55,610 research outputs found

    A Method for Consistent Non-Local Configuration of Component Interfaces

    Get PDF
    Service-oriented computing is a popular technology that facilitates the development of large-scale distributed systems. However, the modular composition and flexible coordination of such applications still remains challenging for the following reasons: 1) the services are provided as loosely coupled black boxes that only expose their interfaces to the environment; 2) interacting services are not usually known in advance: web services are dynamically chosen to fulfil certain roles and are often replaced by services with a similar functionality; 3) the nature of the service-based application is decentralised. Loose coupling of web services is often lost when it comes to the construction of an application from services. The reason is that the object-oriented paradigm, which is widely used in the implementation of web services, does not provide a mechanism for service interface self-tuning. As a result, it negatively impacts upon the interoperability of web services. In this dissertation we present a formal method for automatic service configuration in the presence of subtyping, polymorphism, and flow inheritance. This is a challenging problem. On the one hand, the interface description language must be flexible enough to maintain service compatibility in various contexts without any modification to the service itself. On the other hand, the composition of interfaces in a distributed environment must be provably consistent. Our method is based on constraint satisfaction and Boolean satisfiability. First, we define a language for specifying service interfaces in a generic form, which is compatible with a variety of contexts. The language provides support for parametric polymorphism, Boolean variables, which are used to control dependencies between any elements of interface collections, and flow inheritance using extensible records and variants. We implemented the method as a constraint satisfaction solver. In addition to this, we present a protocol for interface configuration. It specifies a sequence of steps that leads to the generation of context-specific service libraries from generic services. Furthermore, we developed a toolchain that performs a complete interface configuration for services written in C++. We integrated support for flexible interface objects (i.e. objects that can be transferred in the application along with their structural description). Although the protocol relies solely on interfaces and does not take behaviour concerns into account, it is capable of finding discrepancies between input and output interfaces for simple stateful services, which only perform message synchronisation. Two running examples (a three buyers use-case and an image processing application) are used along the way to illustrate our approach. Our results seem to be useful for service providers that run their services in the cloud. The reason is twofold. Firstly, interfaces and the code behind them can be generic as long as they are sufficiently configurable. No communication between service designers is necessary in order to ensure consistency in the design. Instead, the interface correspondence in the application is ensured by the constraint satisfaction algorithm, which we have already designed. Secondly, the configuration and compilation of every service are separated from the rest of the application. This prevents source code leaks in proprietary software which is running in the cloud

    Towards runtime discovery, selection and composition of semantic services

    Get PDF
    Service-orientation is gaining momentum in distributed software applications, mainly because it facilitates interoperability and allows application designers to abstract from underlying implementation technologies. Service composition has been acknowledged as a promising approach to create composite services that are capable of supporting service user needs, possibly by personalising the service delivery through the use of context information or user preferences. In this paper we discuss the challenges of automatic service composition, and present DynamiCoS, which is a novel framework that aims at supporting service composition on demand and at runtime for the benefit of service end-users. We define the DynamiCoS framework based on a service composition life-cycle. Framework mechanisms are introduced to tackle each of the phases and requirements of this life-cycle. Semantic services are used in our framework to enable reasoning on the service requests issued by end users, making it possible to automate service discovery, selection and composition. We validate our framework with a prototype that we have built in order to experiment with the mechanisms we have designed. The prototype was evaluated in a testing environment using some use case scenarios. The results of our evaluation give evidences of the feasibility of our approach to support runtime service composition. We also show the benefits of semantic-based frameworks for service composition, particularly for end-users who will be able to have more control on the service composition process

    An Algorithm for Automatic Service Composition

    Get PDF
    Telecommunication companies are struggling to provide their users with value-added services. These services are expected to be context-aware, attentive and personalized. Since it is not economically feasible to build services separately by hand for each individual user, service providers are searching for alternatives to automate service creation. The IST-SPICE project aims at developing a platform for the development and deployment of innovative value-added services. In this paper we introduce our algorithm to cope with the task of automatic composition of services. The algorithm considers that every available service is semantically annotated. Based on a user/developer service request a matching service is composed in terms of component services. The composition follows a semantic graph-based approach, on which atomic services are iteratively composed based on services' functional and non-functional properties

    An Integrated Semantic Web Service Discovery and Composition Framework

    Full text link
    In this paper we present a theoretical analysis of graph-based service composition in terms of its dependency with service discovery. Driven by this analysis we define a composition framework by means of integration with fine-grained I/O service discovery that enables the generation of a graph-based composition which contains the set of services that are semantically relevant for an input-output request. The proposed framework also includes an optimal composition search algorithm to extract the best composition from the graph minimising the length and the number of services, and different graph optimisations to improve the scalability of the system. A practical implementation used for the empirical analysis is also provided. This analysis proves the scalability and flexibility of our proposal and provides insights on how integrated composition systems can be designed in order to achieve good performance in real scenarios for the Web.Comment: Accepted to appear in IEEE Transactions on Services Computing 201

    Semantic-driven matchmaking of web services using case-based reasoning

    Get PDF
    With the rapid proliferation of Web services as the medium of choice to securely publish application services beyond the firewall, the importance of accurate, yet flexible matchmaking of similar services gains importance both for the human user and for dynamic composition engines. In this paper, we present a novel approach that utilizes the case based reasoning methodology for modelling dynamic Web service discovery and matchmaking. Our framework considers Web services execution experiences in the decision making process and is highly adaptable to the service requester constraints. The framework also utilises OWL semantic descriptions extensively for implementing both the components of the CBR engine and the matchmaking profile of the Web services

    A Framework for Design and Composition of Semantic Web Services

    Get PDF
    Semantic Web Services (SWS) are Web Services (WS) whose description is semantically enhanced with markup languages (e.g., OWL-S). This semantic description will enable external agents and programs to discover, compose and invoke SWSs. However, as a previous step to the specification of SWSs in a language, it must be designed at a conceptual level to guarantee its correctness and avoid inconsistencies among its internal components. In this paper, we present a framework for design and (semi) automatic composition of SWSs at a language-independent and knowledge level. This framework is based on a stack of ontologies that (1) describe the different parts of a SWS; and (2) contain a set of axioms that are really design rules to be verified by the ontology instances. Based on these ontologies, design and composition of SWSs can be viewed as the correct instantiation of the ontologies themselves. Once these instances have been created they will be exported to SWS languages such as OWL-S

    Supporting Dynamic Service Composition at Runtime based on End-user Requirements

    Get PDF
    Network-based software application services are receiving a lot of attention in recent years, as observed in developments as Internet of Services, Software as a Service and Cloud Computing. A service-oriented computing ecosystem is being created where the end-user is having an increasingly more active role in the service creation process. However, supporting end-users in the creation process, at runtime, is a difficult undertaking. Users have different requirements and preferences towards application services, use services in different situations and expect highly abstract mechanisms in the creation process. Furthermore, there are different types of end-users: some can deliver more detailed requirements or can be provided with more advanced request interface, while others can not. To tackle these issues and provide end-users with personalised service delivery, we claim that runtime automated service composition mechanisms are required. In this paper we present the DynamiCoS framework, which aims at supporting the different phases required to provide end-users with automatic service discovery, selection and composition process. In this paper we also present the developed prototype and its evaluation
    • 

    corecore