consuming since the integration of C++

checker routines into the TLM scheduling functions is

more immediate than the integration of RTL checkers

within the starting RTL IP model.

– It relies on a higher-level implementation of the check-

ers, thus reducing the overhead caused by their intro-

duction. In fact, directly generated C++ checker routines

are bound to have better performance in simulation than

their abstracted RTL counterparts.

5 Experimental results

The methodology presented in this article has been applied

to different VHDL IP blocks: a DES56 cryptographic mod-

Table 1 Characteristics of the RTL IPs.

Design
Processes RTL Pipeline Latency

Async. Sync. loc stages (cc)

DES56 20 6 2,022 – 17

ColorConverter 12 3 1,454 8 8

UART 416 77 5,866 – 16

Root 2 0 343 – 16

Div 1 5 1,283 – 16

QNR 7 17 518 16 16

RLE 14 17 678 9 9

FDCT 259 196 5,935 388 67

JPEG 281 231 18,381 80 80

Error Correction 6 11 1,666 – 130

Lambda Root 0 5 1,092 – 790

Omega Phy 17 4 1,595 – 294

ule, a ColorConverter model, which transforms an image

from the RGB format to the YCbCr601 format, a UART

module, two sub-components of a face-recognition system

(i.e., Root and Div), a JPEG encoder and its sub-components

(i.e., QNR, RLE, FDCT) and some components of a Reed-

Solomon decoder (i.e., Error Correction, Lambda Root,

Omega Phy). Table 1 reports their main characteristics in

terms of number of synchronous and asynchronous pro-

cesses, number of lines of code (loc), number of pipeline

stages, and latency in clock cycles.

The RTL SystemC models have been obtained by using

the HDL conversion tools provided by HIFSuite [5], while

the corresponding SystemC TLM cycle-accurate models

have been generated by the HIFSuite’s A2T back end.
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Fig. 7 The structure of the DES56 RTL model.

Fig. 8 The structure of the ColorConverter RTL model.

As a starting point, different PSL assertions have been

provided for each RTL IP model. Some examples of PSL

assertions applied for verifying the DES56 RTL model (see

Figure 7), and then reused at TLM, are the following. The

always operator at the beginning of each assertion means

that its right operand holds globally.

1. always (ds = 1 ∧ indata 6= 0 ∧ next(ds = 0)) →
next[17](rdy = 1 ∧ outdata 6= 0)@clk_pos;

“if not null data (indata 6= 0) are ready (ds = 1 and

at the next clock cycle ds = 0) on the input port,

then a not null result (outdata 6= 0) should be ready

(rdy = 1) on the output port after 17 clock cycle”.

2. always (ds → next[17](!ds)) until rdy@clk_pos;

“until result is ready (rdy), if the ds flag denotes that

data are ready on the inputs, then after 17 cycles the

ds flag should be 0”.

3. always (ds ∧ indata = 0) →

next[17](out ! = 0)@clk_pos;

“if zero is provided to the input port (indata = 0),

then the encrypted data provided after 17 clock cy-

cles should be not null (next[17](out ! = 0))”.

Some examples of PSL assertions applied for verifying

the ColorConverter model (see Figure 8) are the following:

1. always next[8](dout_rdy)until!(data_ena);

“the enabling flag for the output data dout_rdy will

be high in 8 clock cycles, and will stack high until the

enabling flag data_ena for the input data is high”.

2. always data_ena → next[8]dout_rdy;

“if the enabling flag of the input data data_ena is

high, then the enabling flag for output data will be

hight (result is ready) after 8 clock cycle”.

The PSL assertions have been synthesized into cycle

accurate C++ checkers through IBM FoCs [40]. These

checkers can be integrated into both SystemC RTL and

SystemC TLM cycle accurate models of IPs under ver-

ification. This is possible because both the TLM cycle

accurate model and the RTL model of an IP evolve ac-

cording to the same timing reference (i.e., both are cycle

accurate). Thus, the C++ automata implemented in the

checkers synthesized by FoCs work properly at RTL as

well as at TLM cycle accurate. The only difference re-

lies on the way C++ checkers are invoked during RTL

and TLM simulation. At RTL, FoCs checkers have been

wrapped inside sc_methods which run concurrently with

respect to RTL processes. At TLM, the mechanism de-

scribed in Section 4.3 has been adopted.

To evaluate the simulation overhead caused by the

introduction of the checkers, three different contexts

have been tested for both the RTL and TLM IP mod-

els. The first consists of the IP models without any

checker. This allows us to estimate the reference speed-

up due to the RTL-to-TLM abstraction. The second and

third contexts represent the IP models with a few and

many checkers, respectively (in particular, two and forty

checkers) to evaluate the overhead caused by a different

amount of inserted checkers on traditional RTL simula-

tion and when they are reused at TLM as proposed in

this article. The set of checkers integrated in both the RTL

and TLM models is the same. Table 2 reports the obtained

results. For each design, column Checkers identifies the con-

text (i.e., with 0, 2 or 40 checkers), columns RTL and TLM

report the execution time (in seconds) employed by the sim-

ulation. Columns Overhead report the overhead on the sim-

ulation time caused by the integration of the checkers, in

percentage with respect to the version without checkers. Fi-
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Table 2 Experimental results.

Design
Checkers RTL Overhead TLM Overhead Speed-up

(#) (s) (%) (s) (%) (x)

DES56

0 42.48 – 20.18 – 2.11

2 100.28 136.06 23.50 16.45 4.27

40 989.34 2,228.95 312.35 1,447.82 3.17

ColorConverter

0 112.12 – 18.76 – 5.98

2 209.61 86.95 23.31 24.25 8.99

40 1,072.11 856.22 378.01 1,914.93 2.84

UART

0 24.19 – 11.61 – 2.08

2 54.69 126.13 23.71 104.22 2.31

40 588.71 2,334.08 458.94 3,852.97 1.28

Root

0 22.75 – 19.94 – 1.14

2 97.44 328.32 37.00 85.55 2.63

40 1,422.16 6,151.53 1,203.10 5,933.60 1.18

Div

0 46.03 – 20.79 – 2.21

2 125.43 172.51 23.05 10.87 5.44

40 1,528.48 3,220.83 665.41 3,101.40 2.30

FDCT

0 105.59 – 18.57 – 5.69

2 209.65 98.55 34.58 86.24 6.06

40 2,250.88 2,031.78 1,054.86 5,581.66 2.13

QNR

0 94.54 – 12.09 – 7.82

2 202.46 114.15 25.45 110.57 7.95

40 2,110.55 2,132.37 950.84 7,766.67 2.22

RLE

0 96.12 – 12.99 – 7.40

2 219.80 128.66 28.19 117.12 7.80

40 2,207.52 2,196.53 985.70 7,491.11 2.24

JPEG

0 307.83 – 42.02 – 7.33

2 622.94 102.37 82.96 97.42 7.51

40 6,257.01 1,932.61 3,084.88 7,241.11 2.03

Error-correction

0 197.56 – 34.77 – 5.68

2 386.73 95.76 70.02 101.38 5.52

40 3,971.00 1,910.05 2,603.49 7,388.39 1.53

Lambda

0 487.54 – 69.13 – 7.05

2 791.15 62.27 121.79 76.18 6.50

40 7,406.19 1,419.08 3,568.10 5,061.51 2.08

Omega-phy

0 487.54 – 80.94 – 6.02

2 935.10 91.80 144.80 78.91 6.46

40 8,945.88 1,734.89 3,978.45 4,815.49 2.25

nally column speed-up reports the simulation speed-up be-

tween the RTL and TLM implementations.

In general, we observed that the checker integration

affects the RTL and TLM execution times in a differ-

ent way, even if the checkers are the same. In particular,

the presence of checkers affects linearly both the RTL

and TLM execution time (i.e., the overhead introduced

by the checkers increases linearly with the number of in-

serted checkers). However, the overhead over the num-

ber of inserted assertions increases more rapidly at TLM

than RTL. In the RTL IP simulation, with few check-

ers, the event-driven execution of the IP core dominates

the event-driven execution of the checkers. On the other

hand, by considering the RTL IP code and the checker

code, the ratio between the scheduling events raised and

the code complexity of IP core and checkers is compa-

rable. As a consequence, the event-driven execution of

the checkers becomes dominant over the IP when the

amount of code implementing checkers is larger than

the IP code. In the TLM IP simulation, with few check-

ers, the execution of the IP core (which relies on fewer

scheduling events than at RTL) is also dominant over

the checkers. Nevertheless, by increasing the number of

checkers, the event-driven execution of the checkers be-

comes dominant over the IP execution sooner (with less

checkers) than at RTL.

This behavior has a direct impact on the RTL vs.

TLM simulation speedup. By comparing the simulation

times between RTL and TLM implementations, starting

with no checkers and integrating an increasing number

of checkers, we observed that the RTL-TLM speedup

initially improves (i.e., by moving from no checkers to

two checkers), while it linearly decreases as the number

of checkers increases. In general, the RTL-TLM speedup

is preserved to a minimum of 2x when the number of

checkers is significantly high (i.e., around forty). In two

cases (UART, Root) we observed the speedup being can-

celed (i.e., around 1x). This is due to the fact that, in those
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cases, also the initial speedup (IPs with no checkers) is

very low.

We expect that, in each context, the achieved speed-up

ends up being lower than the one that can be obtained by

manually implementing a "higher-level" TLM description

and consequently manually re-writing the assertions to be

used with the new model. However, this double manual pro-

cess would be time-consuming and error-prone. Conversely,

the results obtained by using the proposed methodology

have been achieved automatically reusing the already exist-

ing verification environment, without relying on any time-

consuming manual transformation.

6 Conclusions

This article presented a methodology to reuse assertions,

originally defined for an RTL IP, to verify the correspond-

ing TLM model. The methodology applies to SystemC

TLM models automatically generated from existing RTL IPs

through any of the abstraction tools available in the com-

merce. The methodology consists of two automatic steps,

in which assertions are firstly synthesized into C++ routines

and then inserted in the SystemC TLM model. The experi-

mental results have been conducted on benchmarks with dif-

ferent characteristics and complexity to show the applicabil-

ity of the proposed methodology. The results show that the

methodology finds the best applications whenever the num-

ber of assertions reused at TLM are limited (10-15) per IP,

which, in our opinion, could be enough in several cases. The

results also underline the simulation overhead caused by the

automatic aspect of the methodology, which, in our opinion,

is acceptable considering, as the alternative, the manual ef-

fort required to re-implement both the TLM model and the

TLM assertions.

The methodology can be applied only for cycle-accurate

TLM descriptions automatically generated according to the

scheduling policy described in Section 3.2. On the contrary,

approximately timed, loosely timed and untimed TLM mod-

els are currently not supported.
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