
A Method for Consistent Non-Local
Configuration of Component Interfaces

Pavel Zaichenkov

January 2017

A thesis submitted to the
University of Hertfordshire

in partial fulfilment of the requirements of
the degree of

Doctor of Philosophy

in Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Hertfordshire Research Archive

https://core.ac.uk/display/84340349?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Service-oriented computing is a popular technology that facilitates the development
of large-scale distributed systems. However, the modular composition and flexible
coordination of such applications still remains challenging for the following reasons: 1)
the services are provided as loosely coupled black boxes that only expose their interfaces
to the environment; 2) interacting services are not usually known in advance: web
services are dynamically chosen to fulfil certain roles and are often replaced by services
with a similar functionality; 3) the nature of the service-based application is decentralised.
Loose coupling of web services is often lost when it comes to the construction of an
application from services. The reason is that the object-oriented paradigm, which is
widely used in the implementation of web services, does not provide a mechanism for
service interface self-tuning. As a result, it negatively impacts upon the interoperability
of web services.

In this dissertation we present a formal method for automatic service configuration in
the presence of subtyping, polymorphism, and flow inheritance. This is a challenging
problem. On the one hand, the interface description language must be flexible enough to
maintain service compatibility in various contexts without any modification to the service
itself. On the other hand, the composition of interfaces in a distributed environment must
be provably consistent.

Our method is based on constraint satisfaction and Boolean satisfiability. First, we
define a language for specifying service interfaces in a generic form, which is compatible
with a variety of contexts. The language provides support for parametric polymorphism,
Boolean variables, which are used to control dependencies between any elements of
interface collections, and flow inheritance using extensible records and variants. We
implemented the method as a constraint satisfaction solver.

In addition to this, we present a protocol for interface configuration. It specifies a
sequence of steps that leads to the generation of context-specific service libraries from
generic services. Furthermore, we developed a toolchain that performs a complete
interface configuration for services written in C++. We integrated support for flexible
interface objects (i.e. objects that can be transferred in the application along with their

structural description). Although the protocol relies solely on interfaces and does not
take behaviour concerns into account, it is capable of finding discrepancies between
input and output interfaces for simple stateful services, which only perform message
synchronisation. Two running examples (a three buyers use-case and an image processing
application) are used along the way to illustrate our approach.

Our results seem to be useful for service providers that run their services in the
cloud. The reason is twofold. Firstly, interfaces and the code behind them can be
generic as long as they are sufficiently configurable. No communication between service
designers is necessary in order to ensure consistency in the design. Instead, the interface
correspondence in the application is ensured by the constraint satisfaction algorithm,
which we have already designed. Secondly, the configuration and compilation of every
service are separated from the rest of the application. This prevents source code leaks in
proprietary software which is running in the cloud.

To my wife, Ziliya.
Your love knows no distance.

Acknowledgments

First and foremost, I would like to thank my first supervisor, Olga Tveretina, for spending
numerous hours discussing my work. It has been an honour to be her first PhD student.
She has taught me a great deal about formal logic and has greatly influenced my math-
ematical thinking. Her continuous advice both on a professional and personal level has
helped me immensely.

Next to the excellent mentoring by Olga, I have been guided by Alex Shafarenko, who
is a superb research advisor. His ideas laid the foundation for my work. His patience,
attention to details, and insightful comments have had a positive influence on my work.
I would especially like to thank him for educating me in technical writing.

Furthermore, I would like to thank Raimund Kirner, who provided guidance when it
was essentially needed. Moreover, he taught me the useful skill of critical thinking and
argument.

This dissertation would also have been impossible without my special friend and
colleague, Artem Shinkarov, who inspired me to start a fascinating journey in Computer
Science and gave me the confidence to continue on the doctoral programme. It would be
remiss if I did not thank Sven-Bodo Scholz, who has provided excellent feedback on an
early stage of this work.

I also owe a debt of gratitude to my friends and colleagues. They have been a source
of friendship, collaborative work, and enjoyable times. Special thanks must also go to my
family members who have been providing me with their support throughout the years,
whether financially, practically, or morally.

Contents

1 Introduction 1
1.1 Contribution . 5

1.1.1 Publications . 6
1.2 Thesis Structure . 7

2 Background 11
2.1 Engineering Modular Software Systems . 12

2.1.1 Object-Oriented Programming . 13
2.1.2 Aspect-Oriented Programming . 15
2.1.3 Component-Based Software Engineering 16
2.1.4 Service-Oriented Architecture and Web Services 18

2.2 Coordination Programming . 22
2.2.1 Tuple Space Model . 22
2.2.2 Streaming Model . 23

2.3 Subtyping, Polymorphism and Flow Inheritance 24
2.3.1 Flow Inheritance . 26
2.3.2 Dependable and Adaptable Service Composition 28

3 Interface Definition Language for Web Services 31
3.1 Terms . 32
3.2 Seniority Relation . 34
3.3 Configuration Parameters . 37
3.4 Flow Inheritance . 38
3.5 Multiple Flow Inheritance . 39
3.6 Motivating Example: Three Buyer Use Case 41

4 Description of Service-Based Application in Language of Combinators 45
4.1 Wiring . 46
4.2 Types . 46

4.2.1 Typing Rules . 47
4.3 Subtyping . 49
4.4 Arbitrary Topology . 50
4.5 Subnetworks . 52

5 Constraint Satisfaction Problem for Web Services 55
5.1 CSP-WS Definition . 55
5.2 CSP-WS Solution Discussion . 56

6 Solving the CSP-WS Without Boolean Variables 61
6.1 Idea of the Iterative Algorithm . 61
6.2 Extension of the Semilattices . 62
6.3 Iterated Function . 64

6.3.1 Iterated Function for Constraints on Atomic Terms and Variables . 65
6.3.2 Iterated Function for Constraint on Tuples 68
6.3.3 Iterated Function for Constraints on Records 68
6.3.4 Iterated Function for Constraints on Choices 70

6.4 Monotonicity of the Iterated Function . 71
6.5 Fixed-Point Algorithm . 72

7 CSP-WS Algorithm 79
7.1 Boolean Constraints for CSP-WS . 80

7.1.1 Well-Formedness Constraints . 80
7.1.2 Seniority Constraints . 81

7.2 Iterative method . 82
7.2.1 Boolean Satisfiability . 83

7.3 Iterated function . 84
7.3.1 Iterated Function for Constraints on Basic Terms and Tuples 84
7.3.2 Iterated Function for Constraints on Records 85
7.3.3 Iterated Function for Constraints on Choices 87
7.3.4 Iterated Function for Constraints on Switches 90

7.4 Algorithm Decomposition . 90
7.5 CSP-WS Algorithm . 93
7.6 Support for Multiple Flow Inheritance in the Algorithm 100

8 Interface Configuration Protocol for Service-Based Application 105
8.1 Overview . 108

8.1.1 The Core . 114

8.1.2 The Shell . 115
8.2 Qualifiers . 116
8.3 Interface Classes and Objects . 116

8.3.1 Structure of the Interface Class . 119
8.3.2 Field Inheritance . 119
8.3.3 Method Inheritance . 120

8.4 Implementation . 123

9 Message Synchronisation in Stateful Services 125
9.1 Syntax . 127

9.1.1 Header . 127
9.1.2 Body . 127
9.1.3 States . 128

9.2 Constraint Derivation . 131

10 Image Processing Use Case for Interface Configuration Protocol 135
10.1 Service Code Transformation . 138
10.2 Interface Derivation . 140
10.3 Constraint Satisfaction . 142
10.4 Library Generation . 142

11 Conclusions and Outlook 145

A Additional Details of Image Processing Use Case 149
A.1 Source Code . 149

A.1.1 Read Service . 149
A.1.2 Denoise Service . 150
A.1.3 Init Service . 151
A.1.4 KMeans Service . 152

A.2 Topology Description . 155
A.3 Source Code Augmented with Macros . 155

A.3.1 Transformed Read Service . 155
A.3.2 Transformed Denoise Service . 159
A.3.3 Transformed Init Service . 161
A.3.4 Transformed KMeans Service . 164

References 171

Notations and Definitions

b, g a Boolean expression called a guard, p. 32

B the set of all Boolean expressions, p. 32

f a Boolean variable, p. 55

t, s an MDL term, p. 33

v an MDL term variable, p. 32

v# a down-coerced MDL term variable, p. 32

v" an up-coerced MDL term variable, p. 32

li the label for a record or choice element, p. 33

a, b, c,. . . the label for a record or choice element, p. 34

x, y, z, w . . . a guard for a record or choice element, p. 33

V

b(g) the set of Boolean variables that occur in the guard g, p. 56

V

"(t) the set of up-coerced term variables that occur in the term
t, p. 56

V

#(t) the set of down-coerced term variables that occur in the
term t, p. 56

V

b(t) the set of Boolean variables that occur in the term t, p. 34

d, e a number of elements in a tuple, a record or a choice, p. 34

nil the empty record, p. 35

none the empty choice, p. 35

v the seniority relation, p. 35

T the set of all ground terms, p. 35

T " the set of all up-coerced ground terms, p. 35

T # the set of all down-coerced ground terms, p. 35

T "m the set of all vectors of up-coerced ground terms, which
have m elements, p. 35

T #n the set of all vectors of down-coerced ground terms, which
have n elements, p. 35

(T ,v) the pair of meet and join semilattices for down-coerced
and up-coerced terms, p. 36

(T #m ,v) the meet semilattice for vectors of down-coerced terms,
which have m elements, p. 36

(T "n ,v) the join semilattice for vectors of up-coerced terms, which
have n elements, p. 36

= the equality relation on terms, p. 36

lp the name for the service port p, p. 45

(lp, tp) the pair, which consists of the name and the term, and
represents the interface of the service port p, p. 45

s a service, p. 45

Is the number of input ports in the service s, p. 45

Os the number of output ports in the service s, p. 45

N a service network, p. 46

IN the set of input ports of the network N, p. 46

ON the set of output ports of the network N, p. 46

C a set of seniority constraints, p. 46

(IN,ON, C) the type of the network N, p. 46

V(C) the set of variables in the network C, p. 50

|= the logical entailment, p. 50

V a set of graph vertices, p. 51

g[~f /~b] substitution of Boolean variables ~f with Boolean values~b
in a Boolean expression g, p. 55

t[~v/~t0] substitution of term variables ~v with the values ~t0 in the
term t, p. 55

V

b(C) the set of Boolean variables in the set of constraints C, p. 56

V

#(C) the set of down-coerced variables in the set of constraints
C, p. 56

V

"(C) the set of up-coerced variables in the set of constraints
C, p. 56

(eT #m ,v) the lattice of down-coerced terms, p. 63

(eT "n ,v) the lattice of up-coerced terms, p. 63

(?,>) the pair, which consists of the meet and the join lattice
elements, that represents Unsat, p. 64

IF(t1 v t2,~a#,~a") the iterated function for a serniorityconstraint t1 v t2

given approximations~a# and~a", p. 64

IFC(~a#,~a") the iterated function for the set of seniority constraints C
given approximations~a# and~a", p. 71

GIF(t1 v t2,B, b,~a#,~a") the generalised interated function for a seniority con-
straint t1 v t2 and given a Boolean constraint b, and
approximations~a# and~a", p. 84

~a a vector of terms representing an approximation for vari-
able values in the CSP-WS, p. 64

~a# a vector of down-coerced terms representing an approx-
imation for down-coerced variable values in the CSP-
WS, p. 64

~a" a vector of up-coerced terms representing an approxima-
tion for up-coerced variable values in the CSP-WS, p. 64

SAT(S) the set of Boolean vectors satisfying a set of Boolean con-
straints S, p. 80

WFC(t) the set of well-formedness constraints for the term t, p. 80

SC(t1 v t2) the set of seniority constraints for t1 v t2, p. 82

P(B) the powerset of Boolean expressions, p. 83

Chapter 1

Introduction

Web services provide an efficient and productive way of building large-scale distributed
applications, which spread through businesses all over the internet. The number of APIs
that are available for anyone via the web has been increasing rapidly for the last decade.
‘ProgrammableWeb’ is an online repository of public web services. In 2012, it hit the
milestone of 8,000 publicly available APIs [Pro13], which increased to 16,000 APIs at the
end of 2016. 1 This has been achieved thanks to the flexibility that the service-oriented
architecture [PL03] provides. Services can be implemented both as proprietary and as
open-source software components; the source code for the services is typically hidden
from API consumers, separating concerns about independent application modules. Fur-
thermore, the exposed API interface is fully available to third parties to use and extend as
they need. Consumers can combine APIs from various providers to construct and offer
completely new products which, in their turn, expose new APIs with very little develop-
ment or financial cost. Providers and consumers benefit from exposing APIs while a high
degree of separation and independence from each other is maintained [JRSS14].

However, creating a flexible and easy-to-use API is difficult. The API that is available
to third parties is a source of potential communication errors. A service can often exhibit
behaviour that is not expected by other parties, because those parties rely only on the
informal functional specification being offered by the service provider. Various research
approaches have addressed this issue:

• Carbone, Honda, and Yoshida [CHY07, HYC08] present work on multiparty session
types. Specifically, they answer the question: given a global behaviour protocol,
how does it project into local services so that those services interact precisely
according to the original global protocol? This approach requires a global de-
scription of service interactions, which is provided by a description language such
as WS-CDL [G+02]. The research establishes a mapping from global behaviour

1 http://www.programmableweb.com/category/all/apis.

http://www.programmableweb.com/category/all/apis

2 CHAPTER 1. INTRODUCTION

protocol to local behaviour for each participant. This is useful for programmers
who develop services that must conform to a global protocol. Using this methodo-
logy, they can check whether the code is functionally correct and does not lead to
communication errors.

• Castagna, Gesbert, and Padovani [CGP09] provide a foundation for behaviour
subtyping in web services. This facilitates software reuse. Specifically, the re-
search provides a methodology to use web services exposing ‘larger’ contracts
in place where ‘smaller’ contracts are required. Contracts that are specified in
contract description languages, such as the Web Service Conversation Language
(WSCL) [BBB+02] or the Web Services Business Process Execution Language (WS-
BPEL) [JEA+07], are too concrete to be used as contracts. In these languages,
compatible contracts must be syntactically equal. Castagna et al. relax this require-
ment. They formalise what exactly ‘larger’ and ‘smaller’ means by introducing
a subcontract preorder relation [LP07]. They develop a subcontracting formalism
that is based on two observations: 1) it is safe to replace a service that exposes a
contract with a ‘more deterministic’ one; 2) it is safe to replace a service that exposes
a contract with another one that offers greater capabilities. This research helped to
develop frameworks and language-independent mechanism for assisting service
developers to check service behaviour compatibility [ABP12].

• Honda, Yoshida, and Carbone [HYC08] developed a framework that is based on
session types. The framework analyses service contracts to guarantee an absence
of potential deadlocks and races in an application. These are the most common
bugs in programming that involves communication [LPSZ08]. In large systems
these bugs are hard to detect statically without executing the application. The
bug detection problem is also addressed by another formalism called interface
automata [LNW07].

WS-CDL [G+02], session types [HYC08] and interface automata [HM05] attempt
to solve the behavioural consistency problem in web services. In general, they model
a behaviour protocol as a state transition system that must be compatible with other
protocols in the application. These approaches have a serious limitation though: a
behaviour protocol description for a service cannot be derived automatically from the
service code. A service developer must formalise the behaviour and explicitly provide
a protocol description in addition to the code. In this regard, two issues arise, which
compromise correctness of the behaviour: 1) a protocol description must correspond
precisely to the provided code; 2) the protocol may require modification if the service
implementation has changed. Both issues lead to a potential mismatch between a protocol
and actual behaviour.

3

Conversely, a problem that is related to service compatibility can be addressed from
the perspective of the interfaces. A service interface provides the specification for a data
format and the service’s functionality. The interfaces are more generic (i.e. contain less
specification) than behaviour protocols. Matching the service interface to the service
implementation is easier than matching protocols to the code. For example, incorporation
of session types in a Java-like language requires syntax extensions and specification
rules that are used to check behaviour conformance [ABB+16, KDPG16]. In contrast,
the interfaces do not specify any information about the service behaviour and can be
uniformly mapped to function or class declarations. As a result, the interfaces can be
derived from the code or can first be specified in an Interface Description Language (IDL)
and then provided as an API to the service.

An example of an IDL is Protocol Buffers from Google [Goo08]. This is a mechanism
for serialising and storing structured data. A structure of the data is defined in the
protocol buffers language (PBL)2. A developer specifies a structure for data exposed
to the environment. Afterwards, the specification is generated as a library in a target
language. The library provides an API for serialising the structured data. It can be used
by the developer to read and write data to or from a variety of communication streams,
even if communicating services are written in different languages.

A message in Protocol Buffers consists of one or more uniquely labelled fields. Each
field has a name and a value type. The type is either an integer, a floating-point number,
a Boolean, a string, raw bytes, or some other form of a message; the latter introduces a
hierarchical message structuring. In addition to this, each field has one of three specifiers:
compulsory, optional, or repeated (the latter allows arrays of fields to be created).

Using Protocol Buffers, the development of a service-oriented application is done as
follows: a developer specifies the data structuring offered by a service to other services
in the PBL. Afterwards, the specification is compiled into libraries, which are generated
in all possible languages. The interacting services serialise or deserialise the data using
the generated library before sending or after receiving the data in a message.

Support for subtyping in Protocol Buffers facilitates service reusability. Fields that
are declared as being optional can either be present or can be omitted in the message.
Therefore, a producer must provide only values for those fields that are marked as
required. As a result, the service is compatible with a variety of possible inputs. On the
other hand, all optional fields must be specified before using the service. If a service
receives a field that is not listed in its Protocol Buffers specification, a run-time error
occurs.

Apart from the limited support for subtyping, Protocol Buffers do not have features

2 https://developers.google.com/protocol-buffers/docs/proto.

https://developers.google.com/protocol-buffers/docs/proto

4 CHAPTER 1. INTRODUCTION

for software reuse. Therefore, existing services should be modified frequently before
interacting with new services. The only way to guarantee consistency in data formats
in a pair of interacting services is to use the same Protocol Buffers specification. This is
impossible in applications that have their development spread across various businesses.
A technology similar to Protocol Buffers is Apache Thrift [SAK07] from Facebook, but it
fails to support features that facilitate software reuse, such as inheritance, polymorphism,
or overloading. 3

The importance of generic and reusable interfaces in web services is typically under-
estimated when comparing them with other concerns, such as performance, scalability,
fault-tolerance, etc. The reason is that mismatching interfaces can always be fixed through
manual configuration and service fine-tuning [AGR13b]. However, configuring service
interfaces is often not a local process because any modification of the API for a service
may trigger modifications in other services over the entire communication graph. As
explained above, a similar problem arises while trying to achieve behavioural consistency
in web services: if the behaviour of a service changes, how does one guarantee that it still
conforms a global protocol? However, in the case of interfaces, establishing correspond-
ence between interfaces and the code is an easier problem, one which is solved in this
thesis.

Specifically, we address the following challenges regarding compatibility in service
interfaces and data formats:

• Achieving a proper level of abstraction in the interface. The diverse requirements
of customers are, typically, not known in advance. Therefore, the interfaces must be
relatively abstract. On the other hand, too abstract interfaces may lead to commu-
nication errors due to imprecise service functionality and data format specification.
The specification may allow excessive data formats that are not safe to use and may
break the behaviour.

• Providing a reusable interface. Fixed interfaces may hinder their adoption in
various contexts. Customers may have different needs, which change over time.
Adjusting the interfaces for a particular context or breaking backwards compatibility
is expensive and leads to poor productivity. Moreover, it can also make existing
customers abandon the API and damage the reputation of the provider.

• Given a set of services, how should they be composed in an application that
exhibits the expected behaviour and which is also free of communication errors,
such as a data format/functionality mismatch? Typically, as with other errors, the
number of communication errors increases with the size and complexity of the

3 https://thrift.apache.org/docs/features.

https://thrift.apache.org/docs/features

1.1 CONTRIBUTION 5

application. An automated composition mechanism is required. In other words,
we are looking for a mechanism that finds an errorless service configuration given
a set of arbitrary services.

• Providing flexible interfaces and configurable composition for proprietary ser-
vices. There are many use scenarios in which the code for a service must remain
confidential. These are services that carry out financial transactions, user author-
isation, encryption, etc. A composition mechanism that needs access to the source
code of a service cannot be applied to proprietary services.

This is a serious limitation for some composition approaches. For example, C++
templates, which introduce parametric polymorphism into the language, cannot be
used with software that is provided as a closed-source library. Functions that use
templates must be defined in exportable and externally visible header files, so that
they can be specialised during compilation [Sta09, cF16].

However, the transition from the behaviour reconciliation problem to the interface
reconciliation problem loses the state-dependence of the communication. Indeed, beha-
viour may depend upon its state, but information about that state is not preserved in a
type signature.

1.1 Contribution

This thesis shows that it is possible to contextualise generic interfaces that support subtyping,
polymorphism, flow inheritance and configuration parameters, and to guarantee that data formats
correspond using constraint satisfaction and SAT techniques. The main contribution of
this research is as follows:

1. We discover that none of the existing interface description languages provides
support for flexible and configurable interfaces. As an alternative we propose the
Message Definition Language (MDL), which is a term algebra for specifying data
formats. The MDL is designed to be used for specifying interfaces in services in
service-oriented applications. A term is basic block for constructing a representation
of data formats in the MDL. Term variables are used for supporting polymorphism
and flow inheritance. The latter is a mechanism for implicit data propagation
in a computational pipeline [GSS08, GSS10]. Furthermore, we introduce Boolean
variables as part of a term. They are used to specify dependencies between elements
of the interfaces. We define the seniority relation for terms that corresponds to
a relation between a data producer and a data consumer in web services. Term
variables facilitate the reusability of services by enabling generic interfaces. On the

6 CHAPTER 1. INTRODUCTION

other hand, we must ensure that the interfaces are compatible in the given context.
In other words, the seniority relation must be valid for all communicating services.
We represent this problem as a constraint satisfaction problem (CSP).

2. We propose a fixed-point algorithm that finds a solution to the CSP. The algorithm
computes a sequence of iterative approximations for term and Boolean variable
values. A solution is found once an approximation makes all seniority relations
valid. In order to be able to solve this problem, we solve Boolean satisfiability as a
subproblem.

3. To demonstrate the use of the MDL in services, we developed a configuration
mechanism for web services [Zai17]. The mechanism automatically derives the
interfaces from the services, constructs the seniority constraints, runs the solver,
configures the services using the solution produced by the solver and, finally,
generates a library for each service. The library contains the implementation of
services specific to data formats in the given environment. Being able to provide
solution to the CSP guarantees that the data formats, which are sent and received
from the library, are compatible with data formats in other services. Although our
implementation is proof of a concept for services written in C++, the mechanism
can easily be used in services that have been written in other languages, and which
are commonly used for service development.

4. A major advantage of the configuration mechanism is its support for flexible and
configurable classes (abstract data types) using the MDL. We enable flow inher-
itance for class fields and methods. Furthermore, we provide a mechanism for
transforming method definitions in the pipeline.

5. Many stateful services have at least two input ports: one for receiving input mes-
sages and another one for receiving an immediate state of the service. It is often
required to merge an input message with the immediate state and produce the
result as an output message. We propose an MDL term called a union that automat-
ically maps the message formats in input ports to the message format in an output
port. The union is a construct that is automatically expanded in the correct message
format. As a result, a service designer does not need to update the output interface
if the input interface gets modified.

1.1.1 Publications

During the work on this thesis, the following publications have been produced (listed in
chronological order):

1.2 THESIS STRUCTURE 7

1. Pavel Zaichenkov, Bert Gijsbers, Clemens Grelck, Olga Tveretina, and Alex Sha-
farenko. A Case Study in Coordination Programming: Performance Evaluation
of S-Net vs Intel’s Concurrent Collections. In 2014 IEEE International Parallel &
Distributed Processing Symposium Workshops, IPDPSW 2014, Phoenix, USA, pages
1059–1067, 2014.

2. Pavel Zaichenkov, Olga Tveretina, and Alex Shafarenko. Interface Reconciliation in
Kahn Process Networks using CSP and SAT. In Fifth International Workshop on the
Cross-Fertilization Between CSP and SAT, CSPSAT 2015, Cork, Ireland, 2015.

3. Pavel Zaichenkov, Olga Tveretina, and Alex Shafarenko. A Constraint Satisfaction
Method for Configuring Non-local Service Interfaces. In Integrated Formal Methods
— 12th International Conference, IFM 2016, Reykjavik, Iceland, pages 474–488, 2016.

4. Pavel Zaichenkov, Olga Tveretina, and Alex Shafarenko. Configuring Cloud-Service
Interfaces Using Flow Inheritance. In 1st International Workshop on Formal Methods
for and on the Cloud, iFMCloud 2016, Reykjavik, Iceland, 2016.

5. Pavel Zaichenkov, Bert Gijsbers, Clemens Grelck, Olga Tveretina, and Alex Shafar-
enko. The Cost and Benefits of Coordination Programming: Two Case Studies in
Concurrent Collections and S-Net. In Parallel Processing Letters journal, 2016.

6. Pavel Zaichenkov, Olga Tveretina, and Alex Shafarenko. Constraint Programming
for Non-local Web-service Interface Reconciliation. To be submitted to TPLP Spe-
cial Issue: Past and Present (and Future) of Parallel and Distributed Computation in
(Constraint) Logic Programming journal, 2017.

1.2 Thesis Structure

First of all, in Chapter 2 we provide a brief overview of object-oriented programming,
aspect-oriented programming, component-based software engineering, service-oriented
programming, and coordination programming — the technologies that facilitate mod-
ularity, decontextualisation, and software reuse. Although service-based applications
ease the development of large-scale systems, automatic composition of services with
support for interoperability is a key challenge today. We accept the challenge and focus
on the interoperability problem from the interface perspective. We signify the importance
of subtyping, polymorphism, and flow inheritance (a mechanism for propagating data
and functionality along service pipelines). However, the form of structural subtyping
and polymorphism that is required in service-oriented computing is different from the
mechanism which are provided in languages that are commonly used for implementation
of web services, such as object-oriented ones.

8 CHAPTER 1. INTRODUCTION

In Chapter 3 we defined a domain-specific language for describing interfaces which
was called the Message Definition Language (MDL). The major novelty of the language is
its support for (multiple) flow inheritance and configuration Boolean parameters. The
language is essentially a term algebra for specifying data formats. We introduce the
seniority relation, which is a partial ordering on terms, for comparing and coercing data
formats. At the end of the section we use a three-buyer use case to demonstrate the
capabilities of the MDL.

Furthermore, a formal approach for reconciling web-service requires a formal de-
scription of service-oriented networks. In Chapter 4 we introduce such a description in
the form of a language of combinators. Combinators wire services into a network. We
introduce a simple type system on top of the language that helps us to aggregate relations
between service interfaces into a set of communication constraints.

In Chapter 5 we present a constraint satisfaction problem for web services, called
CSP-WS, which is the key problem to be solved in this thesis. In a nutshell, the goal is to
find values for term and Boolean variables, which are present in the seniority constraints.
We tried to employ existing SMT solvers to solve the problem, but have not achieved
this due to the specific properties of the constraints. We decided to develop an iterative
fixed-point algorithm, which finds a solution for the problem.

In Chapter 6 we present the fixed-point algorithm that solves a modified version of
the CSP-WS. As the first step, we consider the CSP-WS when all Boolean variables
are instantiated. This allows us to focus on resolution of term variables only. For each
term variable, the algorithm iteratively finds an approximation of the solution in the
semilattice. This is more efficient than an exhaustive solution search, because we use a
branch-and-bound approach to eliminate infeasible search spaces until a solution is found.
In Chapter 7 we present the algorithm for solving the original CSP-WS, which is a
modification of the algorithm from Chapter 6. We extend the algorithm with solution of
Boolean satisfiability using a SAT solver.

The contribution of this thesis is not limited to finding a solution for the theoretical
problem at hand. Using our mechanism, we also demonstrate the configuration of
interfaces in services written in C++ (see Chapter 8). We designed and implemented a
protocol for a complete reconciliation process, starting from the code for generic services
and a network topology to the compiled mutually compatible libraries. The configuration
process consists of:

1. annotation of a service source code with macros;

2. the derivation of terms representing the interfaces from the code;

3. constraint construction given the terms and network topology;

1.2 THESIS STRUCTURE 9

4. a CSP-WS solution;

5. the derivation of macro values from the CSP-WS solution; and

6. a separate compilation of annotated services libraries.

Furthermore, we demonstrate that our configuration protocol supports services that are
provided as non-analysable closed-source services. The latter is essential for proprietary
libraries provided as services in the cloud.

All services are either stateless or stateful. The former are ‘query’ services that provide
some information to clients without modifying an internal state of the service. The latter
are the rest of services, which have a persistent state. Service statelessness is a design
principle of the service-oriented architecture which states that scalable services must be
separated their state as much as possible [Erl05, RDL+09]. This is typically achieved by
exporting a state of a service to an external component, which exists outside of the service
implementation boundary (for example, a dedicated database). In the context of service
interfaces, the service statelessness principle leads to the fact that each service has at least
two input ports, one for receiving an input message and another one for importing an
immediate service state. An output message is typically produced as a combination of
these two messages, which needs to be reflected in the interface. Specifically for stateful
services, in Chapter 3 we introduce an MDL term called union that declares ‘a service
interface that is produced by merging any two service interface’, and in Chapter 9 we
discuss support for message synchronisation in our interface configuration protoocol.

Finally, in Chapter 10, we illustrate the configuration protocol using a simple image
processing use case. We implemented a k-means clustering algorithm as a service-
based application to demonstrate the overall mechanism and support for subtyping,
overloading, and flow inheritance in the MDL. The source code of the service and
auxiliary transformations and derivations for the use case are provided in Appendix A.

Chapter 11 concludes the thesis with a summary and a discussion of potential direc-
tions for further research.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Background

‘the separation of concerns’ . . . it is just doing justice to the fact that from this aspect’s
point of view, the other is irrelevant.

– E. W. Dijkstra [Dij82]

A conventional centralised software engineering approach results in inadequate
complexity and costs to the design, deployment, maintenance and evolution of modern
software systems. Software intensive systems have reached an unprecedented scale
in every measure: the number of lines of code; the number of people involved in the
development; the number of dependencies between software components; the amount
of data being stored, accessed, manipulated, and refined; and the number and diversity
of hardware elements composing the system. Each user group which is involved in the
development process has different goals and tools which leads to conflicting, unknown,
and diverse requirements; continuous evolution and deployment; heterogeneous and
changing elements; erosion of the people/system boundary, and failures in parts of the
system. Therefore, the systems must be configurable and adaptable so that they are
able to meet the requirements of all user groups who are involved in the development
process. [FSW+06]

In general, the problem can be addressed from different perspectives. First, we can
try to analyse the protocols of components for compatibility and reusability. This is the
most advanced and yet the most challenging approach. Session types [Hon93, THK94],
interface automata [DAH01], and contract automata [BHM05, BCZ15] attempt to solve
the problem, but no solution that guarantees the compatibility and reusability of software
components exists so far.

In this thesis, we solve a simpler problem. We ensure compatibility and reusability on
the interface level. This approach provides weaker guarantees, because it does not take
the behaviour of components into account. On the other hand, the solution presented
here can be integrated into a framework for solving the original problem of protocol

12 CHAPTER 2. BACKGROUND

compatibility.
During the last four decades there have been a good many attempts to design a

methodology for managing the complexity of software systems. In this chapter we
provide an overview of the seminal works in software systems engineering:

1. data encapsulation and the principle of the separation of concerns;

2. inheritance versus composition in object-oriented programming;

3. the separation of components and global dependencies in aspect-oriented program-
ming;

4. component-based software engineering;

5. the choreography of distributed and decontextualised components in web services;

6. separation between computation and communication concerns in coordination
programming.

We discuss the advantages and disadvantages of these approaches. As a result, we
demonstrate that modularity, decontextualisation and hierarchical structuring is the
key to managing the complexity of software systems. Furthermore, we introduce flow
inheritance and show its importance for pipelined data processing. Across the follow-
ing chapters we design a generic mechanism for adaptable service configuration that
incorporates these software composition properties.

2.1 Engineering Modular Software Systems

Segmenting an application into modules reduces the complexity of software design. Inputs
and outputs for each module are well-defined at implementation time and a module
can be designed with little knowledge of the code in another module. As a result,
development time decreases. Furthermore, the correct behaviour of the module can be
tested independently and runtime errors can quickly be resolved because the scope for
error searching is limited to the specific module. It is possible to study one module at a
time, and in general the system is better understood and designed. Finally, the modular
system is flexible, because the modules can be replaced or drastically changed without
significant modification of the rest of the system.

That is the theory. In practice, an application can be segmented into modules in
various ways and it is obscure to design a modularisation (a specific segmentation of an
application) that includes all the advantages described above. Some modularisations
lack flexibility, because changing some design decisions, such as input format, would
result in changes inside every module. David Parnas formulated an ‘information hiding’

2.1 ENGINEERING MODULAR SOFTWARE SYSTEMS 13

criterion (which is more or less the ‘data encapsulation’ principle as we know it today) for
guiding the process of creating modules. He suggests that a modular system needs to be
designed in a way which ensures that all interfaces between modules are fairly abstract.
Major design decisions, such as data structures, core formats and conventions, should be
structured as separate modules and hidden from other modules [Par71, Par72].

In order to achieve a complete modularisation, decontextualisation is also required.
Shortly after Parnas formulated the principles of encapsulation and modularisation,
Edsger W. Dijkstra explicitly formulated the principle of the separation of concerns. In order
to control the growing complexity of the systems, a software engineering problem needs
to be segmented into such modularisation, so that different concerns, which relate to the
problem, could be treated in an isolated manner without any requirement for knowledge
about other parts, and composing a solution out of solutions to the subproblems. In
order to achieve a complete separation of concerns, it is necessary not only to segment
the application into modules, but also to decontextualise them from each other in order
to avoid context that can be shared between the modules. [Dij82]

2.1.1 Object-Oriented Programming

It may seem that classes in object-oriented programming (OOP) [Ing81] can play the same
role as modules, because a class restricts the visibility of abstract data types (which means
fields and methods) that it contains. Furthermore, the class supports other features,
such as inheritance (subclassing). It is a valuable mechanism that facilitates code reuse
and is used for specifying hierarchical relations between objects; however, it breaks the
encapsulation provided by the data types: the classes that belong to the same hierarchy
cannot be considered as being self-contained modules, because changes in the class affect
the behaviour of other classes in the hierarchy [MS98]. Therefore, the hierarchical classes
can be regarded as being one module only, and their development should be assigned to
one team.

Inheritance

For a long time inheritance was thought to be productive for code reuse [JF88]: the code
that is shared by several classes can be placed in their common superclass, and new
classes that rely on this code can start off by being inherited from the superclass. Every
subtype of the superclass can be created through incremental inheritance; that is, by only
adding new methods to the class definition [Cus91]. However, at some point a problem
known as inheritance anomaly was identified [MY93, CRR98].

The anomaly typically occurs in concurrent object-oriented programming (COOP) lan-

14 CHAPTER 2. BACKGROUND

guages [YT86] where synchronisation constructs, such as method guards, locks, etc, are
used inside class methods. The idea of the anomaly is as follows. Assume that there
exists a class, C, that implements some behaviour, B. If a programmer decides to im-
plement a behaviour B0 that is derived from B, then they need to implement a class C0

that implements B0. Ideally, they should be able to reuse the code in C; however, they
are forced to redefine much of the C behaviour while implementing C0. This rewriting
is called the anomaly and it often occurs when concurrency is involved [Wis06]. The
reader is encouraged to refer to [MS04] for typical examples of the inheritance anomaly.
There has been a good deal of effort to solve the inheritance anomaly problem during
the last two decades ([Wis06] provides a comprehensive survey on papers related to
the inheritance anomaly); however, none of the proposals have been implemented as
practical solutions [GS14].

It is dangerous to use class inheritance in concurrent programming. In sequential
languages, class methods can be invoked in any order. On the other hand, in concurrent
languages, methods may not execute in arbitrary order; the order is preserved by syn-
chronisation constraints. If we incrementally inherit C0 from C, we expect methods that
are present both in C and C0 to respond identically to input messages. Such behaviour is
known as behaviour preserving. It was proved by Crnogorac et al [CRR98] that languages
with the support for behaviour which preserves incremental inheritance are not free
from the inheritance anomaly. Informally, it means that there is no perfect inheritance
mechanism. Instead, there are two options: either we allow classes that are not behaviour
preserving, or allow the inheritance anomaly to occur.

In other words, the problem is caused by the fact that a class methods encode be-
haviour protocols rather than relations on types and data, which are specified by the
inheritance mechanism. Inheritance ignores the order in which methods may be executed,
whereas some ordering may lead to a violation of the global protocol that must be fixed
by modifying the inherited methods. Session types attempt to solve the problem by
incorporating protocols into type signatures and verifying the correctness of the global
protocol when inheritance is used [GGRV15].

Having said that, the contradiction between anomaly freedom and behaviour preser-
vation was identified only for COOP languages, which were known at that time, and
potentially there may exist a COOP language that satisfies both properties. This question
was recently addressed in [GS14]: it was proved that checking behaviour preservation in
a language that is anomaly free is PSPACE hard. Therefore, verification of a program in
an anomaly-free language that ensures substitutability may be expensive and humanly
infeasible.

2.1 ENGINEERING MODULAR SOFTWARE SYSTEMS 15

Composition

Since inheritance does not facilitate code reuse, an often-stated OOP principle today is
that composition should be favoured over inheritance in order to achieve polymorphic
behaviour and code reuse [GHJV94, Kno02]. Following this principle, a software design
begins with the declaration of interfaces that represent the certain behaviours of the
system. The use of the interfaces allows polymorphic behaviour to be supported. For
each interface there exists at least one implementation; an alternative system’s behaviour
is accomplished by providing an alternative class that implements the same interface.
Thanks to this, code reuse is achieved without inheritance. Notably, some languages,
such as Go, provide type composition exclusively.

On the other hand, composition requires the implementation of all methods specified
in a class interface, even if some method behaviour is identical in various classes that are
implementing one interface. The disadvantage can be avoided by using mixins [FKF98]
and traits [SDNB03]. Furthermore, Tempero et al [TYN13] found out that many open-
source Java software projects use inheritance in non-trivial scenarios. Further work in
this direction would help to identify whether the use of inheritance in modern large-
scale projects is justified or if replacing it with composition would improve modularity,
flexibility and code reuse in the projects.

Support for inheritance or composition in the environment with replaceable mod-
ules require the verification of module behaviour compliance. In addition to session
types [Hon93, THK94], various approaches that model the behaviour as a state transition
system exist (interface automata [DAH01], contract automata) [BHM05, BCZ15]. They
build formal frameworks to statically address better dynamic guaranties, such as com-
munication safety, deadlock-freedom, protocol fidelity, etc. On the other hand, behaviour
protocols cannot automatically be derived from the code today and have to be provided
explicitly.

2.1.2 Aspect-Oriented Programming

Hierarchical modular mechanisms that are based on inheritance in object-oriented lan-
guages are unable to separate concerns in a complex system. Aspect-oriented programming
(AOP) [KLM+97, KHH+01] has been specifically proposed as a technique for improving
the separation of concerns as it was formulated by Parnas in [Par72]. In particular, AOP
introduces two kinds of entities: 1) components are units of the system’s functional decom-
position, which can be cleanly encapsulated in a well-localised generalised structure (for
example, object, method, procedure, API), and 2) aspects are entities that cannot be cleanly
encapsulated in a generalised structure. The latter tend not to be units of the system’s

16 CHAPTER 2. BACKGROUND

functional decomposition, but rather properties that affect the performance or semantics
of the components in a systematic way [KLM+97]. Typically the aspects relate to develop-
ment process functionality, such as testing, tracing, logging, and contract checking. The
goal of AOP is to provide facilities to separate components and aspects from each other,
as opposed to general-purpose programming language that provide facilities to separate
only components from each other. The aspects are defined in a separate aspect language
that contains a specification which needs to be executed before and after the component
code. Scattered functionality, such as logging, exception handling, or authentication, are
represented as aspects and are passed to components as dependencies.

However, data dependency between the aspect and the component fails to solve the
problem of the separation of concerns [Ste06]. If the dependency is moved to an explicit
interface, the Parnas principle, which states that the interfaces in modular systems must
be abstract, is violated. Alternatively, the implicit interface allows the aspect to access
the data encapsulated in the model. A general problem of AOP is that when the code
is moved out of the component’s context to the aspects, it must carry a reference to the
context upon which it depends. Supporting modularity does not lead to a complete
separation of concerns, because the context is shared across modules.

2.1.3 Component-Based Software Engineering

Component-based software engineering (CBSE) [SBW99, HC01] is a software engineering
approach that facilitates the separation of concerns. It relies on the decomposition prin-
ciple in which semantically related components should be placed in one module and
the remaining components are independent. Structurally the components are relatively
abstract: they can contain functions, data, classes and even class hierarchies. The com-
ponents expose their interfaces to the environment and communicate only by sending
messages that other components can process, which is checked using interface specifica-
tion. The messages must be self-contained (without references or pointers), otherwise,
the decontextualisation principle would be violated.

Some surveys [B+81, Jon97, Kos03] show that, on average, about 70–80% of a software
project’s lifetime is spent on maintenance. Therefore, reusability is an essential property
of software components. The CBSE itself does not offer any features that would help to
improve reusability and, as a result, a programmer relies only on mechanisms provided
by the programming language, such as polymorphism, higher-order functions, etc. As
a result, the programmer needs to come up with a trade-off between reusability and
usability: the more generic the interface is, the more reusable is the component, and yet
implementation becomes ever more complex and, therefore, the component becomes less

2.1 ENGINEERING MODULAR SOFTWARE SYSTEMS 17

usable and maintainable.

Component adaptation and reusability is recognised as being one of the most import-
ant problems in CBSE [HO98, CJ99, MA03, BCP06]. The possibility of software designers
to integrate off-the-shelf components into the application they develop opens up a field
of opportunities for the development of a component marketplace and component de-
ployment in overall terms [BW98, DSWdS09]. At the signature level, component-based
applications address interoperability by means of an Interface Description Language
(IDL). IDLs specify the functionality of distributed components in a uniform language,
such as an XML description for instance. More specifically, the IDL interface defines
the compatible data formats and the signature of the methods being offered by the
component. For correct communication to occur, the interfaces for the communicating
components must exactly match [AGR13a], which is a problem otherwise. The mismatch
between data formats and method signatures is a common scenario, providing that
components are developed by distributed teams which are unaware of each other’s
activity. Typically, in order to achieve the compatibility of the components, hand-crafting
is required. The challenge is to lift component integration from rigorous labour to a
software engineering activity.

Some existing works focus on checking the compatibility of component protocols,
which define the behaviour of the components [BPR02, BBC05, BCP06]. This, however,
requires the extension of IDL interfaces with a formal description of the behaviour of
the components, which explicitly declares interaction protocols. Technically, this is
achieved by using a process algebra, such as p-calculus [SBS06], interface automata, or
session types [VVR06], which allow behaviour to be effectively described by means of
types instead of processes. [BBC05, BCP04, BCP06] present a formal methodology for
the adaptation of components which are presenting mismatching interaction behaviour.
Given the interfaces of two components with mismatching behaviour, an adaptor that
allows the components to interoperate can automatically be generated. If an adaptor that
strictly satisfies the given specification does not exist, in many situations an adaptor is
nevertheless deployed by weakening some of the requirements stated in the specification.

Unfortunately, in the existing works, issues that regard the incompatibility of data
representations in different components have been ignored. Even if we ignore the
behavioural aspects, two components may be unable to interact if their data format
requirements are unfulfilled.

Another issue is caused by inflexibility in the IDL interfaces. Although CBSE com-
ponents are completely decontextualised from each other, developing an application
independently in dispersed teams is laborious due to the inflexible interfaces involved. If
modifications of the server code affect methods or data formats specified in the interface,

18 CHAPTER 2. BACKGROUND

the IDL compiler needs to regenerate interface files that are provided to all clients who
interact with the server. This can trigger a chain reaction of modifications in the applica-
tion and each conflict between interface specification and implementation needs to be
resolved manually.

2.1.4 Service-Oriented Architecture and Web Services

Service-oriented architecture (SOA) [BEK+00, PL03] is a software design approach in which
an application is composed of heterogeneous, loosely-coupled web services, which
communicate via standard internet protocols (HTTP or SMTP). SOA offers a middleware
that enables client-server communication outside the local network without requiring
sophisticated configuration, any uniformity of protocols, or homogeneous hardware.

There is no clear dividing line between SOA and CBSE. In general, SOA can be
approached as the enhancement of components. Similarly to CBSE, a service has a clearly
defined interface that conforms to a behaviour exhibited by service. Unlike the object-
oriented approach, SOA is constructed from loosely joined, highly interoperable business
services which are implemented using different development technologies. In this way,
SOA shares a lot of fundamental similarities with CBSE.

The most significant property of web services is their loose coupling. Since web
services are accessed by a network, it does not make any difference where services are
located and whether they use the same language or operating system. Moreover, services
can be publicly discoverable (using technologies such as UDDI), and accessible from the
internet. Therefore, during service development it is not known how the service will be
used. Usage for a variety of purposes is possible only thanks to loose coupling being
involved.

Another advantage of SOA that leads to a looser coupling between services is the
lack of a standard protocol. Component-based architectures, such as DCOM [BK98],
CORBA [Sie00], or EJB [Inc03], rely on their specific protocols instead of reusing existing
ones. Thereby network administrators had to explicitly open a new port in the firewall
for every communication partner [Pet06]. Moreover, the component-based architectures
encode messages in a binary format, which cannot be analysed by company security
systems in a reasonable way. This introduces the risk of malware package delivery
in the software heart of the company. In contrast, web services use an established
protocol (HTTP or HTTPS) and an open data format (XML or JSON). As a result, SOA
has advantages over DCOM, CORBA and EJB, such as firewall friendliness, universal
acceptance, and platform and language independence.

For the last decade web services have offered a promising technology that facilitates

2.1 ENGINEERING MODULAR SOFTWARE SYSTEMS 19

the development of large-scale distributed systems. According to the ‘ProgrammableWeb’
web service publication website [Pro13], the number of publicly available web services
has exponentially increased since 2005. Businesses use them to expose their internal
business systems as services that are available via the internet. On the other hand,
clients can combine services and reuse them for developing their own applications or
constructing more complex services. In addition to this, the rapid development of cloud
computing, social networks and the Internet of Things accelerate the growth of public
web services [BSD13, DYV12, MASM13].

Although web services continue to play an important role in modern software devel-
opment, service composition is still a key challenge for service-oriented computing and
web services. Web service composition empowers organisations to build inter-enterprise
software, to outsource software modules, and to provide an easily accessible function-
ality for their customers. Furthermore, service composition reduces both the cost and
risks involved in new software development, because the software elements that are
represented as web services can be reused repeatedly [SQV+14].

Achieving interoperability in web services is more challenging when compared to
interoperability support in distributed object-oriented frameworks, such as CORBA and
Remote Method Invacation (RMI) [WRW96]. Consider the substitution principle, which
is the essence of subtyping and is a key requirement for interoperability. RMI follows
the Java object model and, therefore, the substitution principle in RMI is valid, to an
extent to which it is valid in Java. Similarly, the CORBA interfaces, which are object-
oriented, support a subtyping relation that ensures substitutability. However, neither
RMI nor CORBA include the translation of objects (in CORBA the objects are passed
by references), because the substitution principle failure in object-oriented frameworks
for web services arises from the required data binding between the object layer and the
service layer [AGR13b].

Several surveys on web service composition have been published recently. [DS05]
provides overview of the available composition approaches based on classification cri-
teria, such as manual/automatic and static/dynamic composition. [RS05] provides an
overview of automatic web service composition approaches. [SK03, MM04, MG06] all
focus on web service composition standards. [SQV+14] is one of the most recent sur-
veys, which presents the last decade’s developments in web service composition and the
current issues and activities involved in terms of the research topic.

In general, current efforts in web services composition can be grouped into three
categories: manual, automatic, and semi-automatic [MM04]. Manual composition involves
an application designer having to handcraft the composition of interacting services
using one of the existing composition languages, such as BPEL [ACD+03] or OWL-

20 CHAPTER 2. BACKGROUND

S [MBH+04]. This is a non-trivial and error-prone field of work that does not guarantee
correct execution. Automated service composition models usually exploit the semantic
web [BLHL+01] and artificial intelligence techniques. The challenge is to automatically
construct a composition of web services, given a selection of web services and spe-
cified user requirements. Unfortunately, implementing a completely automated service
composition is still impossible because the web services do not share a full understand-
ing of their semantics, which affects the automatic selection and configuration of web
services [BCDGM05, MBE03]. A semi-automatic approach leverages manual and auto-
mated service composition by providing the designer with tools that assist them at each
step of the composition. The existing automatic and semi-automatic composition ap-
proaches focus on behavioural communication consistency between the services (the
behaviour specification is defined by means of finite state machines [HNT08], interface
automata [HM05], process calculi [WDW07], or session types [CHY07]) and does not
attempt to establish consistency on a data format level.

This dissertation is the first attempt to present a mechanism for consistent service
configuration that not at the behavioural level, but on the level of interfaces instead.
The IDL, which is presented in Chapter 3, can be used to specify interfaces of arbitrary
complexity with the support for structural subtyping, inheritance and polymorphism.
Although the presented approach cannot be used to argue about the behaviour of a
service, in contrast to behavioural protocols, such interfaces can automatically be inferred
from the code of a service as presented in Chapter 8. Furthermore, our approach does
not raise any security issues in closed-source services when service behaviour is publicly
exposed in the form of a contract.

There are two ways to compose a service-based application: service orchestration
and service choreography [Pel03]. The orchestration refers to an executable business
process that coordinates the interaction amongst different services. This differs from
service choreography, which is more collaborative and allows each party to describe
its role in the interaction. In contrast, choreography represents a global description
of observable behaviour that is specified by service interaction rules and agreements
between multiple web services. This dissertation addresses the following issues in
choreography composition.1

Dependable service composition. Services in a service-based application are distrib-
uted and provided autonomously by various organisations. Reliable and depend-
able service composition is a significant challenge today [DS05, SQV+14, SMY+14].
Developers of applications, particularly safety-critical applications, such as health

1 Since web services have evolved from component-based architectures, the issues in web services that we
raise in this dissertation are also present in component-based architectures.

2.1 ENGINEERING MODULAR SOFTWARE SYSTEMS 21

care, stock trading, or nuclear systems, must be able to check the soundness and
completeness of service composition at the early stages. Therefore, model check-
ing and the verification of fault-tolerant web services is being actively researched
today [BSS12, ZL13, SMY+14].

Web Services Choreography Description Language (WS-CDL) [G+02] and Web Ser-
vice Choreography Interface (WSCI) [AAF+02] are choreography standards. They
provide the means for tools to validate conformance to choreography descriptions
in order to ensure interoperability between web services, and these are used to
describe the observable collaborative behaviour of multiple services from a global
perspective.

On the other hand, the choreography is wired to specific interfaces defined in Web
Service Description Language (WSDL) [CCM+01] or Web Application Description
Language (WADL) [Had06], which is too restrictive for dependable service com-
position. The choreography is statically bounded to specific operation names and
types, which impedes the reusability of compound services and their interaction
descriptions [BDO05]. Choreography descriptions that rely on abstract interfaces
would allow services to be specialised within the context based on the requirements
of the customers, rather than restricting communication to specific data formats
and operations.

Adaptable and autonomous service composition. Today the environment in which ser-
vices are developed and executed has become more open, changing, and dynamic.
An adaptable and flexible approach to service composition is required. Self-
configuration and self-adaptation are promising recent research topics [CDM09,
SBMN09]. Self-configuration allows a service automatically to discover and se-
lect services that meet its requirements. Self-adaptation helps services to ad-
just their behaviour to changes in other services without requiring a program-
mer’s intervention. Typically, web services that are developed by different or-
ganisations have incompatible interfaces and cannot interact directly. One way
to deal with the problem is to provide automatic or semi-automatic service me-
diation [KMNB+09, LFMS10, XFZ10, MNXB10]. In practice, however, interaction
between services often cannot be mediated due to irreconcilable mismatches.

The issues mentioned above shift the research focus from static composition methods
to dynamic ones, which are more flexible and allow choreography configuration and
adaptation at runtime. However, for obvious reasons it is more difficult to establish
compositional correctness in the case of dynamic methods.

22 CHAPTER 2. BACKGROUND

2.2 Coordination Programming

Structuring applications as a set of decontextualised components not only facilitates
productivity and eases software development, but can also improve performance too.
In coordination languages, such as Concurrent Collections (CnC) [BCK+09, BBC+10]
and S-NET [GSS08, GSS10, ZGG+14], the separation of concerns is achieved by employ-
ing a coordination language operating on top of concurrency-agnostic domain-specific
components, written in a conventional language. The separation makes individual com-
ponents not only oblivious to the detailed network composition, but also concurrency
agnostic.

A coordination layer provides a glue that connects the components in a complete
application. Two kinds of glue exist for connecting components together: a tuple space
model and a streaming model. These models provide different mechanisms for commu-
nication for decoupled components, which are covered below.

2.2.1 Tuple Space Model

In the tuple space model, the components interact by sharing access to the memory that
holds tuples. Such shared memory is called a tuple space. Occupants of the tuple space
are accessed by logical name; therefore the only information that the processes share
is the discipline of occupants’ tag use. Linda is the first coordination language to be
based on the tuple space model [ACG86, GC92]. Many further languages (for example,
Lime [PMR99], NetWorkSpaces [BCS+09], or Swift [WHW+11]) adapted Linda’s tuple
space model.

Following the coordination approach, the CnC model decouples computation from the
expression of its parallelism. A domain expert determines the design of the algorithm, and
a tuning expert can be called upon to deal with parallelism, communication, scheduling,
and distribution issues. The CnC components are required to be pure. According to
their semantics, the components are composed from three sections: 1) the input section
that is the opening part of the component where it reads data from its statically-known
tuple spaces; 2) pure functions which represent side-effect-free computations that work
out the result based solely on the read data; and 3) an output section that optionally
places the result from the previous section in the form of newly computed data in the
statically-known tuple space.

Given the components, the communication graph and data dependencies between
the components (the latter can be supplied by the programmer in the form of dependency
functions), optimum scheduling and resource management can be achieved at runtime.

2.2 COORDINATION PROGRAMMING 23

Self-sufficiency and a purity of components allows the runtime to schedule them when
their input becomes available or to re-launch them later if it is impossible to precompute
some data dependencies before task scheduling.

2.2.2 Streaming Model

S-NET and some other languages and technologies [MKD93, AHS93, Arb04] use streams
to glue components into a single application. In contrast to CnC, S-NET does not share a
contract with a programmer in regard to the structure of a component. On the other hand,
the components are not allowed to hold an internal state and consequently cannot be
used to synchronise messages (it would need to hold on to one while expecting another).
It means that messages come to the component pre-synchronised by the coordinator
and also that the component can be transparently wound down and reinstated between
messages, which makes it especially flexible in a distributed computing context. On the
other hand, the coordination program presents the coordination compiler with structures
that can be analysed to learn behaviour modulo the behaviour of the components. All of
this offers attractive benefits for large-scale applications. There is one obstacle, though,
in getting the coordination approach to work in practice: as it espouses a higher level
of abstraction (which stems from its characteristic separation of concerns), practitioners
tend to be wary of a possible loss of performance, especially in applications of the ‘no
expense spared’ type, where performance is the primary (if not the only) concern.

However, a higher level of abstraction and high performance can live happily together.
Our experiments presented in [ZGG+14] demonstrate that structuring an application
into a set of self-contained components in CnC and S-NET does not negatively affect
the performance. Both models use dataflow synchronisation and single-assignment
semantics for components, but S-NET is a fully fledged coordination language, which
promotes automatic component configuration and reuse, while CnC requires a more
significant integration of the component and runtime system codes.

Our experiments show that providing mechanisms which serve to ease the develop-
ment of applications that are structured as a set of decontextualised components may
be useful not only for service-oriented computing, but also for a high-performance com-
puting application. On the other hand, modularity and the reuse of software are not
as important for performance engineering as they are for the design of service-based
applications, because the components in a performance-oriented application are typically
tightly-coupled and are developed within one organisation for the sake of achieving high
performance and power efficiency.

24 CHAPTER 2. BACKGROUND

2.3 Subtyping, Polymorphism and Flow Inheritance

The web services are typically developed in a decentralised manner: an organisation that
develops a single service is unaware of other services and the context where their service
will be used. As a result, services ultimately become rather generic: they may contain
numerous algorithms that are compatible with various contexts. Service functionality
is exposed in the interface by specifying the operations it can perform, supported data
formats, etc. The interacting services are required to have compatible interfaces in order to
prevent protocol errors. The existing composition technologies only provide mechanisms
for a pairwise service connection without taking the rest of the topology into account.
Neither can services automatically adapt to changes in other services.

Those issues that arise in web service composition are best illustrated by an example.
Consider the service-based network in Figure 2.1.

Bicycle Shop

Customer

Components

Accessories

bike:
{ price: int,
frame: int }

bike:
{ price: int,
frame: int }

comp:
{ price: int,
frame: int }

comp:
{ price: int,
frame: int }

acc:
{ price: int,
light: int }

(a) Interfaces specified in one of the existing IDLs

Bicycle Shop

Customer

Components

Accessories

bike(x):
{ price: int | $p}

acc(y):
{ price: int | $q}

bike:
{ price: int,
frame: int}

comp:
{ price: int,
frame: int }

comp(x):
{ price: int | $p}

acc(y):
{ price: int | $q}

(b) Flexible interfaces specified in the IDL augmented with two sorts of variables

Figure 2.1: A service-based application that illustrates advantages of introducing vari-
ables to the existing IDLs

2.3 SUBTYPING, POLYMORPHISM AND FLOW INHERITANCE 25

This example illustrates a purchasing system scenario in which an online bicycle
shop sells bicycles or accessories with configuration provided from the component and
accessory suppliers. The suppliers provide the shop with available configurations. After
computing the final price, the shop sends a quotation to the customer. In Figure 2.1a
we provide a simplification of service choreography with interfaces specified in WSDL
or any other of the existing IDLs, such as Google Protocol Buffers [Goo08] or Apache
Thrift [SAK07, Apa11].

The interfaces in a pair of communicating services are identical: a message that
the consumer expects must have precisely the same format as the one declared by the
producer [AGR13a]. Assume that the programmer of the service Components decides to
add more information to the output about a bicycle. It forces programmers for the Bicycle

Shop and the Customer services to change the interfaces too, even though the Customer

service does not directly interact with the Components service.

In this way it can be seen that web services are tightly coupled, which contradicts the
concept of SOA. This behaviour is caused by an impedance mismatch problem between
objects and tree structures in XML and JSON [LM07]. Due to differences in the data
models and the type systems between the object-oriented paradigm and structural one,
it is difficult to preserve object properties after serialisation and deserialisation. Our
example nevertheless shows that subtyping would be useful for web service interoper-
ability [CL06, LC10, Men09]. [AGR13a] demonstrated that existing web service models,
such as SOAP and REST, fail to preserve the subtyping property while respecting the
loose coupling principle.

In the dissertation we introduce an IDL with support for structural subtyping (both
depth and width subtyping). When two services are connected by a unidirectional
communication channel (a source is called a producer and a sink is called a consumer),
a consumer agrees to accept any input that can safely be used instead of the expected
input. For example, in Figure 2.1b the bicycle shop is allowed to deliver any input to the
customer as soon as it contains information about the price and the frame.

Furthermore, in our approach the reusability of services is improved by introducing
term variables. The term variables provide support for parametric polymorphism. If a term
variable is used as part of the interface, then the service declares that any format is
acceptable in place of the variable. A variable can also be present in a record in place
of a ‘tail’. This is a form of row polymorphism that implements flow inheritance, which
is essential for pipelined data processing (see Section 2.3.1, Section 3.5, and Chapter 8
for flow inheritance details). Flow inheritance is a novel mechanism for automatic data
propagation across the services. It cannot be supported by the existing frameworks at
all due to global network analysis that is required for flow inheritance support. In the

26 CHAPTER 2. BACKGROUND

example, the variable $p is present in all input and output interfaces of the Bicycle Shop

service. The Components service adds an element frame: int to its output messages. Al-
though the Bicycle Shop service may not require the element, when using flow inheritance
the element is forwarded directly to the Customer service if it requires the element.

Another problem may arise in the verification of communication safety. Assume that
the Accessories service is unavailable. At first glance it may seem to be the case that both
networks in Figure 2.1 are inconsistent, because the Bicycle Shop service cannot provide
accessories to the customer if the latter wishes to buy them. However, in Figure 2.1b
the interfaces keep track of operation dependencies using the Boolean variables x and
y. Since the interface for the service Customer declares that the client buys only bicycles
and not accessories, the variable x will be set to true, which automatically requires the
presence of the operation comp in the input interface of the Bicycle Shop service. The
variable y is automatically required to be set to false. The analysis of the network in
Figure 2.1b can infer which operations are not used in the context, while such analysis
cannot be applied to the network in Figure 2.1a.

Interface variables provide facilities similar to C++ templates. Services can specify
a generic behaviour that is compatible with multiple contexts and input/output data
formats. Given the context, the compiler then configures the interfaces based on the
requirements and capabilities of other services.

2.3.1 Flow Inheritance

The flow inheritance [GSS08, GSS10] is a novel mechanism for forwarding data from
producers to indirect consumers (i.e. consumers of the data that are not connected to the
producers by communication channels) in computational pipelines. Decontextualised
services that produce data do not have information about services that demand this data
in the context. Similarly, decontextualised consumers are not aware of services which
can provide the data that they demand. Flow inheritance is a mechanism that analyses
the application network and ‘connects’ the producers with the consumers allowing the
former to bypass the data to the former. The existing mechanisms for implementing web
services do not support flow inheritance, because it requires global interface analysis. The
existing mechanisms can only check pairwise relation between interfaces of connected
services.

Informally, flow inheritance can be illustrated using the following example. Assume
services s1, s2 and s3 are connected in a pipeline (see Figure 2.2a).2 The service s1

2 For simplicity, we assume that services called si have one-step semantics: having received the input
message, they compute the result and return to the initial state without storing the state. We discuss
services with a persistent state in Chapter 9.

2.3 SUBTYPING, POLYMORPHISM AND FLOW INHERITANCE 27

s1 s2

{a}! {x}
s3

{b}! {y}
{a, b} {a, b} {x, b} {x, b} {x, y} {x, y}

(a) A pipeline without support for flow inheritance

s1 s2

{a}! {x}
s3

{b}! {y}
{a, b} {a|$p} {x|$p} {b|$q}

{b} {x}

{y|$q} {x, y}

(b) A pipeline with support for flow inheritance

Figure 2.2: A pipeline of services. {. . .} denotes a record as a message type

produces a record that contains fields of type a and b3, which can be processed by s2

and s3 respectively. Although b is not required by s2, it must be included in the input
and output interfaces of s2, so that it could be forwarded directly to s3. Without flow
inheritance, if a programmer wants data to be implicitly bypassed through the services,
they are forced to explicitly modify services, or apply additional wiring with splitting,
storing and resynchronising data.

Consider a pipeline with support for flow inheritance (Figure 2.2b). Flow inheritance
automatically propagates b from s1 to s3 and x from s2 to the output. We declare the
interface of s2 service as {a|$p} ! {x|$p}, where a is the type of an element in an
input message, x is the type of an element in an output message and $p is a variable that
matches part of the input message that is not matched by the type a and is used to redirect
the data to the output. Furthermore, flow inheritance can be disabled by modifying the
service interface. For example, if the variable $p is removed from the output interface of
s2 (that is to say the interface becomes {a|$p}! {x}), the service can no longer inherit
data to the output of the service.

So far we have illustrated the inheritance mechanism for services with only one input
and one output (SISO) channel. On the other hand, the inheritance mechanism has
more complex semantics in services with multiple input and output (MIMO) channels.
Inheritance in services with MIMO channels can be implemented in different ways
and row polymorphism is a flexible mechanism for supporting various forms of the
inheritance. In the examples in Figure 2.3a and Figure 2.3b, a service s4 has one input
channel and two output channels. The service inherits record elements that are not
matched by the pattern a and matches them using a variable $p. By modifying the
interface, a designer can enable or disable inheritance in output channels. Similarly,
3 In examples in this section we use letters to denote elements of records; the particular structure of
elements is not important in this context.

28 CHAPTER 2. BACKGROUND

in Figure 2.3c and Figure 2.3d, s5 is a service with one output channel and two input
ones. Inheritance from several input channels (Figure 2.3c) raises a multiple inheritance
problem: if input channels can provide data of various formats, it is unclear which data
should be inherited to the output. Forbidding multiple inheritance (Figure 2.3d) is a
potential solution, but service flexibility deteriorates. A more generic solution allows
inheritance from all input channels: in Figure 2.3e every channel has a different tail
variable, where some elements in $r are taken from $p and some from $q. Finally, the
example in Figure 2.3f demonstrates the fact that for services with accumulating facility
flow inheritance works in a special way. r is a reductor that produces a message in
response to a set of input messages. Every input message may contain data that has
to be inherited and there is only one output message. Since the data from various
input messages cannot be inherited in one output message, inheritance in services with
accumulating facility must be disabled.

In this thesis, we provide a generic mechanism for specifying all of the aforementioned
forms of flow inheritance for a stateless service (Figures 2.3a to 2.3e). As far as services
with the accumulating facility are concerned, we present an idea of a domain-specific
language for message combination in Chapter 9. In this way, accumulation in service-
based applications can be externalised from the services. It should positively affect
run-time properties, such as performance, fault-tolerance and reliability.

2.3.2 Dependable and Adaptable Service Composition

The existing technologies for service choreography are wired to inflexible interfaces as
defined in WSDL or WADL and do not allow dependable service composition. Further-
more, self-adaptation to changes in the interfaces of other services without a program-
mer’s intervention is impossible.

In order to be able to solve these problems we need a mechanism that links the
input/output interfaces of individual services and tracks dependencies between them.
This can naturally be achieved using logical expressions as illustrated in Figure 2.4. s6 is
a service with dependent interfaces. Expressions x ^ ¬y and y ^ ¬x are logical predicates
called guards, where x and y are Boolean variables that are shared across the interfaces
of one service. Depending on the values of variables, the predicates evaluate to true or
false. The former requires the corresponding element to be present in the message and
the latter forbids it. As a result, we can use Boolean variables and predicates to specify
arbitrary relation between entries for input and output interfaces.

In this particular example, s6 transforms coloured geometrical shapes: a circle (with a
radius property) is transformed into a square (with an sside property denoting the length

2.3 SUBTYPING, POLYMORPHISM AND FLOW INHERITANCE 29

of a side) and a square is transformed into a equilateral triangle (with a tside property
denoting the length of a side). The values of x and y define the shape into which the
service transforms in the particular context.

Basically speaking, the use of Boolean variables is a compact way of representing
intersection types [Pie97], which increase the expressiveness of function signatures: the
type (a ! c) ^ (b ! d) maps particular input types to particular output types in an
overloaded function. Similarly, in the example in Figure 2.4, each element of the input
interfaces may be mapped to each element in the output interface: an element bike is
present in the output interface for Bicycle Shop service only if the comp element is present
in one of its input interfaces, and an element acc is present in the service’s output interface
only if acc is present in another input interface. In general case, the intersection type
that specifies all possible mappings can be too excessive. Each service is allowed to have
multiple input and output ports, each with its own interface, which increases the relation
complexity between interface elements.

To sum up, configurable service composition is essential for service orchestration. In
the next section we introduce the Message Definition Language: an interface specification
language with support for subtyping, polymorphism, flow inheritance and dependable
interfaces, the last supported via Boolean variables.

30 CHAPTER 2. BACKGROUND

s1
{a|$p}

{x|$p}

{y|$p}
(a) A service with multiple output channels.
Input data is propagated to all output chan-
nels

s2
{a|$p}

{x|$p}

{y}
(b) A service with multiple output channels.
Input data is propagated to some of output
channels

s3
{x|$p}

{a|?}

{b|?}
(c) A service with multiple input channels.
Data is inherited from various channels. A
problem of multiple inheritance has to be
solved

s4
{x|$p}

{a|$p}

{b}
(d) A service with multiple input channels.
The input data is inherited from only one
channel

s5
{x|$r}

{a|$p}

{b|$q}
(e) A service with multiple input channels.
The input data is inherited from all input
channels if some elements in $r are present
in $p and the rest in $q

r
{a} {x}

(f) A service with accumulating facility. Inheritance must be disabled

Figure 2.3: Examples of MIMO services with support for flow inheritance

s6

{colour: int,
radius(x ^ ¬y): float,
sside(y ^ ¬x): float}

{colour: int,
sside(x ^ ¬y): float,
tside(y ^ ¬x): float}

Figure 2.4: Interfaces with support for logical expressions

Chapter 3

Interface Definition Language
for Service-Based Application

In this chapter we define a term algebra called Message Definition Language (MDL).
The purpose of the MDL is to describe flexible service interfaces. WSDL [CCM+01] is an
XML-based de facto standard for specifying the interfaces. On the other hand, in order to
be able to keep the MDL interfaces short and concise, we decided not to use the XML
for specification. Instead, we use an algebraic notation which is short and conventional.
Although we use a syntax for MDL terms that is different from the appearance of standard
WSDL-based interfaces, it can easily be rewritten as a WSDL extension.

Furthermore, the MDL is part of the type language for a language of combinators,
which is introduced in Chapter 4. We define a service network as a set of services that are
connected by communication channels. The interconnection is specified in the language
of combinators (a combinator declares a serial, parallel, or a wrap-around connection)
with a type associated with each combinator. The type consists of a set of constraints on
the MDL terms, which is associated with the given combinator.

In our approach, a message is a collection of data entities, each specified by a corres-
ponding term. The intention of the term is to represent

1. a standard atomic type such as int, string, etc;

2. inextensible data collections such as tuples;

3. extensible data records [GJ96, Lei05], where additional named fields can be intro-
duced without breaking the match between the producer and the consumer and
where fields can also be inherited from input to output records by lowering the
output type, which is always safe;

4. data-record variants, where in general more variants can be accepted by the con-
sumer than the producer is aware of, and where such additional variants can be

32 CHAPTER 3. INTERFACE DEFINITION LANGUAGE FOR WEB SERVICES

inherited from the output back to the input of the producer — hence contravariance
— again, by raising the input type, which is also always safe.

3.1 Terms

Each term is either atomic or a collection in its own right. Atomic terms are symbols, which
are identifiers used to represent standard types such as int, string, etc. To account for
subtyping1 we include three categories of collections: tuples that are demanded to be of
the same size and thus admit only depth structural subtyping, records that are subtyped
covariantly (a larger record is a subtype) and choices that are subtyped contravariantly
using set inclusion (a smaller choice is a subtype).

We introduce Boolean variables (called b-variables below) in the term interfaces for the
following purposes: 1) B-variables allow to define configurable interfaces; 2) B-variables
are used to specify dependencies between input and output data formats. They provide
functionality similar to intersection types [Pie97], which increase the expressiveness of
function signatures.

A Boolean expression g 2 B (B denotes a set of Boolean expressions) called a guard is
defined by the following grammar:

hguardi ::= (hguardi ^ hguardi) | (hguardi _ hguardi) | (hguardi ! hguardi) | ¬hguardi |
true | false | b-variable

Selection of the Boolean operators (conjunction, disjunction, implication and negation)
is justified by the fact that 1) an arbitrary Boolean formula can be present in a term; 2)
implication is a common operation that is used in Boolean constraints (see Figures 7.1
and 7.2), so for brevity we introduce it as a separate operator.

In order to support parametric polymorphism and inheritance in interfaces, we
introduce term variables (called later t-variables), which are similar to type variables.
For coercion of interfaces it is important to distinguish between two variable categories:
down-coerced and up-coerced ones. The former can be instantiated with symbols, tuples
and records (terms of these three categories are called down-coerced terms), and the
latter can only be instantiated with choices (up-coerced terms). Informally, for two down-
coerced terms, a term associated with a structure with ‘more data’ is a subtype of the one
associated with a structure that contains less; and vice versa for up-coerced terms. We
use the notation v# and v" for down-coerced and up-coerced variables respectively, and v
when its coercion sort is unimportant. Explicit sort annotation on variables is useful for
simplifying partial order definitions on terms.
1 From now on we use ‘subtyping’ to refer to a relation on algebraic terms and not to subtyping on types
that is defined in the previous chapter.

3.1 TERMS 33

MDL terms are built recursively using the constructors: tuple, record, choice and
switch, according to the following grammar:

htermi ::= hsymboli | htuplei | hrecordi | hchoicei | t-variable

htuplei ::= (htermi [htermi]⇤)
hrecordi ::= {[helementi[,helementi]⇤[|down-coerced t-variable]]}

hchoicei ::= (:[helementi[,helementi]⇤[|up-coerced t-variable]]:)

helementi ::= hlabeli(hguardi):htermi
hlabeli ::= hsymboli

Informally, a tuple is an ordered collection of terms and a record is an extensible,
unordered collection of guarded labelled terms, where labels are arbitrary symbols, which
are unique within a single record. A choice is a collection of alternative terms. The syntax
of choice is the same as that of record except for the delimiters. The difference between
records and choices is in width subtyping [BBDCL97] and will become clear below when
we define seniority on terms. Briefly, the subtyping on records is defined that a record
with more elements is a subtype of one with fewer elements, and, similarly, a choice with
fewer elements is a subtype of a choice with more elements.

We use choices to represent polymorphic messages and service interfaces at the top
level. Records and choices are defined in tail form. The tail is denoted by a t-variable that
represents a term of the same kind as the construct in which it occurs. For example, in
the term

{l
1

(true): t1, . . . , l
d

(true): td |v#}
the variable v# represents the tail of the record, that is its members with labels li : li 6=
l1, . . . li 6= ld.

We extend the basic set of the MDL terms with a switch term. The switch is an
auxiliary construct intended for building conditional terms, which is specified as a set of
unlabelled (by contrast to a choice) guarded alternatives. Formally, it is defined as

hswitchi ::= <hguardi:htermi[, hguardi:htermi]⇤>

Exactly one guard must be true for any well-formed switch (see Definition 3.2.2), that
is the switch is substitutionally equivalent to the term marked by the true guard:

h(false): t1, . . . , (true): ti, . . . , (false): tdi = h(true): tii = ti.

For example, h(x): int, (¬x): stringi represents the symbol int if x = true, and
the symbol string otherwise. A switch is a construct that allows to define an arbitrary

34 CHAPTER 3. INTERFACE DEFINITION LANGUAGE FOR WEB SERVICES

interface as a function of Boolean values. Furthermore, a switch is an essential construct
for a constraint resolution algorithm, which is presented in Section 7.5.

3.2 Seniority Relation

For a guard g, we denote as Vb(g) the set of b-variables that occur in g. For a term t, we
denote as V

"(t) the set of up-coerced t-variables that occur in t, and as V

#(t) the set of
down-coerced ones; and finally V

b(t) is the set of b-variables in t.

Definition 3.2.1 (Semi-ground and ground terms). A term t is called semi-ground if
V

"(t) [V

#(t) = ∆. A term t is called ground if it is semi-ground and V

b(t) = ∆.

For example, a record {a: int, b: string} is a ground term, {a: int, b(x): string} is
a semi-ground term, and {a: int, b(x): v1 |v#2} is neither ground nor semi-ground term.

Well-formedness for terms is defined next. It ensures that a term is not a switch with
multiple true guards, neither the term contains such switch as a subterm.

Definition 3.2.2 (Well-formed terms). A term t is well-formed if it is ground (i.e. does
not contain variables) and exactly one of the following holds:

1. t is a symbol;

2. t is a tuple
(t1 . . . td),

d > 0, where all ti, 1 i d, are well-formed;

3. t is a record
{l

1

(g1): t1, . . . , l
d

(gd): td}
or a choice

(:l
1

(g1): t1, . . . , l
d

(gd): td:),

d � 0, where for all 1 i 6= j d, gi ^ gj =) li 6= lj and all ti for which gi are true

are well-formed;

4. t is a switch
h(g1): t1, . . . , (gn): tdi,

d > 0, where for some 1 i d, gi = true and ti is well-formed and where
gj = false for all j 6= i.

If an element of a record, choice or switch has a guard that is equal to false, then the
element can be omitted, for example,

{a(x ^ y): string, b(false): int, c(x): int} = {a(x ^ y): string, c(x): int}.

3.2 SENIORITY RELATION 35

If an element of a record or a choice has a guard that is true, the guard can be syntactically
omitted, for example,

{a(x ^ y): string, b(true): int, c(x): int} = {a(x ^ y): string, b: int, c(x): int}.

We define the canonical form of a well-formed collection as a representation that does not
include false guards, and we omit true guards anyway. The canonical form of a switch
is its (only) term with a true guard, hence any term in canonical form is switch-free.
Hereafter in the thesis we specify terms in the canonical form when it is possible.

Next we introduce a seniority relation v on terms for the purpose of structural
subtyping. If a term t describes the input interface of a service, then the service can
process any message described by a term t0, such that t0 v t. In the sequel we use nil

to denote the empty record { }, which has the meaning of unit type and represents a
message without any data. Similarly, we use none to denote the empty choice (: :). We
use an empty choice for specifying service interfaces that cannot send or receive any
messages.

Definition 3.2.3 (Seniority relation). The seniority relation v on well-formed terms in
canonical form is defined as follows:

1. none v t if t is a choice;

2. t v nil if t is a symbol, a tuple or a record;

3. t v t;

4. t1 v t2, if for some d, e > 0 one of the following holds:

(a) t1 = (t1
1 . . . td

1), t2 = (t1
2 . . . td

2) and ti
1 v ti

2 for each 1 i d;

(b) t1 = {l1
1

: t1
1, . . . , ld

1

: td
1} and t2 = {l1

2

: t1
2, . . . , le

2

: te
2}, where d � e and for each

j e there is i d such that li
1 = l j

2 and ti
1 v tj

2;

(c) t1 = (:l1
1

: t1
1, . . . , ld

1

: td
1:) and t2 = (:l1

2

: t1
2, . . . , le

2

: te
2:), where d e and for each

i d there is j e such that li
1 = l j

2 and ti
1 v tj

2.

Similarly to the t-variables, terms are classified into two categories: symbols, tuples
and records are down-coerced terms and choices are up-coerced terms. The seniority
relation defines a symmetric relation on down-coerced and up-coerced terms: an element
nil is the maximum element for down-coerced terms; on the other hand, none is the
minimal element for up-coerced terms. T # denotes the set of all down-coerced ground
terms, T " denotes the set of all up-coerced ground terms and T = T # [T " is the set of
all ground terms. Similarly, T #m denotes the set of all vectors of down-coerced ground

36 CHAPTER 3. INTERFACE DEFINITION LANGUAGE FOR WEB SERVICES

nil

tuple record

. . .

symbol choice

. . .

none

subtype down-coerced terms

up-coerced terms

Figure 3.1: Two semilattices (T #,v) and (T ",v) representing the seniority relation for
terms of different categories. The lower terms are the subtypes of the upper ones

terms of length m and T "n denotes the set of all vectors of up-coerced ground terms of
length n.

If ~t1 and ~t2 are vectors of terms (t1
1, . . . , t1

d) and (t2
1, . . . , t2

d) of size d, then ~t1 v ~t2

denotes the seniority relation for all pairs t1
i v t2

i (1 i d).

Proposition 3.2.4. The seniority relation v is a partial order, and (T ,v) is a pair of meet
and join semilattices (illustrated in Figure 3.1):

8t1, t2 2 T #, t1 v t2 iff t1 u t2 = t1

8t1, t2 2 T ", t1 v t2 iff t1 t t2 = t2.

Proposition 3.2.5. (T #m ,v) and (T "n ,v) is a pair of meet and join semilattices:

8~t1,~t2 2 T #m ,~t1 v ~t2 iff ~t1 u ~t2 = ~t1

8~t1,~t2 2 T "n , t1 v t2 iff ~t1 t ~t2 = ~t2.

Definition 3.2.6. A relation = denotes an equality relation on terms and is defined as
follows.

t1 = t2 () t1 v t2 ^ t2 v t1 (3.1)

In other words, = is a reflexive, a symmetric relation and a transitive relation.

Although the seniority relation is straightforwardly defined for ground terms, terms
that are present in the interfaces of services can contain t-variables and b-variables.
Finding such ground term values for the t-variables and such Boolean values for the
b-variables that the seniority relation holds represents a CSP problem, which is formally
introduced in Chapter 5.

3.3 CONFIGURATION PARAMETERS 37

3.3 Configuration Parameters

We introduce b-variables to the MDL as interface configuration parameters that enable
or disable some functionality provided by a service within the context. In Chapter 8 we
define a fixed interface format for a service: in each input interface the service exposes
the name of and arguments for a function that processes input messages from a given
port. Depending on the context, the clients use a subset of the provided functions. In
our approach, clients are allowed to use the functions if they are connected by statically-
defined channels to the corresponding service ports. Our interface configuration protocol
(see Chapter 8) automatically disables unused functions by setting the b-variables in the
interface MDL term to false. In this thesis we present an algorithm (see Chapter 7) finds
processing functions in the application which are never triggered in the given context.

Our mechanism shows that a processing function is exposed in a configured service if
and only if it can provide data that is demanded by other services. Otherwise, any inability
to provide the required data leads to communication errors. In this mechanism the
b-variables are used as follows: we assume that service interfaces are represented as a
choice term at the top level (see Chapter 8, where we discuss the format of interfaces
for services). Each element of a choice in the input interface corresponds to a service
functionality; similarly, each element of a choice in the output interface corresponds to
an output message of a particular kind.

a

b

c

d

e

f

Figure 3.2: Relation between input message formats and output message formats. d is
produced in response to a, e is produce in response to a and b, and f is produced in
response to a, b and c

Consider an example in Figure 3.2. The example illustrates a service that can accept
messages of three kinds: a, b and c, each of them corresponding to some functionality of
the service. Similarly, the service produces messages of three kinds: d is produced as a
response to a, e is produced as a response to a or b, and f is produced as a response to a,
b or c.

In the existing IDLs such as WSDL it is impossible to maintain a relation between
input and output interfaces. In these IDLs the interfaces are local and, therefore, it is

38 CHAPTER 3. INTERFACE DEFINITION LANGUAGE FOR WEB SERVICES

impossible to verify correspondence between interfaces globally, taking a topology of a
complete application into account.

In our approach, we use b-variables to maintain a relation between interfaces. The
input interface of the service in Figure 3.2 is defined by the following choice term:

(:a(x): . . ., b(y): . . ., c(z): . . .:),

where x, y and z are guards associated with a, b and c. Similarly, the output interface is
defined by the choice term

(:d(x): . . ., e(x _ y): . . ., f(x _ y _ z): . . .:).

The guards in the output interface specify conditions for producing output messages. A
message with the tag e can be produced if and only if messages with tags a and b can be
received. As a result, the mechanism removes e from the output interface if and only if
messages with the tag a and b can never be received.

3.4 Flow Inheritance

Web services are experiencing a transition from batch to stream processing [ABB+13].
Under stream processing, services often form long pipelines, in which a service processes
only part of its input message, with the rest of it being passed down the pipeline without
modification. A mechanism that implicitly redirects part of a message from the input to
the output of a service is called flow inheritance [GSS10]. Although existing technologies
for service composition, such as session types, enhance the flexibility and the reuse
of services with subtyping and polymorphism, they lack the analysis and configura-
tion capacity for flow inheritance (the advantages of flow inheritance are explained in
Chapter 8).

Flow inheritance is enabled using tail variables, which are present in a record and
a choice term. Consider the interface format introduced in Section 3.3, in which the
interfaces are represented as choice terms at the top level. By inserting the same tail
variable in both input and output interface, we enable the support for flow inheritance at
the interface level.

Consider the example in Figure 3.3. The input interface of the service is a choice that
contains elements labelled a, b, c and a tail variable v". The output interface of the service
contains elements labelled d, e, f and the tail variable v". Assume that the service is a
consumer for a service that provides g. Since g cannot be processed by the service, g can

3.5 MULTIPLE FLOW INHERITANCE 39

be automatically bypassed to the output using flow inheritance.

a

b

c

(:a(x): . . ., b(y): . . ., c(z): . . . |v":)

d

e

f

(:d(x): . . ., e(x _ y): . . ., f(x _ y _ z): . . . |v":)
v" = (:g: . . .:)

g g

. . .

. . .

. . .

. . .

Figure 3.3: The service that automatically bypasses a message with the label g using flow
inheritance

Two seniority constraints follow from the interconnection:

(: . . . , g: . . ., . . . :) v (:a(x): . . ., b(y): . . ., c(z): . . . |v":)
(:d(x): . . ., e(x _ y): . . ., f(x _ y _ z): . . . |v":) v (: . . . , g: . . ., . . . :).

The first constraint constraint is satisfied only if (:g: . . .:) v v". In other words, v" must
contain an element with the label g. Given this, the second constraint is automatically
satisfied, because the left term contains g, which is required by the right term.

In Chapter 8 we describe flow inheritance provided by the interface configuration
mechanism.

3.5 Multiple Flow Inheritance

In Chapter 9 we discuss the message synchronisation mechanism, which allows messages
received from multiple input ports to be merged and merged messages to be sent to
the output. It is impossible to support such behaviour in the interfaces using only the
MDL terms described previously. Specifically, given that record terms represent message
interfaces, we want to be able to define the output interface as a record that contains all
elements from the input interfaces (provided that element labels are disjointed). We call
such behaviour multiple flow inheritance.

Consider the following example. Let input messages be specified by two records
{a: int, b: bool} and {b: int, c: int}. A message that is composed by merging these
records is ambiguously specified by {a: int, b: bool, c: int} or {a: int, b: int, c: int},

40 CHAPTER 3. INTERFACE DEFINITION LANGUAGE FOR WEB SERVICES

M

v#1

v#2

(union v#1 v#2)

Figure 3.4: A simple merger

depending on the context. Consequently, merging records that contain elements with the
same label is something that must be forbidden.

We introduce a special term called a union. This represents a record that is constructed
from two records. The algorithm presented in Section 7.6 guarantees that: 1) the union

record contains all elements from both records; and 2) no two elements with the same
label are present in records that constitute the union term.

In order to illustrate multiple flow inheritance, we discuss the following example.
Consider a simple service called a merger. It receives two records from one or two input
channels, merges them, and sends the merged record as the output message.

The input interfaces of the merger are arbitrary records represented by down-coerced
variables v#1 and v#2. The output interface of the merger is defined by the union term
(union v#1 v#2) (see Figure 3.4).2

(union v#1 v#2) must be replaced by a record that contains all elements from records v#1
and v#2, but not from both. If v#1 and v#2 contain elements with the same labels under all
instantiations of b-variables, then it is impossible to merge records unambiguously.

The semantics of the union is defined as follows. Let the union be a record of the form
{˜l

1

(g̃1): t̃1, . . . ,˜l
d

(g̃d): t̃d}. Then

(union v#1 v#2) ()
8
<

:
v#1 = {˜l

1

(g̃1 ^ g01): t1, . . . ,˜l
d

(g̃d ^ g0d): ṽd}
v#2 = {˜l

1

(g̃1 ^ ¬g01): t2, . . . ,˜l
d

(g̃d ^ ¬g0d): ṽd},
(3.2)

where () is a logical equivalence and g01, . . . , g0d are generated free b-variables. In
other words, the union is obtained by combining disjoint elements from v#1 and v#2. It
is important that no elements can be present in both v#1 and v#2. Presence of b-variables
g01, . . . , g0d forces elements with the same label to not be present in both v#1 and v#2.

2 The union term has no relation to a union data type in C language.

3.6 MOTIVATING EXAMPLE: THREE BUYER USE CASE 41

Alice Seller Bob Carol
ASout ASin

SAoutSAin

SBout SBin

BSoutBSin

BCout BCin

CBoutCBin

Figure 3.5: Service composition in a Three Buyer use case

3.6 Motivating Example: Three Buyer Use Case

Our approach for configuring web services is motivated by rapid development of Cloud
computing, social networks and Internet of Things, which accelerate the growth and com-
plexity of service choreographies [BSD13, DYV12]. Accordingly, we chose a simple but
non-trivial example from one of those areas to illustrate our approach. The same example,
known as the three-buyer use case, is often called upon to demonstrate the capabilities of
session types such as communication safety, progress and protocol conformance [HYC08].

Consider a system involving buyers called Alice, Bob and Carol that cooperate in
order to buy a book from a Seller. Each buyer is specified as an independent service
that is connected with other services via a channel-based communication. There is
an interface associated with every input and output port of a service, which specifies
the service’s functionality and data formats that the service is compatible with. The
interfaces are defined in the MDL. Figure 3.5 depicts composition of the application
where Alice is connected to Seller only and can interact with Bob and Carol indirectly.
AS, SB, BC, CB, BS, SA denote interfaces that are associated with service input/output
ports. For brevity, we only provide AS, SB and BC (the rest of the interfaces are defined
in the same manner), which are specified in the MDL in the following way:

ASout = (:request: {title: tv#}, payment: {title: tv#,money: int, id: int},

share(x): {title: tv#,money: int}, suggest(y): {title: tv#}:)

ASin = (:request: {title: string}, payment: {title: string,money: int}| ct1":)

SBout = (:response : {title: string,money: int}| ct1":)

SBin = (:share(z) : {quote: string,money: int}, response : {title: string,money: int}| ct2":)

BCout = (:share(z): {quote: string,money: int} | ct2":)

BCin = (:share : {quote: string,money: int}:)

Collection elements contain guards x, y and z. A guard instantiated to false excludes
the element from the collection. This is the main self-configuration mechanism: Boolean
variables control the dependencies between any elements of interface collections (this can

42 CHAPTER 3. INTERFACE DEFINITION LANGUAGE FOR WEB SERVICES

be seen as a generalized version of intersection types). The variables exclude elements
from the collection if the dependencies between corresponding elements in the interfaces
that are connected by a communication channel cannot be satisfied.

Parametric polymorphism is supported using interface variables such as tv#, ct1"

and ct2". Moreover, the presence of ct1" and ct2" in both input and output interfaces
enables flow inheritance mechanism that provides delegation of the data and service
functionality across available services.

ASout declares an output interface of Alice, which declares functionality and a format
of messages sent to Seller. The service has the following functionality:

• Alice can request a book’s price from Seller by providing a title of an arbitrary type
(which is specified by a term variable tv#) that Seller is compatible with. On the
other hand, Seller declares that a title of type string is only acceptable, which means
that tv# must be instantiated to string.

• Furthermore, Alice can provide a payment for a book. In addition to the title and the
required amount of money, Alice provides her id in the message. Although Seller
does not require the id, the interconnection is still valid (a description in standard
WSDL interfaces would cause an error though) due to the subtyping supported in
the MDL.

• Furthermore, Alice can offer to share a purchase between other customers. Al-
though Alice is not connected to Bob or Carol and may even not be aware of their
presence (the example illustrates a composition where a service communicates with
services that the service is not directly connected to), our mechanism detects that
Alice can send a message with ‘share’ label to Bob by bypassing it implicitly through
Seller. In order to enable flow inheritance in Seller’s service, the mechanism sets a
tail variable ct1" to (:share: {title: string,money: int}:). If Bob were unable to accept
a message with ‘share’ label, the mechanism would instantiate x with false, which
automatically removes the corresponding functionality from the service.

• Finally, Alice can suggest a book to other buyers. However, examination of other
service interfaces shows that there is no service that can receive a message with
the label ‘suggest’. Therefore, a communication error occurs if Alice decides to
send the message. To avoid this, the configuration mechanism excludes ‘suggest’
functionality from Alice’s service by setting y variable to false.

The configuration mechanism proposed in this thesis analyses the interfaces of ser-
vices Seller, Bob and Carol in the same manner. The presence of ct1" variable in both
input and output interfaces of Bob enables support for data inheritance on the inter-
face level. Furthermore, the Boolean variable z behaves as an intersection type: Bob

3.6 MOTIVATING EXAMPLE: THREE BUYER USE CASE 43

has ‘purchase sharing’ functionality declared as an element share(z): {. . . } in its input
interface SBin (used by Seller). The element is related to the element share(z): {. . . } in
its output interface BCout (used by Carol). The relation declares that Bob provides Carol
with ‘sharing’ functionality only if Bob was provided with the same functionality from
Seller. In our example, z is true, because Carol declares that it can receive messages with
the label ‘share’. Note that there could be any Boolean formula in place of z, which wires
any input and output interfaces of a single service in an arbitrary way. The existing
interface description languages (WSDL, WS-CDL, etc.) do not support such interface
wiring capabilities.

Interface variables provide facilities similar to C++ templates. Services can specify
generic behavior compatible with multiple contexts and input/output data formats.
Given the context, the compiler then specializes the interfaces based on the requirements
and capabilities of other services.

The problem being solved is similar to type inference problem; however, it has
large combinatorial complexity and, therefore, direct search of a solution is impractical.
Furthermore, additional complexity arises from the presence of Boolean variables in
general form. Another problem is potential cyclic dependencies in the network, which
prevent the application of a simple forward algorithm. In our approach, we define our
problem as a constraint satisfaction problem. Then we employ a constraint solver, which
was specifically developed to solve this problem, to find correct instantiations of the
variables.

44 CHAPTER 3. INTERFACE DEFINITION LANGUAGE FOR WEB SERVICES

Chapter 4

Description
of Service-Based Application
in Language of Combinators

Definition of service composition using the ‘algebraic’ style facilitates formal reasoning
about the services [Fer04, SBS06]. Following this approach, we propose a formal descrip-
tion of a service network in the form of a language of combinators. Then, we define a type
system on top of the language that aggregates communication constraints throughout
the network.

We see a service as a module that contains functions for input message processing.
The service has a set of named input and output ports. The former are the ports where
the incoming messages arrive; the latter are the ports where services send produced
messages to. The ports are required for service functional decomposition: for example,
messages that relate to error tracing, logging, authorisation can naturally be read from
and sent to different ports.

Each port is a pair (lp, tp), where lp is the name of the port and tp 2 T is the MDL
term (see Chapter 3) specifying the service interface associated with the port.

With each service s we associate the function t(s) = (Is,Os), where

Is = {(lp, tp) | 1 p Is},

Os = {(lp, tp) | 1 p Os},

and Is and Os are the number of s’s input and output ports, respectively. The tuple t(s)
represents the service properties related to its interface. They can either be provided
explicitly or, as we demonstrate in Chapter 8, automatically be derived from the service.

46
CHAPTER 4. DESCRIPTION OF SERVICE-BASED APPLICATION IN LANGUAGE OF

COMBINATORS

4.1 Wiring

Wiring is the act of connecting services with a communication channels. The service is
identified by its label, which denotes the functionality of the services. An application is
represented by a streaming network defined by the following grammar:

hnetworki ::= hlabeli
| hnetworki . . hnetworki
| hnetworki || hnetworki
| hnetworki \
| (hnetworki)

A label is a basic building block of a network, which represents a single service. The label
is unique name of the service. . . , || , \ are called wiring patterns.

. . denotes a serial connection of two networks. Informally, it wires the output ports
of one service to the input ports of another one with communication channels.

|| denotes the parallel connection of two networks. It places two networks side
by side without introducing additional channels. The result of the wiring is that the
input (output) ports of one service are combined with the input (output) ports of another
service.

\ denotes the wrap-around connection for a network. It creates a cycling connection
by wiring output ports to input ports in the network.

Furthermore, parenthesis are introduced for grouping subnetworks together. For
example, (A . . B) || C and A . . (B || C) specify different networks due to different subnet-
work grouping.

4.2 Types

With each network N we associate a type that encodes the ports and a set of the seniority
constraints. The type of N is a tuple

(IN,ON, CN),

where

IN = {(lp, tp) | 1 p IN},

ON = {(lp, tp) | 1 p ON},

and IN and ON are the number of N’s input and output ports, respectively.

4.2 TYPES 47

C is a set of the seniority constraints, which guarantees communication safety. Each
constraint is a relation

tp v tp0 : T ⇥ T
on the wired ports p and p0. The relation v is the seniority relation, which is defined in
Definition 3.2.3. It specifies conditions on the service interface wired with a communica-
tion channel.

4.2.1 Typing Rules

The four typing rules, which we propose in this section, specify a mechanism for aggreg-
ating the wiring constraints from the network.

L(SING)
L: (IL,OL, ∆)

is a typing rule for a single service also referred as a singleton network, where L is a service
label and (IL,OL) = t(L). Sets of port descriptions (port names and the MDL term
associated with the port) IL and OL can be specified in a separate service configuration
file or, as we demonstrate in Chapter 8, can automatically be derived from the service.

The type associated with the serial connection is constructed as follows:

N1 : (IN1 ,ON1 , CN1) N2 : (IN2 ,ON2 , CN2)(. .)
N1 . . N2 : (I 0,O0, C 0)

where

I 0 = IN1 [{(lp, tp) | (lp, tp) 2 IN2 @(lp0 , tp0) 2 ON1 : lp = lp0}
O0 = ON2 [{(lp, tp) | (lp, tp) 2 ON1 @(lp0 , tp0) 2 IN2 : lp = lp0}
C 0 = CN1 [CN2 [{tp v tp0 | 9lp : (lp, tp) 2 ON1 , 9lp0 : (lp0 , tp0) 2 IN2 ^ lp = lp0}.

The constructed type is a tuple that consists of N1’s input ports, N2’s output ports. Fur-
thermore, the seniority constraints are constructed as a union of CN1 , CN2 and constraints
that represent data relations on newly constructed channels.

lp = lp0 is called an identity condition: the channels always wire the identically named
ports. Consequently, the wiring of the services in the network depends on service port
names. On the other hand, the problem of excessive or deficient wiring can be prevented
by renaming the ports.

Note that a channel may wire a single output port to more than one input port and a
single input port to more than one output port. The semantics of the former is copying:
each message output on the port will be received by each of the input port that the output

48
CHAPTER 4. DESCRIPTION OF SERVICE-BASED APPLICATION IN LANGUAGE OF

COMBINATORS

port is wired to. The semantics of the latter is merging: when more than one output port is
wired to a single input port, the messages from the output port are transferred to a single
input port in no particular order, that is nondeterministically. It is also possible for a port
to merge several inputs and copy the stream to several outputs. Consequently, the wiring
relation is completely generic: it can lead to one-to-one, one-to-many, many-to-one or
many-to-many connections.

The type associated with the parallel connection is constructed as follows:

N1 : (IN1 ,ON1 , CN1) N2 : (IN2 ,ON2 , CN2)(||)
N1 || N2 : (IN1 [IN2 ,ON1 [ON2 , CN1 [CN2)

The constructed type is a tuple that consists of a union of N1’s and N2’s input ports,
a union of N1’s and N2’s output ports and a union of sets CN1 [CN2 . The parallel
connection does not wire services by producing new channels. Instead, it ‘joins’ services
by combining their input/output ports as well as sets of the seniority constraints into a
single set.

Moreover, IN1 and IN2 , as well as ON1 and ON2 may contain ports with the same
name without having compatibility issues. Consider the following example.

Example 4.2.1. Assume a network

N1 . . (N2 || N3)

is given, where N1, N2 and N3 are the following services:

N1 :({}, {(a : t1)}, ∆)

N2 :({(a : t2)}, {}, ∆)

N3 :({(a : t3)}, {}, ∆).

Having applied the parallel connection to the services N2 and N3, a network

N2 || N3 : ({(a : t2, a : t3)}, {}, ∆),

which contains ports with the same name, is obtained. The serial connection produces a
set of two seniority constraints as part of the network type: C = {t1 v t2, t1 v t3}. The
constraints are satisfied only when a join term for t2 and t3 exists. Similarly, if ports with
the same name are present in the output interface, a meet term must exist. Essentially,
this demonstrates how one-to-many and many-to-one connections are implemented. 4

Finally, consider the typing rule for the wrap-around connection. The type associated
with the wrap-around connection is constructed as follows:

4.3 SUBTYPING 49

N : (IN,ON, CN)(\)
N\ : (I 0N,O0N, CN [C 0N)

where

I 0N = {(lp, tp) | (lp, tp) 2 IN @lp0 , tp0 2 ON : lp = lp0}
O0N = {(lp0 , tp0) | (lp0 , tp0) 2 ON @(lp, tp) 2 IN : lp = lp0}
C 0N = {tp0 v tp | 9lp0 : (lp0 , tp0) 2 ON lp : (lp, tp) 2 IN ^ lp = lp0}.

The wrap-around connection wires output ports of a service with identically named input
ports and generates constraints on the port interfaces. Furthermore, the ports connected
by a channel must be excluded from the sets of input/output ports IN and ON.

Although a service network may have various representations in the language of
combinators, the type that corresponds to the service network is unique and does not
depend on the representation. This is due to equivalence of (. .) and (\) rules in cyclic
networks. For instance, (N1 . . N2)\ and (N2 . . N1)\ represent the same network and
application of the rule (\) to N1 . . N2 derives the same type as application of the rule (\)
to (N2 . . N1)\.

The type of the top-level network contains a set of communication constraints that
serves as an input for the CSP-WS problem presented in Chapter 5. The network topology
is safe for communication if the constraints can be satisfied and unsafe otherwise.

4.3 Subtyping

Next we introduce subtyping on types (I ,O, C). It defines the hierarchy of networks
and hierarchy of partial solutions to the constraints C. Intuitively, a network N2 :
(IN2 ,ON2 , CN2) is a supertype of N1 : (IN1 ,ON1 , CN1) if N1 is less generic network. Spe-
cifically, the sets IN1 and ON1 may contain more ports than the sets IN2 and ON2 and a
number of solutions to CN1 is less than a number of solutions to CN2 . Furthermore, for
input ports with the same labels (lp, t1

p) and (lp, t2
p) in IN1 and IN2 respectively, t1

p must be
a subtype of t2

p. Similarly, for output ports with the same labels (elp,et1
p) and (elp,et2

p) in ON1

and ON2 respectively, et2
p must be a subtype of et1

p. We illustrate this property in Figure 4.1.
The formal rule for subtyping is

8(l2
p, t2

p) 2 IN29(l1
p, t1

p) 2 IN1 : l1
p = l2

p ^ t1
p v t2

p

8(l2
p, t2

p) 2 ON29(l1
p, t1

p) 2 ON1 : l1
p = l2

p ^ t2
p v t1

p

CN1 6= ? V(CN1) � V(CN2) _ CN1 ⌘ CN2 CN1 |= CN2(S-SUB)
(IN1 ,ON2 , CN1) (IN1 ,ON2 , CN2)

50
CHAPTER 4. DESCRIPTION OF SERVICE-BASED APPLICATION IN LANGUAGE OF

COMBINATORS

t1
in N1 t1

out tbta

(N1 : {(a : t1
in)}, {(b : t1

out)}, C)

ba

(a) The port a of the network N1 is connected to a service that provides the term ta; the port b is
connected to a service that expects the term tb. As a result, the constraints ta v t1

in and t1
out v tb

are produced

t2
in N2 t2

out tbta

(N2 : {(a : t2
in)}, {(b : t2

out)}, C)

ba

(b) The port a of the network N2 is connected to a service that provides the term ta; the port b is
connected to a service that expects the term tb. As a result, the constraints ta v t2

in and t2
out v tb

are produced

Figure 4.1: An example illustrating subtyping. N1 is a subtype of N2 if t1
in v t2

in and
t2
out v t1

out. As a result, ta v t1
in implies ta v t1

in and t1
out v tb implies t2

out v tb

Here V(C) denotes the set of all variables that occur in C. CN1 ⌘ CN2 declares that CN2

is a satisfiable set of constraints if and only if CN1 is a satisfiable set of constraints too.
|= is a logical entailment, which defines the following relation: if CN1 ⌘ CN2 , then the
solution to CN1 is also a solution to CN2 . The subtyping relation is reflexive, transitive
and antisymmetric. There exists a unique type (Itop,Otop, Ctop) = (∆, ∆, ∆) such that
(I ,O, C) (Itop,Otop, Ctop) for any (I ,O, C), where C = ∆ denotes a set of tautological
constraints. It leads us to the fact that subtyping relation is a semilattice with Ctop as the
top element.

The subtyping relation defines a solution hierarchy for the CSP on C. Indeed, any
solution to CN1 in a network N1 : (IN1 ,ON1 , CN1) is also a solution to CN2 in a network
N2 : (IN2 ,ON2 , CN2) providing that (IN1 ,ON1 , CN1) (IN2 ,ON2 , CN2). However, other
solutions to CN1 may exist too.

Assume that we are looking for a solution to CN2 . The tightest solution is a vector
of values to variables V(CN2) such that the constraints CN2 are satisfied and the vector
is not a solution to CN1 , where N1 is any subtype of N2 and CN1 6= CN2 . A typical set
of constraints may have infinitely many solutions. In Chapters 6 and 7 we present an
algorithm that always finds a tight solution, which may not be unique though.

4.4 Arbitrary Topology

The three wiring patterns defined above are sufficient to specify an arbitrary topology of
the network. The algorithm that transforms the network N into an algebraic expression

4.4 ARBITRARY TOPOLOGY 51

that uses the three combinators as operators and names of services as operands is the
following:

1. If N is a cyclic graph, find an acyclic subgraph N0 [Len73, BS90].1 The edges that
are removed from the cyclic graph form the feedback edge set. Break the edges and
replace them by a pair of identically named ports in the network, an input port p
and an output port p. Include the input port p to the set of input portss and the
output port p to the set of output ports. Continue breaking the edges until the
graph becomes acyclic.

2. The graph is acyclic now, therefore, there are edges that do not have incoming
edges. Call them root vertices. Introduce a function

g : V ! N,

such that for any v 2 V (V is a set of graph vertices), g(v) is the length of the
longest path from a graph input to v. Assuming that the graph is connected, such
path must exist. The function can be constructed by sorting graph vertices [Kah62]
topologically. Tag each vertex with its value of g. Finally, remove the vertices vin

and vout. The result is a set of vertices tagged with values from g.

3. Construct specification in the language of combinators as follows:

⇣
(v[0]1 || v[0]2 || . . . || v[0]k0

) . . (v[1]1 || . . . || v[1]k1
) (v[d]1 || v[d]2 || . . . || v[d]kd

)
⌘
\,

where v[j]i are the vertices that have the tag j. Here we assume that a vertex repres-
ents the name of a particular service.

The algorithm breaks ties arbitrarily in the first step, which means that representation
of the service network in the language of combinators may not be unique.

Example 4.4.1. Consider the service-based application in Figure 2.2b. Assuming that the
Accessories service is available, the program specifying the application in the language
of combinators is the following:

(Components || Accessories) .. Bicycle Shop .. Customer

1 In our work it is not important whether the subgraph is a maximum acyclic subgraph or not. However,
in order to obtain a simple and clear algebraic representation of the network, the minimal number of
wrap-around edges should be preferred.

52
CHAPTER 4. DESCRIPTION OF SERVICE-BASED APPLICATION IN LANGUAGE OF

COMBINATORS

The basic types associated with each service are the following:

Components : ({}, {a : taout}, ∆)

Accessories : ({}, {b : tbout}, ∆)

Bicycle Shop : ({a : tain , b : tbin}, {c : tcout}, ∆)

Customer : ({c : tcin}, {}, ∆)

a, b and c are names of the ports. The ports of connected services are explicitly called the
same if they need to be connected by a communication channel. tain , taout , tbin , tbout , tcin ,
tcout are terms that are defined in the MDL:

taout = (:comp: {price: int, frame: int}:)

tain = (:comp(x): {price: int |p#}:)

tbout = (::)

tbin = (:acc(y): {price: int |q#}:)

tcout = (:bike(x): {price: int |p#}, acc(y): {price: int |q#}:)

tcin = (:bike: {price: int, frame: int}:)

The terms represent service interfaces, that is the data format that the service can receive
and produce.

The type derivation tree for the service program is the following (Comp, Acc, Shop
and Cust are used as shorthands for Components, Accessories, Bicycle Shop and
Customer services, respectively):

Comp

Comp : ({}, {a : taout}, ∆)
Acc

Acc : ({}, {b : tbout}, ∆)

Comp || Acc : ({}, {a : taout , b : tbout}, ∆)

Shop

Shop : ({a : tain , b : tbin}, {c : tcout}, ∆)

(Comp || Acc) . . Shop : ({}, {c : tcout}, {taout v tain , tbout v tbin})
Cust

Cust : ({c : tcin}, {}, ∆)

((Comp || Acc) . . Shop) . . Cust : ({}, {}, {taout v tain , tbout v tbin , tcout v tcin})

As a result, the following set of constraints for the service network is derived from a
program:

C = {taout v tain , tbout v tbin , tcout v tcin}.

4

4.5 Subnetworks

The language that specifies service networks is recursively closed. Indeed, a network
that is constructed using the combinators has the same form as the networks that it is

4.5 SUBNETWORKS 53

composed from. Using this property we can naturally introduce an encapsulation mech-
anism to the service networks. Not only individual services can be used for constructing
a network, but also networks can be used for constructing more complex networks.

Furthermore, when a network designer uses combinators to construct a new network,
they do not need to be aware of structure of the networks that are used as building blocks.
As a result, different programmers can develop various subnetworks without interfering
their concerns.

Also, a runtime job scheduler can benefit from hierarchical structuring of the network
while it maps subnetworks to the nodes of a distributed platform. There has been some
research on topology-aware communication on distributed platforms [RGB+11, SPK+12,
HS11]. Typically, the scheduler uses various heuristics for allocating tasks that belong to
one subnetwork to a single core. As a result, time and memory locality are improved.

Providing a mechanism for supporting subnetworks in the language of combinators is
not a topic of particular interest in this thesis. On the other hand, those who are interested
in the language extension can be referred to S-Net language [GSS10], which provides
support for hierarchical networks. Hierarchical networks in the language of combinators
can be supported in the same way.

54
CHAPTER 4. DESCRIPTION OF SERVICE-BASED APPLICATION IN LANGUAGE OF

COMBINATORS

Chapter 5

Constraint Satisfaction Problem
for Web Services

We defined the language of combinators that specifies the service network in an algebraic
form. Furthermore, we defined a type system on top of the language. The type of a
network contains a set of communication constraints (one constraint for each commu-
nication channel). The constraints must ensure the compatibility of data formats. In
this chapter we formally introduce a constraint satisfaction problem for web services
(CSP-WS), which is the main contribution of this thesis. The algorithm for solving the
CSP-WS is discussed in the following sections.

5.1 CSP-WS Definition

The constraint is a relation on the MDL terms. We define a substitution as a syntactic
transformation that replaces b-variables with Boolean values and t-variables with ground
or semi-ground terms in the MDL terms.

Definition 5.1.1 (Substitution). Let g be a guard, t be a term, k = |Vb(g) [V

b(t)|, and
~f = (f1, . . . , fk) be a vector of b-variables contained in g and t, and ~v = (v1, . . . , vk)

be a vector of term variables contained in t. Then for any vector of Boolean values
~b = (b1, . . . , bk) and a vector of terms~s = (s1, . . . , sk)

1. g[~f /~b] denotes a Boolean value (true or false), which is obtained as a result of the
simultaneous replacement and evaluation of fi with bi for each 1 i k;

2. t[~f /~b] denotes the vector obtained as a result of the simultaneous replacement of fi

with bi for each 1 i k;

3. t[~v/~s] denotes the vector obtained as a result of the simultaneous replacement of vi

with si for each 1 i k;

56 CHAPTER 5. CONSTRAINT SATISFACTION PROBLEM FOR WEB SERVICES

4. t[~f /~b,~v/~s] is a shortcut for t[~f /~b][~v/~s].

In the following we regard a service-based application as a network N, and C is the
set of constraints that is contained in the type for N.

Given the set of constraints C, we define the set of b-variables as

V

b(C) = [

tvt02C
V

b(t),

the sets of of down-coerced and up-coerced t-variables as

V

#(C) = [

tvt02C
V

#(t) [and V

"(C) = [

tvt02C
V

"(t).

In the following for each set of constraints S such that |Vb(S)| = `, |V"(S)| = m and
|V#(S)| = n we use ~f = (f1, . . . , f`) to denote the vector of b-variables contained in S,
~v" = (v"1, . . . , v"m) to denote the vector of up-coerced t-variables and ~v# = (v#1, . . . , v#n) to
denote the vector of down-coerced t-variables.

Let C be a set of constraints such that |Vb(C)| = `, |V#(C)| = m, |V"(S)| = n and for
some `, m, n � 0. Now we can define a CSP-WS formally as follows.

Definition 5.1.2 (CSP-WS). Find a vector of Boolean values~b = (b1, . . . , b`) and vectors
of ground terms~t# = (t#1, . . . , t#m),~t" = (t"1, . . . , t"n), such that for each t1 v t2 2 C

t1[~f /~b,~v#/~t#,~v"/~t"] v t2[~f /~b,~v#/~t#,~v"/~t"].

The tuple (~b,~t#,~t") is called a solution.

A solution to the CSP-WS is not unique. In the context of web services, multiple
solutions correspond to multiple interface configurations in a service-based application.

5.2 CSP-WS Solution Discussion

Definition 5.1.2 brings us to the most challenging problem that is solved in this thesis.
We need a mechanism that solves the CSP-WS in order to demonstrate automatic recon-
ciliation of the MDL interfaces. Below we discuss potential approaches to solving the
problem.

The CSP-WS is solved if for all b-variables and t-variables we find values that satisfy
constraints in C. The domain of b-variables is finite, so we can apply brute-force search
(in the worst case) or SAT solver (in the best case) to find values for the b-variables. On

5.2 CSP-WS SOLUTION DISCUSSION 57

the other hand, the domain of t-variables is infinite. Therefore, we can’t use exhaustive
search, which does not terminate over an infinite number of cases.

No universal approach for solving CSPs exist [Kum92]. Many of the problems can
be solved using SMT solvers, which support a set of (typically decidable) theories. We
considered applicability of some of the supported theories for solving the CSP-WS:

Propositional logic. Clearly, due to presence of b-variables in the MDL, propositional
logic can be used to solve constraints for b-variables. Boolean SAT is an NP-
complete problem. This a lower complexity bound of an algorithm that solves
the CSP-WS providing that no other knowledge about the structure of the input
constraints is given.

Equality logic and uninterpreted functions. We found out that equality logic and un-
interpreted functions cannot be used for representing the MDL terms. We can
use the uninterpreted functions and constants to represent atomic terms, such as
symbols or integers, and tuples. However, uninterpreted functions fail to encode
terms that support flow inheritance based on a set-inclusion (records and choices).
Furthermore, equality logic fails to specify the seniority relation, which encodes an
inequality.

Bit vectors. A bit vector be can used to represent a finite set of elements: a 1-bit indicates
that an element from the finite domain is present in the set and a 0-bit indicates that
the set lacks the element. In the MDL, presence of an element with a certain label in
a record or choice can be represented as a bit in a bit vector. However, bit vectors
cannot encode all properties of records and choices. First, all elements of a term are
parametrised by a guard (a Boolean expression), which is impossible to represent
in a bit vector. Moreover, hierarchical structuring of bit vectors is not supported.
Therefore, support for records and choices that may contain each other as subterms
is impossible.

To sum up, theories that are commonly supported in SMT solvers fail to encode the
MDL terms. To overcome the limitations, we could extend SMT-LIB [BFT10]1. However,
this requires too much efforts dictated by non-trivial definition of well-formedness and
the seniority relation for records, choices and switches, in particular. This would require
a similar amount of efforts as designing an algorithm and a solver that is indented and
tuned to solve specifically the CSP-WS. Finally, we decided to design a new algorithm
and develop a solver that solves the CSP-WS by taking advantage of a particular structure
of the problem.

1 A language used for formal specification of constraints in SMT solvers (such as Z3, for instance [DMB08]).

58 CHAPTER 5. CONSTRAINT SATISFACTION PROBLEM FOR WEB SERVICES

[Kil73] presented an algorithm for global analysis of program entities that are struc-
tured in a lattice. The algorithm is widely used for data-flow analysis and optimisations
in compilers. The algorithm finds values for terms (expressions, registers, basic blocks,
etc.) that satisfy a set of given constraints. The algorithm starts with the most general
approximation of term variable values, which are the top or the bottom elements of the
lattice. By iteratively applying an iterated function to approximations that are obtained
in previous steps, the algorithm converges to a solution for the CSP.

Unfortunately, we cannot directly apply the algorithm from [Kil73] to solve the CSP-
WS due to two challenges that arise from the structure of the MDL:

1. The terms are structured in two semilattices, the top one and the bottom one, instead
of a single lattice. Moreover, the terms of both semilattices may contain each other
as subterms. This makes application of the fixed-point algorithm non-obvious.
Furthermore, it is unclear whether such algorithm can lead to a correct solution or
not.

For example, consider the following constraint:

{a: p"} v {a: (:x: q# |r":) |s#}.

p" and r" are up-coerced variables that are bounded by the bottom term none in
the meet semilattice. The fixed-point algorithm can iteratively and monotonically
refine a solution taking none as initial and the most general approximation. On
the other hand, q# and s# are down-coerced variables that are bounded by the top
term nil in the join semilattice. The algorithm should refine a solution starting
from nil, which is the most general approximation for down-coerced terms. In this
example, down-corced terms contain up-coerced terms as subterms and vice versa.
Therefore, the algorithm must be carefully designed in a way that the values of
the down-coerced variables are never coerced up and the values of the up-coerced
variables are never coerced down (hence the name of the term categories).

2. The terms may contain b-variables. In addition to values for t-variables, values of b-
variables must be found as part of a solution, which brings additional computational
complexity to the problem.

For example, in a relation

p# v {a(x): int, b(y): float}

the value of p# may be equal to nil, {a: int}, {b: int} or {a: int, b: float} de-
pending on instantiations of x and y. In general, there are 2` ways to instantiate

5.2 CSP-WS SOLUTION DISCUSSION 59

b-variables, where ` is the total number of b-variables. Solving the CSP-WS for
each instantiation is inefficient.

In Chapter 6 we present a fixed-point algorithm that solves the CSP-WS assuming
that all b-variables are instantiated. We extend the meet and join semilattices to complete
lattices by introducing the bottom element to the meet semilattice and the top element to
the join semilattice. This allows us to apply the algorithm from [Kil73] to our problem. In
Chapter 7 we improve the algorithm and make it applicable to the CSP-WS problem that
is allowed to contain b-variables.

This is a simplified version of the algorithm presented in Chapter 7, which finds
values for b-variables using a SAT solver.

60 CHAPTER 5. CONSTRAINT SATISFACTION PROBLEM FOR WEB SERVICES

Chapter 6

Solving the CSP-WS
Without Boolean Variables

In the previous chapter we formally defined the constraint satisfaction problem for web
services and then discussed approaches for solving the problem. In this chapter we design
a modification of the fixed-point algorithm from [Kil73] for solving the CSP-WS. As the
first step, we consider the CSP-WS when all b-variables are instantiated. This allows
us to focus on the resolution of t-variables. Furthermore, we extend the semilattices to
complete lattices in Section 6.2, because the fixed-point algorithm requires terms to be
structured in a lattice or a bounded semilattice. In Section 6.3, we define an iterated
function. In Section 6.5 we present the solution algorithm and prove that it converges to
a solution for the CSP-WS.

6.1 Idea of the Iterative Algorithm

The algorithm presented in Section 6.5 finds a solution for the CSP-WS under an as-
sumption that all b-variables in the constraints are instantiated. The algorithm mono-
tonically traverses the join semilattice (T #m ,v) and the meet semilattice (T "n ,v), where
m = |V#(C)| and n = |V"(C)|. At the end, it either converges to the solution or returns
Unsat if no solution exists.

As the first step, we extend the semilattices with two additional elements ? and >,
each of them representing lack of a solution (see Section 6.2). Such elements are often
used in data-flow algorithms, such as algorithm for constraint propagation [CCKT86], for
example. The algorithm operates on the extended semilattices. It performs the following
steps:

62 CHAPTER 6. SOLVING THE CSP-WS WITHOUT BOOLEAN VARIABLES

1. Select the initial approximation (the iteration i = 0) of the solution as

(~a#i ,~a"i) = ((nil, . . . , nil), (none, . . . , none)).

(nil, . . . , nil) is the top element of the join semilattice (T #m ,v). Similarly, (none, . . . ,
none) is the bottom element of the meet semilattice (T "n ,v).

2. Compute the next approximation (~a#i+1,~a"i+1) (using an iterated function IFC intro-
duced in Section 6.3), such that

~a#i+1 v~a#i and~a"i v~a"i+1, (6.1)

and for every constraint t1 v t2 2 C

t1[~v#/~a#2,~v"/~a"1] v t2[~v#/~a#1,~v"/~a"2]. (6.2)

As we show in Lemma 6.4.1, these conditions are enough to show monotonicity of
the approximations.

3. Repeat the step 2 if the chain of approximations has not converged to the solution
(see termination proof inTheorem 6.5.1). The solution is found if

(~a#i+1,~a"i+1) = (~a#i ,~a"i)

and
t1[~v#/~a#i+1,~v"/~a"i] v t2[~v#/~a#i ,~v"/~a"i+1]

The iterated function IFC returns Unsat if a given constraint does not match one
of the predefined constraints from Sections 6.3.1, 6.3.2 and 6.3.3. Otherwise, if
constraints are satisfiable, the last approximation (~a#i ,~a"i) is a solution.

6.2 Extension of the Semilattices

The original algorithm in [Kil73] terminates only if terms are structured in a lattice or a
bounded semilattice. Since the MDL semilattices are unbounded, we extend them with
two terms, which transform the semilattices to complete lattices.

Lemma 6.2.1 (Finite height of the semilattices). If the set of record and choice labels in T
is finite, then the semilattices (T #,v) and (T ",v) have a finite height.

Proof. Proof by contradiction.

6.2 EXTENSION OF THE SEMILATTICES 63

Assume that the semilattice (T #,v) (the proof for (T ",v) is equivalent) has an
infinite height if the set of labels in T is finite. Then there exists an infinite sequence of
terms T # 3 t1, t2, . . . , such that t1 w t2 w

For each category of terms we show that it cannot infinitely expand.

Symbols. According to Definition 3.2.3, for any symbol s no other term t (t 6⌘ s) exists,
such that t v s. Therefore, s is the bottom term of the semilattice.

Tuples. According to Definition 3.2.3, a tuple can expand only if at least one of its
subterms expands. The symbols cannot inifinitely expand, therefore, the tuples can
infinitely expand only if records or choices can infinitely expand.

Records. According to Definition 3.2.3, a record can expand in one of two cases: 1) either
elements with new labels are added to the records; or 2) at least one of record’s
subterms expands. Infinite expansion of the record with elements is impossible,
because the set of labels is finite. Therefore, infinite expansion of records is possible
only if choices can infinitely expand.

Choices. Similarly to records, we can show that infinite expansion of choices is im-
possible.

Since both semilattices have a finite height (given that the number of labels is finite),
we can convert the semilattices to the lattices by adding the top and the bottom elements.

We extend the set T #m with an element ?:

eT #m = T #m [{?}.

Symmetrically, we extend the set T "n with an element >:

eT "n = T "n [{>}.

? is defined as the bottom element of the meet semilattice:

? v~a# for any~a# 2 eT #m .

> is defined as the top element of the join semilattice, that is

~a" v > for any~a" 2 eT "n .

64 CHAPTER 6. SOLVING THE CSP-WS WITHOUT BOOLEAN VARIABLES

Introduction of new elements ? and > extends the join and the meet semilattices to
complete lattices (eT #m ,v) and (eT "n ,v).
? or > are used to encode Unsat. Theorem 6.5.5 proves that~a# = ? or~a" = > only if

no solution for the CSP-WS exists.

6.3 Iterated Function

We introduce the iterated function IF : C ⇥ eT #m ⇥ eT "n ! eT #m ⇥ eT "n . Given a set of con-
straints and an approximation at some iteration i, the iterated function computes the new
approximation that satisfies (6.1) and (6.2).

According to [Kil73], the iterated function has the homomorphism property if for any
constraint t1 v t2 and approximations~a#1,~a"1,~a#2,~a"2,~a0#1 ,~a0"1 ,~a0#2 and~a0"2 , such that

IF(t1 v t2,~a#1,~a"1) = (~a0#1 ,~a0"1),

IF(t1 v t2,~a#2,~a"2) = (~a0#2 ,~a0"2),

the following equation holds:

IF(t1 v t2,~a#1 u~a#2,~a"1 t~a"2) = (~a0#1 u~a0#2 ,~a0"1 t~a0"2).

In order to show the homomorphism property it is enough to show that IF is mono-
tonic (Lemma 6.4.1) and returns the tightest possible approximation (Lemma 6.5.3). The
former is important for showing termination of the algorithm (Theorem 6.5.1); the latter
is important for proving correctness of the algorithm (Lemma 6.5.4 and Theorem 6.5.5).

We define IF for all categories of terms, except for a switch. In the absence of b-
variables, a switch can always be converted to a term of different category in the canonical
form (see the definition on page 35).

Based on Definition 3.2.3, we split constraints into two groups: satisfiable and unsatis-
fiable. If a constraint is unsatisfiable, the algorithm returns a pair of the lattices’ elements
(?,>), which represents Unsat. Otherwise, we classify satisfiable constraints into four
categories. From Definition 3.2.3 it follows that a constraint is satisfiable iff both terms
are eiher symbols, tuples, records or choices. No solution exists for constraints on terms
that belong two different categories (unless one the terms is nil). Consequently, we define
IF for each of the constraint categories in Sections 6.3.1, 6.3.2 and 6.3.3. Other constraints,
which are not covered in the subsections, are considered unsatisfiable.

6.3 ITERATED FUNCTION 65

We use the following notation in the rest of the chapter. Let

~v# = (v1, . . . , vm),

~v" = (v1, . . . , vn),

~a# = (a1, . . . , am)

~a" = (a1, . . . , an).

6.3.1 Iterated Function for Constraints on Atomic Terms and
Variables

In this section we define the iterated function for the basic constraints. In such constraints
both terms are either symbols, t-variables, nil or none. Constraints that are presented in
other sections are always recursively reduced to the basic constraints.

• Assume a constraint of the form t v nil, where t is a down-coerced term, is given.

The given approximation (~a#,~a") already satisfies the constraint:

IF(t v nil,~a#,~a") = (~a#,~a").

• Assume a constraint of the form none v t, where t is an up-coerced term, is given.

The given approximation (~a#,~a") already satisfies the constraint:

IF(none v t,~a#,~a") = (~a#,~a").

• Assume a constraint of the form t v t is given.

The given approximation (~a#,~a") already satisfies the constraint:

IF(t v t,~a#,~a") = (~a#,~a").

• Assume a constraint of the form t v v`, where t is a down-coerced term and v` is a
down-coerced variable, is given. Let a` be the approximation for v`.

The constraint can be reduced to the constraint with a ground term instead of v`.
This is achieved by applying the substitution v`[~v#/~a#]:

IF(t v v`,~a#,~a") = IF(t v v`[~v#/~a#],~a#,~a").

• Assume a constraint of the form v` v t, where t is an up-coerced term, is given.

66 CHAPTER 6. SOLVING THE CSP-WS WITHOUT BOOLEAN VARIABLES

This case is dual to the previous one. Specifically, the constraint can be reduced to
the constraint with a ground term instead of v`:

IF(v` v t,~a#,~a") = IF(v`[~v"/~a"] v t,~a#,~a").

• Assume a constraint v` v t, where v` is a down-coerced variable and t is a down-
coerced term, is given.

In this case, the value for v` is bounded by the term t[~v#/~a#,~v"/~a"]. In other words,
the value is below the term that is obtained by substituting variables in t with the
values from the current approximation. Furthermore, the value for v` that is the
closest to t[~v#/~a#,~v"/~a"] is preferred. As a result, the new approximation is com-
puted as the greatest lower bound of t[~v#/~a#,~v"/~a"] and the current approximation
a`:1

IF(v` v t,~a#,~a") = ((a1, . . . , a` u t[~v#/~a#,~v"/~a"], . . . , am),~a"). (6.3)

• Assume a constraint t v v"` , where t is an up-coerced term and v"` is an up-coerced
variable, are given.

This case is symmetric to the previous one. The new approximation for v"` is com-
puted as the least upper bound of the current approximation a` and t[~v#/~a#,~v"/~a"]:

IF(t v v"` ,~a#,~a") = (~a#, (a1, . . . , a` t t[~v#/~a#,~v"/~a"], . . . , an)). (6.4)

Example 6.3.1. In this example, the current approximation for ~v# = (v1) is~a#i = (int)

and the set of values for up-coerced variables is empty. nil in the right part of the constraint
declares that the consumer can accept a message of any format. Therefore, the existing
approximation int for the variable v#1 already satisfies the constraint:

IF(v1 v nil, int, ()) = ((int), ()).

4

Example 6.3.2. A constraint, where the left part and the right part is the same symbol, is
always satisfied regardless of the current approximation, like in this example:

IF(string v string, (int), ()) = ((int), ()).

4
1 The correctness proof of the algorithm (Theorem 6.5.5) relies on this property.

6.3 ITERATED FUNCTION 67

Example 6.3.3. A constraint for down-coerced terms, where the right part is a variable, is
reduced by substitution to the constraint with the right part as a ground term:

IF(int v v1, (int), ()) = IF(int v int, (int), ()) = ((int), ()).

4
Example 6.3.4. Consider the example of a constraint for up-coerced terms with up-
coerced variable in the left part. The current approximation for the vector ~v# = (v1)

is~a# = (int) and the approximation for the vector ~v" = (v1) is~a" = ((:a: int:)). The
example is symmetric to Example 6.3.3. By substitution, the constraint is reduced to
the constraint with ground term in the left part (note that the right part may contain
down-coerced variables as subterms):

IF(v1 v (:a: v1:), (int), ((:a: int:))) =

IF((:a: int:) v (:a: v1:), (int), ((:a: int:))) =

IF((:a: int:) v (:a: int:), (int), ((:a: int:))) =

((int), ((:a: int:))).

4
Example 6.3.5. Assume a constraint for records v1 v {a: int} and the approximation
a# = ({a: nil, b: int}) are given, where v# = (v1). The new approximation for v1

is computed as the greatest lower bound of the current approximation and the term
{a: int}:

IF(v1 v {a: int}, ({a: nil, b: int}), ()) =
(({a: nil, b: int} u {a: int}), ()) =

(({a: int, b: int}), ()).

4
Example 6.3.6. Consider the constraint for choices (:a: int:) v v1 and the approximation
a" = ((:a: nil, b: int:)) for a vector v" = (v1) are given. The new approximation for v1 is
computed as the least upper bound of the current approximation and the grounded term:

IF((:a: int:) v v1, (), ((:a: nil, b: int:))) =

(((:a: nil, b: int:) t (:a: int:)), ()) =

(((:a: int, b: int:)), ()).

68 CHAPTER 6. SOLVING THE CSP-WS WITHOUT BOOLEAN VARIABLES

4

6.3.2 Iterated Function for Constraint on Tuples

In the second category of constraints, both terms are tuples. The constraints on tuples are
satisfiable only if the constraints on the tuple subterms are satisfiable, so these constraints
are always reduced to simpler constraints.

Assume a constraint t1 v t2, where t1 = (t1
1 . . . t1

k) and t2 = (t2
1 . . . t2

k), is given.
The constraint holds when the constraints for the corresponding nested terms hold as

well:
IF((t1

1 . . . t1
k) v (t2

1 . . . t2
k),~a

#,~a") = (
l

1ik

~ai
#,

G

1ik
~ai
"), (6.5)

where (~ai
#,~ai

") = IF(t1
i v t2

i ,~a#,~a").

Example 6.3.7. Consider a constraint on tuples (int v1) v (v2 string) and approxim-
ations a# = (nil, nil) and a" = () for vectors v# = (v1, v2) and v" = (), respectively, are
given. Then the next approximation is computed in the following way:

IF((int v1) v (v2 string), (nil, nil), ()) = ((nil, string), ())

4

6.3.3 Iterated Function for Constraints on Records

This subsection presents the iterated function for constraints where records are present.

• Assume a constraint t1 v t2, where t1 = {l1
1

: t1
1, . . . , l1

d

: t1
d} and t2 = {l2

1

: t2
1, . . . , l2

e

: t2
e}

(no tail variables), is given.

The constraint holds if for all j (1 j e), there exists i (1 i d) such that l1
i

= l

2

j

and t1
i v t2

j . Therefore, IF for the records is defined as follows:

IF({l1
1

: t1
1, . . . , l1

d

: t1
d} v {l2

1

: t2
1, . . . , l2

e

: t2
e},~a#,~a") = (

l

1ke

~ak
#,

G

1ke
~ak
"), (6.6)

where

(~ak
#, ~ak

") =

8
<

:
IF(t1

i v t2
j ,~a#,~a") if 9i : l1

i

= l

2

j

(?,>) otherwise.

• Consider a constraint t1 v t2, where t1 = {l1
1

: t1
1, . . . , l1

d

: t1
d |v`}, t2 = {l2

1

: t2
1, . . . , l2

e

: t2
e},

v` is a down-coerced variable and a` is an approximation of v`.

6.3 ITERATED FUNCTION 69

The constraint holds if for every element for every element l2
j

: t2
j of the record t2 one

of the following holds:

1. there exists an element l1
i

: t1
i in t1 such that l1

i

= l

2

j

and t1
i v t2

j ;
2. a coercion a` u {l2

j

: t2
j } exists.

Formally, IF is defined as follows:

IF({l1
1

: t1
1, . . . , l1

d

: t1
d |v`} v {l2

1

: t2
1, . . . , l2

e

: t2
e},~a#,~a") = (

l

1ke

~ak
#,

G

1ke
~ak
"), (6.7)

where

(~ak
#, ~ak

") =

8
<

:
IF(t1

i v t2
j ,~a#,~a") if 9i : l1

i

= l

2

j

((a1, . . . , a` u t2
j [~v
#/~a#,~v"/~a"], a`+1, . . . , am),~a") otherwise.

• Consider a constraint t1 v t2, where t1 is a record {l1
1

: t1
1, . . . , l1

d

: t1
d} or a record

{l1
1

: t1
1, . . . , l1

d

: t1
d |v`}, and t2 is a record {l2

1

: t2
1, . . . , l2

e

: t2
e |vr}.

Using substitution the constraint can be reduces to one of the previous constraints
as follows:

IF(t1 v t2,~a#,~a") = IF(t1 v t2[vr/ar],~a#,~a"), (6.8)

where ar is an approximation of vr.

Example 6.3.8. Consider a constraint for records and the approximations v# = (a1) =

(nil) and v" = () for the variables v# = (v1) and v" = (), respectively:

IF({a: int, b: v1, c: int} v {a: nil, b: string}, (nil), ()) = ((nilu string), ())
= ((string), ()) (6.9)

4

Example 6.3.9. Consider the constraint for records {a: v1 |v2} v {a: string, b: int},
given the approximation a# = (nil, {c: int}) and a" = () for variables v# = (v1, v2) and
v" = (), respectively:

IF({a: v1 |v2} v {a: string, b: int}, (nil, {c: int}), ()) =
((string, {c: int} u {b: int}), ()) =

((string, {b: int, c: int}), ())

70 CHAPTER 6. SOLVING THE CSP-WS WITHOUT BOOLEAN VARIABLES

Note that v2 cannot contain an element with the label a. Otherwise, the well-formed term
for {a: v1 |v2} does not exist and, therefore, the constraint is unsatisfiable. 4

6.3.4 Iterated Function for Constraints on Choices

The seniority relation for choices is symmetric to the seniority relation for records. There-
fore, we define IF for choices similarly to IF for records.

• Assume a constraint t1 v t2, where t1 = (:l1
1

: t1
1, . . . , l1

d

: t1
d:) and t2 = (:l2

1

: t2
1, . . . , l2

e

: t2
e :)

(no tail variables), is given.

The constraint holds if for all i (1 i d), there exists j (1 j e) such that l1
i

= l

2

j

and t1
i v t2

j . Therefore, IF for the records is defined as follows:

IF((:l1
1

: t1
1, . . . , l1

d

: t1
d:) v (:l2

1

: t2
1, . . . , l2

e

: t2
e :),~a#,~a") = (

l

1kd

~ak
#,

G

1kd
~ak
"), (6.10)

where

(~ak
#, ~ak

") =

8
<

:
IF(t1

i v t2
j ,~a#,~a") if 9j : l1

i

= l

2

j

(?,>) otherwise.

• Consider a constraint t1 v t2, where t1 = (:l1
1

: t1
1, . . . , l1

d

: t1
d:), t2 = (:l2

1

: t2
1, . . . , l2

e

: t2
e |v`:),

and a` is an approximation of v`.

The constraint holds if for every element for every element l1
i

: t1
i of the choice t1 one

of the following holds:

1. there exists an element l2
j

: t2
j in t2 such that l1

i

= l

2

j

and t1
i v t2

j ;
2. a coercion a` t {l1

i

: t1
i } exists.

Formally, IF is defined as follows:

IF((:l1
1

: t1
1, . . . , l1

d

: t1
d |v`:) v (:l2

1

: t2
1, . . . , l2

e

: t2
e :),~a#,~a") = (

l

1kd

~ak
#,

G

1kd
~ak
"), (6.11)

where

(~ak
#, ~ak

") =

8
<

:
IF(t1

i v t2
j , ~ak

#, ~ak
") if 9i : l1

i

= l

2

j

(~a#, (a1, . . . , a` t t1
i [~v
#/~a#,~v"/~a"], a`+1, . . . , am)) otherwise.

• Consider a constraint t1 v t2, where t1 is a choice (:l1
1

: t1
1, . . . , l1

d

: t1
d |v`:) and t2 is a

choice (:l2
1

: t2
1, . . . , l2

e

: t2
e :) or (:l2

1

: t2
1, . . . , l2

e

: t2
e |vr:).

6.4 MONOTONICITY OF THE ITERATED FUNCTION 71

Using substitution the constraint can be reduces to one of the previous constraints
as follows:

IF(t1 v t2,~a#,~a") = IF(t1[v`/a`] v t2,~a#,~a"),

where a` is an approximation for v`.

Example 6.3.10. IF can be used to find a solution even for non-trivial constraints, for
instance, those that contain interleaving down-coerced and up-coerced terms. For ex-
ample, consider the constraint where the top-level terms are records that contain choices
as nested subterms:

{f : (:c: int:) |v#1} v {f : v" |v#2},

and the initial approximations for variables ~v# = (v#1, v#2) and ~v" = (v") are~a# = (nil, nil)
and~a" = (none), respectively. Then, according to (6.8)

IF({f : (:c: int:) |v#1} v {f : v" |v#2},~a#,~a") = IF({f : (:c: int:) |v#1} v {f : v"},~a#,~a").

Following (6.7), the ‘nested’ constraint (:c: int:) v v" holds:

IF((:c: int:) v v",~a#,~a") = (~a#, (nonet (:c: int:))) = ((nil, nil), ((:c: int:)).

4

6.4 Monotonicity of the Iterated Function

In this section we show that the function IF is monotonic.

Lemma 6.4.1 (Monotonicity). Let IF(t1 v t2,~a#1,~a"1) = (~̃a#1,~̃a"1) and IF(t1 v t2,~a#2,~a"2) =

(~̃a#2,~̃a"2).
If~a#1 v~a#2 and~a"2 v~a"1, then ~̃a#1 v ~̃a#2 and ~̃a"2 v ~̃a"1.

Monotonicity of IF follows from definition of the function. Indeed, in Eqs. (6.3), (6.5),
(6.6), (6.7), (6.10) and (6.11), the approximations for down-coerced variables can only
coerce down in the lattice eT #m . Similarly, in Eqs. (6.4), (6.5), (6.6), (6.7), (6.10) and (6.11) the
approximations for up-coerced variables can only coerce up in the lattice eT "n .

We define the function IFC as a composition of IF functions that are sequentially
applied to all constraints in C (the order in which IF is applied to the constraints is not
important due to distributivity of the seniority relation):

IFC(~a#,~a") = IF(t|C|1 v t|C|2 , IF(t|C|�1
1 v t|C|�1

2 , . . . , IF(t1
1 v t1

2,~a#,~a") . . .)) (6.12)

72 CHAPTER 6. SOLVING THE CSP-WS WITHOUT BOOLEAN VARIABLES

The sequential composition preserves monotonicity for IFC . In Section 7.5 we tacitly
assume that for arbitrary terms (including those that contain b-variables) the function IFC
is defined in a similar way.

6.5 Fixed-Point Algorithm

We present Algorithm 1 that computes a chain of approximations using the function
IFC . The input for the algorithm is the set of constraints C such that Vb(C) = ∆ (in other
words, terms in C must not contain b-variables). In addition to this, in this section we
formally prove that the algorithm returns the solution if one exists.

Algorithm 1 CSP-WS(C), where V

b(C) = ∆
1: i 0
2: (~a#0,~a"0) ((nil, . . . , nil), (none, . . . , none))
3: repeat
4: i i + 1
5: (~a#i ,~a"i) IFC(~a

#
i�1,~a"i�1)

6: until (~a#i ,~a"i) = (~a#i�1,~a"i�1)

7: if (~a#i ,~a"i) = (?,>) then
8: return Unsat

9: else
10: return (~a#i ,~a"i)
11: end if

We already provided an informal description of Algorithm 1 on page 61. The al-
gorithm sets the initial approximation in Line 2. The algorithm uses IFC to compute
next approximation that satisfies properties (6.1) and (6.2) in Line 5. After each iteration
the termination condition in Line 6 is checked. The algorithm terminates if the series
of approximations has converged to a value (in this case, the value is returned as as a
solution). In fact, IFC always returns the approximation, even if the set of constraints is
unsatisfiable (in case of the latter, (>,?) is returned). This allowed us to create a generic
algorithm for all possible sets of constraints regardless of whether a solution exists or not.

Theorem 6.5.1 (Termination). For any set of constraints C such that Vb(C) = ∆, Algorithm 1
terminates after a finite number of steps.

Proof. IFC is a monotonic function (Lemma 6.4.1) that maps~a#i�1 2 eT #m to~a#i 2 eT #m and
~a"i�1 2 eT "n to ~a"i 2 eT "n , where ~a#i�1 and ~a#i are elements of the lattice (eT #m ,v) such that
~a#i v~a#i�1, and~a"i�1 and~a"i are elements of the lattice (eT "n ,v) such that~a"i�1 v~a"i . Below
we prove that the algorithm iteratively calls IFC until the fixed-point is reached. As a

6.5 FIXED-POINT ALGORITHM 73

result, it terminates after a finite number of steps if both lattices have a finite height
(Lemma 6.2.1).

We prove it by induction on term depth. (eT #m ,v) and (eT "n ,v) have a finite height if
the semilattices (T #,v) and (T ",v) have a finite height too.

Consider the semilattice (T #,v) (the proof for (T ",v) is similar) for each of term
categories (that is when an element of the semilattice is either a symbol, a tuple or a
record on the top-level). We rely on the property that follows from the seniority relation
(see Definition 3.2.3 and illustration in Figure 3.1): the term category is constant and
cannot be changed unless the term is nil.

Symbol. The semilattice (T #,v) for a symbol consists of two elements (nil and the
symbol itself). The symbol does not contain nested terms and, therefore, the
semilattice for the symbol has a finite height.

Tuple. The ‘width’ (the number of elements) of a tuple is constant. Therefore, the tuple
cannot expand (by expansion we mean adding new elements to the tuple). The
height of the semilattice for the tuple is finite providing that the semilattices for its
nested terms is finite.

Record. For any given C the size of a record can only expand by adding elements with
labels that are not yet present in the record. The set of labels in C is finite and the
algorithm does not generate new labels. Therefore, the record can expand only a
finite number of times. The height of the semilattice for the record is finite providing
that the semilattices for its nested terms is finite.

The case for a choice term is considered similarly to the one for a record.
As a result, the semilattices (T #,v) and (T ",v) have a finite height. Therefore, the

lattices (eT #m ,v) and (eT "n ,v) have a finite height too.

Next we introduce lemmas that are required for showing the correctness of Al-
gorithm 1.

Substitution of variables with ground terms is a monotonic function. Below we prove
that the substitution of down-coerced variables is a decreasing function. Similarly we
can prove that the substitution of up-coerced variables is an increasing function.

Lemma 6.5.2 (Substitution monotonicity). Let t be a term such that |Vb(t)| = ∆, ~v# =
(v1, . . . , vk) be a vector of down-coerced variables in t, and ~s1

= (s1
1, . . . , s1

k) and ~s2
=

(s2
1, . . . , s2

k) be vectors of down-coerced ground terms such that ~s1
v ~s2

#. Then

t[~v#/~s1
#] v t[~v#/~s2

#].

74 CHAPTER 6. SOLVING THE CSP-WS WITHOUT BOOLEAN VARIABLES

Proof. Substitution monotonicity follows from the structure of the seniority relation. Any
term is covariant with respect to its subterms (see Definition 3.2.3).

In general, subsitution monotonicity is not guaranteed by a term algebra. Assume that
we extend the MDL with a function term t1 ! t2, and the seniority relation for function
terms is defined as follows:

t1
1 ! t1

2 v t2
1 ! t2

2 if t2
1 v t1

1 and t1
2 v t2

2.

Due to contravariance of t1
1 and t2

1, the substitution monotonicity for function terms does
not hold.

The next lemma states that the function IF produces the tightest possible approxima-
tion of a solution. Furthermore, such approximation is unique.

Lemma 6.5.3. Assume a constraint t1 v t2 and approximations (~a#1,~a"1) and (~a#2,~a"2) such
that IF(t1 v t2,~a#1,~a"1) = (~a#2,~a"2) are given. If

t1[~v#/~a#2,~v"/~a"1] v t2[~v#/~a#1,~v"/~a"2],

then:

1. (Tightness) No approximation (~a#3,~a"3) exists such that (~a#3,~a"3) 6= (~a#2,~a"2),~a
#
2 v ~a#3,

~a"3 v~a"2 and
t1[~v#/~a#3,~v"/~a"1] v t2[~v#/~a#1,~v"/~a"3]. (6.13)

2. (Uniqueness) For any other approximation (~̃a#2,~̃a"2) such that

t1[~v#/~̃a#2,~v"/~a"1] v t2[~v#/~a#1,~v"/~̃a"2], (6.14)

there exists (~̃a#3,~̃a"3) such that (~̃a#2,~̃a"2) 6= (~̃a#3,~̃a"3) and

t1[~v#/~̃a#3,~v"/~a"1] v t2[~v#/~a#1,~v"/~̃a"3].

Proof. 1. By the definition of the iterated function in Section 6.3, the function IF makes
a coercion of the approximation (~a#1,~a"1) only if (~a#1,~a"1) is not a solution and the
coercion is required for satisfaction of t1 v t2. As a result, the function produces
a coerced (~a#2,~a"2). The approximation (~a#3,~a"3), such that (6.13) holds, would exist
only if IF performed excessive coercions, which we avoid in the definition of IF.

2. The uniqueness of (~a#2,~a"2) follows from the definition of the seniority relation.

6.5 FIXED-POINT ALGORITHM 75

(nil, . . . , nil)

?

~s#1 =~s#

~s#2

(a) the lattice (eT #m ,v)

>

(none, . . . , none)

~s"2 ~s"1
~s"

(b) the lattice (eT "n ,v)

Figure 6.1: (~s#1,~s"1) and (~s#2,~s"2) are fixed points of IFC in the lattices (eT #m ,v) and (eT "n ,v).
By Knaster-Tarski theorem, the set of the fixed points form lattices too. Lemma 6.5.4
states that the chain of approximations (the dashed path) converges to the greatest fixed
point~s# in (eT #m ,v) and the least fixed point~s" in (eT "n ,v).

(nil, . . . , nil)

?

~s#
~̃s# ~a#i�1

Figure 6.2: Illustration of the reachability proof in Lemma 6.5.4. It is proved by contradic-
tion that a chain of approximations converges to the greatest fixed point~s#. The chain
of approximations would converge to some other fixed point ~̃s# only if IFC generated an
approximation, which is not the ‘tightest’. The latter contradicts Lemma 6.5.3.

Since IF produces the tightest approximation, IFC produces the tightest approximation
too, which follows from the structure of IFC (Eq. (6.12)).

Lemma 6.5.4. Assume a set of constraints C, Vb(C) = ∆, is given. Let for k > 0

(~a#0,~a"0), . . . , (~a#k ,~a"k)

be a chain of approximations such that (~a#i ,~a"i) = IFC(~a
#
i�1,~a"i�1) for any 0 < i k, and

~a#0 = (nil, . . . , nil) and~a"0 = (none, . . . , none). Then for any fixed-point (~̃s#,~̃s")

~̃s# v~a#k and~a"k v ~̃s".

Proof. The proof consists of two parts. First, we prove that a fixed-point (~s#,~s") exists,
such that for any fixed point (~̃s#,~̃s"), ~̃s# v ~s# and ~s" v ~̃s". Then we show that IFC

76 CHAPTER 6. SOLVING THE CSP-WS WITHOUT BOOLEAN VARIABLES

converges to (~s#,~s"), that is (~a#k ,~a"k) = (~s#,~s").

Existence (eT #m ,v) and (eT "n ,v) are complete lattices and IFC is an order-preserving func-
tion. By Knaster-Tarski theorem [T+55], the sets of fixed points of IFC in (eT #m ,v)
and (eT "n ,v) are complete lattices too. Therefore, there exists the fixed-point (~s#,~s")
such that for any fixed-point (~̃s#,~̃s"), ~̃s# v~s# and~s" v ~̃s" (see Figure 6.1).

Reachability Proof by contradiction (see illustration of the proof in Figure 6.2). Assume
that IFC does not converge to (~s#,~s"), that is (~a#k ,~a"k) = (~̃s#,~̃s"), where (~̃s#,~̃s") 6=
(~s#,~s"), and ~̃s# v~s# or~s" v ~̃s". Assume that ~̃s# v~s# (the case~s" v ~̃s" is considered
similarly).

Let (~a#i�1,~a"i�1) be the approximation that precedes (~̃s#,~̃s") in the chain of approx-
imations: IFC(~a

#
i�1,~a"i�1) = (~̃s#,~̃s"). Then for every constraint t1 v t2 2 C

t1[~v#/~̃s#,~v"/~̃a"i�1] v t2[~v#/~a#i�1,~v"/~̃s"].

Since~s# is a fixed point, then

t1[~v#/~s#,~v"/~a"i�1] v t2[~v#/~a#i�1,~v"/~s"].

On the other hand, ~̃s# v~s#. Due to substitution monotonicity (Lemma 6.5.2),

t1[~v#/~̃s#,~v"/~a"i�1] v t1[~v#/~s#,~v"/~a"i�1]. (6.15)

Lemma 6.5.3 states that IFC produces the ‘tightest’ approximation ~̃s#. On the other
hand, from (6.15) it follows that~s# is ‘tighter’ than ~̃s#. Contradiction found.

Therefore, IFC converges to the fixed point~s# and no ~̃s# exists such that~s# v ~̃s#.

Theorem 6.5.5 (Correctness). For any set of constraints C such that Vb(C) = ∆, CSP-WS for
C is unsatisfiable iff Algorithm 1 returns Unsat.

Proof. Proof by contradiction.
()) Let C be an unsatisfiable set of constraints and Algorithm 1 returns (~s#,~s")

such that (~s#,~s") 6= (?,>). (~s#,~s") is the fixed point that contains values satisfying
C. This contradicts the initial hypothesis. Therefore, Algorithm 1 returns Unsat if C is
unsatisfiable.

(() Let Algorithm 1 return Unsat and C has a solution. In this case the chain of
approximations in Algorithm 1 returns (?,>). This is the fixed point and by Lemma 6.5.4

6.5 FIXED-POINT ALGORITHM 77

no other fixed point (~s
#
,~s
"
) exists such that ? v~s# or~s

" v >, which means that no fixed
points apart from (?,>) exists. This contradicts the initial hypothesis. Therefore, C is
unsatisfiable if Algorithm 1 returns Unsat.

78 CHAPTER 6. SOLVING THE CSP-WS WITHOUT BOOLEAN VARIABLES

Chapter 7

CSP-WS Algorithm

In Chapter 6 we presented the algorithm that solves the CSP-WS for the set of constraints
without b-variables. The algorithm iteratively calls the approximation function IFC and
traverses the extended semilattices (eT #m) and (eT "n) until the fixed point is reached. In this
section we extend the algorithm to support constraints that contain b-variables.

By instantiating b-variables in all possible ways, in the worst case we obtain 2l

subproblems from the initial problem, where l is the number of b-variables. Then, each
subproblem can be solved using Algorithm 1. The solution for any of the subproblems is
a solution for the original problem. If all of the subproblems do not have a solution, the
original problem does not have a solution either.

Solving the subproblems independently is inefficient. Instead, we propose to find a
solution to all subproblems simultaneously. For this purpose, we introduce two improve-
ments to Algorithm 1:

• We introduce a set of Boolean constraints that specifies Boolean instantiations
that can potentially lead to a solution. If the set contains a contradiction, then all
instantiations are unsatisfiable. As a result, the algorithm returns Unsat.

• For each t-variable, we store multiple values as terms (in Algorithm 1 only one
value is associated with each t-variable). Each value is associated with a Boolean
constraint that specifies a set of Boolean instantiations. As a result, the algorithm
solves all subproblems simultaneously.

In Section 7.1 we explain how the set of Boolean constraints is generated. Then
we provide the details of the algorithm. We conclude this chapter by providing a sub-
algorithm that transforms a term (union v#1 v#2) to a record that contains elements from
both records v#1 and v#2. A union is a special MDL term that we use for implementing
multiple flow inheritance (see Section 3.5). Multiple flow inheritance allows multiple
messages to be merged into one. Informally, a union is a macro with two records given as

80 CHAPTER 7. CSP-WS ALGORITHM

parameters. It is replaced with a record that is a composition of the parameters after the
CSP-WS is solved.

7.1 Boolean Constraints for CSP-WS

The fixed-point algorithm for solving the CSP-WS iterates over a set of constraints
until the constraints are satisfied or no satisfiable Boolean assignments are left. At
each iteration, the algorithm generates Boolean constraints that eliminate unsatisfiable
assignment. We denote such set of the Boolean constraints as B, B ✓ B. Let SAT(B)
denote the set of Boolean vectors satisfying B.

If t1
1 v t1

2 2 C and t2
1 v t2

2 are some constraints and B1 and B2 are the sets of Boolean
constraints that specify Boolean assignments satisfying t1

1 v t1
2 and t2

1 v t2
2 respectively,

then the set of Boolean constraints that satisfies both t1
1 v t1

2 and t2
1 v t2

2 is produced as
B1 [B2.

At each iteration constraints are added to B. A Boolean assignment that is a solution
belongs to an intersection of individual solutions to each of the constraints. As a result,
when new constraints are added to B, the number of potential solutions is not increasing.

7.1.1 Well-Formedness Constraints

The first set of Boolean constraints is called well-formedness constraints. Well-formedness
constraints specify conditions for a term t, V(t) = ∆, expressed as Boolean constraints
WFC(t), which guarantee that t is well-formed if WFC(t) evaluates to true. The well-
formedness constraints are given in Figure 7.1. The constraints directly follow from
definition of the well-formed term in Definition 3.2.2.

1. WFC(t) = ∆ if t is a symbol;
2. WFC(t) =

S
1id WFC(ti) if t is a tuple (t1 . . . td);

3. WFC(t) = {¬(gi ^ gj) | 1 i 6= j n and li = lj} [S1id{gi ! g | g 2 WFC(ti)}
if t is a record {l

1

(g1): t1, . . . , l
d

(gd): td} or a choice (:l
1

(g1): t1, . . . , l
d

(gd): td:);
4. WFC(t) = {¬(gi ^ gj) | 1 i 6= j d} [{W1id gi} [S

1in{gi ! g | g 2
WFC(ti)} if t is a switch h(g1): t1, . . . , (gd): tdi.

Figure 7.1: The set of Boolean constraints that ensures well-formedness of a term t

A symbol is a well-formed term and, therefore, no Boolean constraints if t is a sym-
bol required. A tuple is a well-formed term if its nested terms are well-formed terms
too. Therefore, well-formedness constraints for a tuple is a union of well-formedness
constraints for a tuple’s nested terms.

7.1 BOOLEAN CONSTRAINTS FOR CSP-WS 81

If a term t is a record or a choice, then all labels of the collection must be distinct.
Therefore, for any elements i and j with the same label the constraint ¬(gi ^ gj), where
gi and gj are guards of element i and j, must be produced. In addition to this, well-
formedness constraints for nested terms must be taken into account, which is guaranteed
by a constraint gi ! g, where gi is a guard for the element i and g 2 WFC(ti) is a
well-formedness constraint for a nested term ti.

If t is a switch, the well-formedness constraints ensure that only one element of a
switch has a guard instantiating to true. Furthermore, gi ! g, where gi is a guard for the
element i, ensure the constraints g 2 WFC(ti), which are well-formedness constraints for
a nested term ti.

7.1.2 Seniority Constraints

Another set of Boolean constraints is called seniority constraints. The Boolean seniority
constraints naturally follow from the definition of the seniority relation. If t1 and t2 are
equal symbols, then the seniority relation holds and no further Boolean constraints are
required. If t1 and t2 are tuples of the same size, then the Boolean seniority constraints
must include Boolean seniority constraints for nested terms.

Seniority constraints are defined as SC(t1 v t2) for a constraint t1 v t2 (V(t1) =

V(t2) = ∆). SC(t1 v t2) specifies a set of constraints that ensures the seniority relation
t1 v t2, where t1 and t2 are known to be well-formed terms, that is SAT(WFC(t1)) 6= ∆
and SAT(WFC(t2)) 6= ∆. In other words, SAT(WFC(t1) [WFC(t2) [SC(t1 v t2)) 6= ∆
guarantees that the seniority relation t1 v t2 holds.

If t1 and t2 are records, then for every element l2
j

(g2
j): t2

j in t2 one of the following sets
of Boolean constraints must be produced:

1. if there exists an element l1
i

(g1
i): t1

i in t1 such that l1
i is the same as l2

j , then the
Boolean seniority constraints must include the seniority constraints for nested
subterms providing that g1

i ^ g2
j ;

2. otherwise, an element l2
j

(g2
j): t2

j must be excluded from the collection: the constraint
¬g2

j is generated.

The Boolean seniority constraints for choices are generated in a dual way.
The Boolean seniority constraints for switches (t1 or t2 is a switch) ensure only the

Boolean seniority constraints for nested terms.
If t1 v t2 is not matched by one of the above mentioned cases, then the constraint is

unsatisfiable and false is generated.

82 CHAPTER 7. CSP-WS ALGORITHM

1. SC(t1 v t2) = ∆, if t1 and t2 are equal symbols.
2. SC(t1 v t2) =

S
1id SC(t1

i v t2
i), if t1 is a tuple (t1

1 . . . t1
d) and t2 is a tuple

(t2
1 . . . t2

d);
3. SC(t1 v t2) =

S
1jd SCj(t2

j), if t1 is a record {l1
1

(g1
1): t1

1, . . . , l1
d

(g1
d): t1

d}, t2 is a
record {l1

2

(g2
1): t2

1, . . . , l2
e

(g2
e): t2

e} and SCj(t2
j) is one of the following:

(a) SCj(t2
j) = {(g1

i ^ g2
j)! g | g 2 SC(t1

i v t2
j)}, if 9i : 1 i d and l

1

i

= l

2

j

;

(b) SCj(t2
j) = {¬g2

j }, otherwise;

4. SC(t1 v t2) =
S

1ie SCi(t1
i), if t1 is a choice (:l1

1

(g1
1): t1

1, . . . , l1
d

(g1
d): t1

d:), t2 is a
choice (:l2

1

(g2
1): t2

1, . . . , l2
e

(g2
e): t2

e :) and SCi(t1
i) is one of the following:

(a) SCi(t1
i) = {(g1

i ^ g2
j)! g | g 2 SC(t1

i v t2
j)}, if 9j : 1 i e and l

1

i

= l

2

j

;

(b) SCi(t1
i) = {¬g1

i }, otherwise;

5. SC(t1 v t2) = {g1
i ! g | 1 i d and g 2 SC(t1

i v t2
i)}, if t1 is a switch

h(g1
1): t1

1, . . . (g1
d): t1

di and t2 is an arbitrary term.
6. SC(t1 v t2) = {g2

i ! g | 1 i d and g 2 SC(t1 v t2
i)}, if t1 is an arbitrary term

and t2 is a switch h(g2
1): t2

1, . . . (g2
d): t2

di.
7. SC(t1 v t2) = {false}, otherwise.

Figure 7.2: The set of Boolean constraints that ensures the seniority relation t1 v t2

7.2 Iterative method

The CSP-WS algorithm takes advantage of the order-theoretical structure of the MDL
and iteratively converges to a solution if one exists.

Definition 7.2.1 (Conditional approximation). Let B be a set of Boolean constraints, and
~a# and~a" be vectors of semi-ground terms such that |~a#| = |V#(C)| and |~a"| = |V"(C)|. A
tuple (Bi,~a

#
i ,~a"i) is called a conditional approximation and

(B0,~a#0,~a"0), . . . , (Bh�1,~a#h�1,~a"h�1), (Bs,~a#h,~a"h),

is called a a series of conditional approximations of a CSP-WS solution if for every 1 k h,

B0 ✓ B1 ✓ · · · ✓ Bk ✓ · · · ✓ Bh (7.1)

and a vector of Boolean values~b that is a solution to SAT(Bk):

~a#k [~f /~b] v~a#k�1[
~f /~b] and ~a"k�1[

~f /~b] v~a"k [~f /~b]. (7.2)

7.2 ITERATIVE METHOD 83

The conditional approximation (Bk,~a#k ,~a"k) is called a closer conditional approximation
of a solution to CSP-WS than (Bk�1,~a#k�1,~a"k�1) if Bk�1 ✓ Bk,~a#k [~f /~b] v ~a#k�1[

~f /~b] and
~a"k�1[

~f /~b] v~a"k [~f /~b].

Similarly to the algorithm presented in Section 6.5, the core of the CSP-WS solution
algorithm is the approximating function IF : C ⇥P(B)⇥ eT #m ⇥ eT "n ! P(B)⇥ eT #m ⇥ eT "n ,
which maps a constraint and the current approximation to the new approximation.
The approximation is a tuple (B,~a#,~a"), where B ✓ B is a set of Boolean formulas, and
~a# 2 eT #m and~a" 2 eT "n are vectors of down-coerced and up-coerced terms, |V#(C)| = m and
|V"(C)| = n, respectively. (∆, (nil, . . . , nil), (none, . . . , none)) is the initial approximation.
In contrast to the approximating function IF from Section 6.3, IF maintains a set of
approximations for all t-variables in the form of semi-ground terms (as opposed to IF,
which stores t-variable values in the form of ground terms). The semi-ground term
represent values for all instantiations of b-variables. The ground values are obtained by
Boolean substitution. Following (7.2), IF must be a monotonic function.

7.2.1 Boolean Satisfiability

The set of Boolean constraints B potentially expands at every iteration of the algorithm by
inclusion of further logic formulas called assertions into its conjunction as the algorithm
processes constraints C. The expansion may, in particular, be due to the term variables
becoming bound to potentially ill-formed expressions but for the fact that those ill-formed
expressions would be prohibited (in the sense of Eq. (7.2)) by the expanded SAT. Whether
the set of Boolean constraints actually expands or not can be determined by checking the
satisfiability of SAT(Bk) 6= SAT(Bk�1) for the current iteration k.

We argue below that if the original CSP-WS is satisfiable then so is SAT(Bh). Fur-
thermore, the tuple of vectors (~bh,~a#h[~f /~bh],~a

"
h[
~f /~bh]) is a solution to the former problem,

where ~bh is a solution for SAT(Bh). In other words, the iterations terminate when the
conditional approximation limits the term variables, and when the SAT constrains the b-
variables enough to ensure the satisfaction of all CSP-WS constraints. In general, the set
SAT(Bh) can have more than one solution. The algorithm is flexible enough to generate
all solutions that correspond to all SAT(Bh) solutions. Alternatively, the algorithm can
return one solution, which is obtained arbitrarily or using some heuristics (for example,
a solution to SAT(Bh) that maximises the number of false values could be preferred).

The presence of the SAT makes the algorithm NP-complete. On the other hand, it is
possible to reduce the complexity of solving instances B1, . . . ,Bh by using an incremental
SAT solver [ES03], because B1 ✓ · · · ✓ Bh.

84 CHAPTER 7. CSP-WS ALGORITHM

7.3 Iterated function

In Sections 7.3.1 and 7.3.2, we specify the iterated function IF for all categories of terms.
We use our conventional notation as follows. Let

~v# = (v1, . . . , vm),

~v" = (v1, . . . , vn),

~a# = (a1, . . . , am),

~a" = (a1, . . . , an).

We introduce a generalised iterated function

GIF(t1 v t2,B, b,~a#,~a") : C ⇥P(B)⇥ eT #m ⇥ eT "n ⇥ B ! P(B)⇥ eT #m ⇥ eT "n .

It is a more generic version of the iterated function IF. GIF is defined as follows:

GIF(t1 v t2, b,B,~a#,~a") = (b =) IF(t1 v t2,B,~a#,~a")).

The definition states that the new approximation given (B,~a#,~a") for a constraint t1 v t2

is constructed only under assumption b. For example,

GIF({a(x): v#1} v {a(y): v#2}, {true},B,~a#,~a")

calls the helper approximation function for nested terms

GIF(v#1 v v#2, {x ^ y},B,~a#,~a"),

because v#1 v v#2 arises only if x ^ y.
Furthermore, we can define IF using GIF:

IF(t1 v t2,B,~a#,~a") = GIF(t1 v t2, {true},B,~a#,~a").

Below we only define GIF. The definition of IF naturally arises from GIF.

7.3.1 Iterated Function for Constraints on Basic Terms and Tuples

B-variables are not present in a symbol or a tuple (for tuples, b-variables are present in
nested terms though). Therefore, the definition of GIF for symbols and tuples is similar
to the IF definition for symbols and tuples (see Sections 6.3.1 and 6.3.2).

7.3 ITERATED FUNCTION 85

If t is a down-coerced term, then

GIF(t v nil, b,B,~a#,~a") = (B,~a#,~a").

If t is a symbol, then

GIF(t v t, b,B,~a#,~a") = (B,~a#,~a").

If t is a down-coerced term and v` is a down-coerced variable, then

GIF(t v v`, b,B,~a#,~a") = GIF(t v v`[~v#/~a#], b,B,~a#,~a").

If v` is an up-coerced variable and t is an up-coerced term, then

GIF(v` v t, b,B,~a#,~a") = GIF(v`[~v"/~a"] v t, b,B,~a#,~a").

If v` is a down-coerced variable and t is a down-coerced term, then

GIF(v` v t, b,B,~a#,~a") = (B, (a1, . . . , a` u h(b): t[~v#/~a#,~v"/~a"], (¬b): nili, . . . , am),~a").

If t is an up-coerced term and v` is an up-coerced variable, then

GIF(t v v`, b,B,~a#,~a") = (B,~a#, (a1, . . . , a` t h(b): t[~v#/~a#,~v"/~a"], (¬b): nonei, . . . , an)).

If t1 is a tuple (t1
1 . . . t1

d) and t2 is a tuple (t2
1 . . . t2

d), then

GIF(t1 v t2, b,B,~a#,~a") = (
[

1id
Bi,

l

1id

~ai
#,

G

1id
~ai
"),

where
(Bi,~ai

#,~ai
") = GIF(t1 v t2, b,B,~a#,~a").

If t1 or t2 is a symbol or a tuple that is not matched by one of these cases, then t1 v t2

does not have a solution.

7.3.2 Iterated Function for Constraints on Records

If t1 and t2 are records {l1
1

(b1
1): t1

1, . . . , l1
d

(b1
d): t1

d} and {l2
1

(b2
1): t2

1, . . . , l2
e

(b2
e): t2

e} (no tail
variables are present) respectively, then for all i (1 i e), four cases must be considered:

1. if there exists j, such that l1
j

= l

2

i

, and

86 CHAPTER 7. CSP-WS ALGORITHM

(a) b1
j ^ b2

i = true, then t1
j v t2

i must hold;

(b) b1
j = false and b2

i = true, then the solution does not exist;

(c) b2
i = false, then the solution exists and no further approximation is needed.

2. otherwise, the solution does not exist.

Therefore, GIF is defined as follows:

GIF({l1
1

(b1
1): t1

1, . . . , l1
d

(b1
d): t1

d} v {l2
1

(b2
1): t2

1, . . . , l2
e

(b2
e): t2

e}, b,B,~a#,~a") =

= (
[

1ie
Bi,

l

1ie

~ai
#,

G

1ie
~ai
"),

where

(Bi,~ai
#,~ai

") =

(
GIF(t1

j v h(b1
j ^ b2

i): t2
i , (¬(b1

j ^ b2
i)): t1

j i, b,B0,~ai
#,~ai

") if 9j : l1
j

= l

2

i

(7.3)

(B[{¬b},~a#,~a") otherwise. (7.4)

and
B

0 = B[{b! (b2
i ! b1

j)}.

(7.3) covers all three cases that correspond to l

1

j

= l

2

i

. This is achieved by reduction to a
constraint that contains a switch term:

1. if b1
j ^ b2

i , then the constraint t1
j v t2

i is solved;

2. if ¬b1
j ^ b2

i , then b2
i ! b1

j evaluates to false given b. In this case the constraint does
not have a solution;

3. otherwise, the constraint t1
j v t1

j is solved. The constraint always is satisfied and is
introduced only to acknowledge satisfiability of the original constraint.

If there is no element in t1 that has the label equal to l

2

i

from t2, then the constraint is
unsatisfiable and the assertion false is added to B (see (7.4)).

Example 7.3.1.

GIF({a(x): int, b(y): int} v {b(z): int, c(w): int}, u, B, (), ()) =

(B [{u! (z! y), u! ¬w}, (), ())

4
If v` is a down-coerced variable, and t1 and t2 are records {l1

1

(b1
1): t1

1, . . . , l1
d

(b1
d): t1

d |v`}
and {l2

1

(b2
1): t2

1, . . . , l2
e

(b2
e): t2

e} respectively, then for every element l2
i

(b2
i): t2

i from t2 one of
the following must hold:

7.3 ITERATED FUNCTION 87

1. there exists an element l1
j

(b1
j): t1

j in t1 such that l1
j = l2

i and

(a) if b1
j ^ b2

i = true, then t1
j v t2

i must hold;

(b) if b1
j = false and b2

i = true, then the seniority relation v` v {l2
i

: t2
i } must hold,

and therefore, v must be coerced to {l2
i

(¬b1
j ^ b2

i): t2
i } (if it is impossible, the

solution does not exist);

(c) if b2
i = false, then the solution exists and no further approximation is needed.

2. otherwise, v` must be coerced to {l2
i

(b2
i): t2

i }.

Therefore, for these cases GIF is defined as follows:

GIF({l1
1

(b1
1): t1

1, . . . , l1
d

(b1
d): t1

d |v`} v {l2
1

(b2
1): t2

1, . . . , l2
e

(b2
e): t2

e}, b,B,~a#,~a") =

(
[

1ie
Bi,

l

1ie

~ai
#,

G

1ie
~ai
"),

where
(Bi,~ai

#,~ai
") =

=

(
GIF(t1

j v h(b1
j ^ b2

i): t2
i , (¬(b1

j ^ b2
i)): t1

j i, b,B,~ai
0#,~ai

") if 9j : l1
j

= l

2

i

(7.5)

(B, (a1, . . . , a` t {l2
i

(b ^ b2
i): t2

i [~v
#/~a#,~v"/~a"]}, . . . , an),~a") otherwise, (7.6)

and
~ai
0# = (a1, . . . , a` t {l2

i

(b ^ ¬b1
j ^ b2

i): t2
i [~v
#/~a#,~v"/~a"]}, . . . , an).

Example 7.3.2.

GIF({a(x): int |v#} v {a(y): int}, z, B, (nil), ()) = (B, ({a(z! (y! ¬x)): int}), ())

Here, nil and {a(z ! (y ! ¬x)): int} are the old and the new approximations for v#,
respectively. 4

If t1 is a record {l1
1

(b1
1): t1

1, . . . , l1
d

(b1
d): t1

d} or {l1
1

(b1
1): t1

1, . . . , l1
d

(b1
d): t1

d |v`} and t2 is a
record {l2

1

(b2
1): t2

1, . . . , l2
e

(b2
e): t2

e |vr}, then the constraint can by substitution be reduced to
the previous cases for records:

GIF(t1 v t2, b,B,~a#,~a") = GIF(t1 v t2[vr/ar], b,B,~a#,~a").

7.3.3 Iterated Function for Constraints on Choices

Definition of GIF for choices is dual to the definition of GIF for records.

88 CHAPTER 7. CSP-WS ALGORITHM

If t1 and t2 are choices (:l1
1

(b1
1): t1

1, . . . , l1
d

(b1
d): t1

d:) and (:l2
1

(b2
1): t2

1, . . . , l2
e

(b2
e): t2

e :) (no
tail variables are present) respectively, then for all i (1 i d), four cases must be
considered:

1. if there exists j, such that l1
i

= l

2

j

, and

(a) b1
i ^ b2

j = true, then t1
i v t2

j must hold;

(b) b1
i = false and b2

j = true, then the solution does not exist;

(c) b1
i = true, then the solution exists and no further approximation is needed.

2. otherwise, the solution does not exist.

Therefore, GIF is defined as follows:

GIF((:l1
1

(b1
1): t1

1, . . . , l1
d

(b1
d): t1

d:) v (:l2
1

(b2
1): t2

1, . . . , l2
e

(b2
e): t2

e :), b,B,~a#,~a") =

= (
[

1id
Bi,

l

1id

~ai
#,

G

1id
~ai
"),

where
(Bi,~ai

#,~ai
") =

(
GIF(t1

i v h(b1
i ^ b2

j): t2
j , (¬(b1

i ^ b2
j)): t1

i i, b,B0,~aj
#,~aj

") if 9i : l1
i

= l

2

j

(7.7)

(B[{¬b},~a#,~a") otherwise. (7.8)

and
B

0 = B[{b! (b1
i ! b2

j)}.

(7.7) covers all three cases that correspond to l

1

i

= l

2

j

. This is achieved by reduction to a
constraint that contains a switch term:

1. if b1
i ^ b2

j , then the constraint t1
i v t2

j is solved;

2. if ¬b2
j ^ b1

i , then b1
i ! b2

j evaluates to false given b. In this case the constraint does
not have a solution;

3. otherwise, the constraint t1
i v t1

i is solved. The constraint always is satisfied and is
introduced only to acknowledge satisfiability of the original constraint.

If there is no element in t2 that has the label equal to l

1

i

from t1, then the constraint is
unsatisfiable and the assertion false is added to B (see (7.8)).

Example 7.3.3.

GIF((:a(x): int:) v (:a(y): int, b(z): int:), u, B, (), ()) =

(B [{u! (x ! y), u! ¬z}, (), ())

7.3 ITERATED FUNCTION 89

4
If v` is an up-coerced variable, and t1 and t2 are choices (:l1

1

(b1
1): t1

1, . . . , l1
d

(b1
d): t1

d:) and
(:l2

1

(b2
1): t2

1, . . . , l2
e

(b2
e): t2

e |v`:) respectively, then for every element l1
i

(b1
i): t1

i from t1 one of
the following must hold:

1. there exists an element l2
j

(b2
j): t2

j in t2 such that l1
i = l2

j and

(a) if b1
i ^ b2

j = true, then t1
i v t2

j must hold;

(b) if b2
j = false and b1

i = true, then the seniority relation {l1
i

: t1
i }v` must hold,

and therefore, v must be coerced to {l1
i

(¬b2
j ^ b1

i): t1
i } (if it is impossible, the

solution does not exist);

(c) if b1
i = false, then the solution exists and no further approximation is needed.

2. otherwise, v` must be coerced to {l1
i

(b1
i): t1

i }.

Therefore, for these cases GIF is defined as follows:

GIF((:l1
1

(b1
1): t1

1, . . . , l1
d

(b1
d): t1

d:) v (:l2
1

(b2
1): t2

1, . . . , l2
e

(b2
e): t2

e |v`:), b,B,~a#,~a") =

(
[

1ip
Bi,

l

1ip

~ai
#,

G

1ip
~ai
"),

where
(Bi,~ai

#,~ai
") =

(
GIF(h(b1

i ^ b2
j): t1

i , (¬(b2
j ^ b1

i)): t2
j i v t2

j , b,B,~ai
#,~ai

0") if 9j : l1
i

= l

2

j

(7.9)

(B,~a#, (a1, . . . , a` u (:l1
i

(b ^ b1
i): t1

i [~v
#/~a#,~v"/~a"]:), . . . , an)) otherwise, (7.10)

and
~ai
0" = (a1, . . . , a` u (:l1

i

(b ^ ¬b2
j ^ b1

i): t1
i [~v
#/~a#,~v"/~a"]:), . . . , an).

Example 7.3.4.

GIF((:a(x): int:) v (:a(y): int |v":), z, B, (), (none)) =

(B, (), ((:a(z! (x ! ¬y)): int:)))

Here, none and (:a(z! (x ! ¬y)): int:) are the old and the new approximations for v",
respectively. 4

If t1 is a choice (:l1
1

(b1
1): t1

1, . . . , l1
d

(b1
d): t1

d |u`:) and t2 is a choice (:l2
1

(b2
1): t2

1, . . . , l2
e

(b2
e): t2

e :)
or (:l2

1

(b2
1): t2

1, . . . , l2
e

(b2
e): t2

e |vr:), then the constraint can by substitution be reduced to the
previous cases for choices:

GIF(t1 v t2, b,B,~a#,~a") = GIF(t1[u`/a`] v t2, b,B,~a#,~a").

90 CHAPTER 7. CSP-WS ALGORITHM

7.3.4 Iterated Function for Constraints on Switches

If t1 is a switch h(b1
1): t1

1, . . . , (b1
d): t1

di, then the constraint is naturally reduced to a set of
constraints without a switch term:

GIF(t1 v t2, b,B,~a#,~a") = (
[

1id
Bi,

l

1id

~ai
#,

G

1id
~ai
"),

where
(Bi,~ai

#,~ai
") = GIF(t1

i v t2, b ^ b1
i ,B,~a#,~a").

Similarly, if t2 is a switch h(b2
1): t2

1, . . . , (b2
e): t2

e i, then the constraint is naturally reduced
to a set of constraints without a switch term:

GIF(t1 v t2, b,B,~a#,~a") = (
[

1ie
Bi,

l

1ie

~ai
#,

G

1ie
~ai
"),

where
(Bi,~ai

#,~ai
") = GIF(t1 v t2

i ,B,~a#,~a", b ^ b2
i).

7.4 Algorithm Decomposition

The algorithm that recursively solves the constraints in the CSP-WS consists of functions
that can be represented in a dependency graph as follows (see Figure 7.3):

1. CSP-WS(C) is the top-level function. Formally, the function is defined in Al-
gorithm 2. It receives a set of constraints C as an input and then performs the
following steps:

(a) it initialises (B,~a#,~a") with the most general approximation as specified in
Section 7.2;

(b) it iteratively calls SOLVE(. . .) function (which essentially represents GIF func-
tion from Section 7.3) that computes the next conditional approximation until
the fixed point is reached;

(c) it solves a SAT problem for constraints in B, substitutes b-variables with
corresponding Boolean values in term variables and returns ground terms and
Boolean values as a solution to C.

2. Given a conditional approximation (B,~a#,~a"), a Boolean condition b, and terms
t1 and t2, the function SOLVE(t1, t2,B,~a#,~a", b) (Algorithm 3) computes a new con-
ditional approximation that satisfies the constraint t1 v t2 under the condition

7.4 ALGORITHM DECOMPOSITION 91

b. The algorithm finds a match for (t1, t2) over all pairs of term categories and
recursively calls SOLVE(. . .) for the subterms of t1 and t2. Table 7.1 refers to the
lines in Algorithm 3 where the solution algorithms for particular category pairs are
explained.

3. We define functions that solve the constraint t1 v t2 for specific categories of terms.
The functions have identical signature: they receive the current approximation, a
Boolean condition b, a pair of terms as an input, and produce an approximation
that satisfies the constraint t1 v t2 if one exists. If the constraint cannot be satisfied,
the algorithm adds the Boolean constraint ¬b to B.

• If t1 is an arbitrary term and t2 is a switch, SOLVETERMSWITCH(. . .) is called
(Algorithm 7).

• If t1 is a switch and t2 is an arbitrary term, SOLVESWITCHTERM(. . .) is called
(Algorithm 8).

• If t1 and t2 are both tuples, SOLVETT(. . .) is called (Algorithm 4).
• If t1 and t2 are both records, SOLVERR(. . .) is called (Algorithm 5).
• If t1 and t2 are both choices, SOLVECC(. . .) is called (Algorithm 6).

4. COMBINERECORDS (Algorithm 9) and COMBINECHOICES are functions that merge
two records or two choices. The functions combine elements with non-intersecting
labels into a new collection (either a record or a choice). If elements with equal labels
are present in both collections, the functions produce two alternative collections:
in one collection a guard and a term for an element with the conflicting label is
taken from the first collection and in another one — from the second collection. As
a result, the functions produce a switch term that contains alternative collections of
merged elements.

5. SET(v, t,B,~a#,~a", b) is an auxiliary function (Algorithm 11) that is called from the
above given functions. It produces a new approximation from the current approx-
imation (B,~a#,~a"). t is a value as a semi-ground term for a variable v that must
hold when b is true.

6. SGROUND(v,~a#,~a", b) is a function (Algorithm 10) that retrieves a value for a vari-
able v from vectors~a# and~a" given a condition b.

92 CHAPTER 7. CSP-WS ALGORITHM

SE
T

SO
LV

E
T

E
R

M
SW

IT
C

H

C
O

M
B

IN
E

R
E

C
O

R
D

SC
SP

-W
S

SO
LV

E
SW

IT
C

H
T

E
R

M
SO

LV
E

T
T

SO
LV

E
C

C
SO

LV
E

R
R

SO
LV

E

C
O

M
B

IN
E

C
H

O
IC

E
S

SG
R

O
U

N
D

Fi
gu

re
7.

3:
A

de
pe

nd
en

cy
gr

ap
h

of
fu

nc
tio

ns
th

at
ar

e
us

ed
in

th
e

C
SP

-W
S

al
go

ri
th

m

7.5 CSP-WS ALGORITHM 93

7.5 CSP-WS Algorithm

The top-level Algorithm 2 iteratively finds conditional approximations for a set of con-
straints C until the fixed point is reached. It performs the following steps.

Algorithm 2 CSP-WS(C)
1: c |C|
2: i 0
3: B0 ∆
4: ~a#0 (nil, . . . , nil)
5: ~a"0 (none, . . . , none)
6: repeat
7: for 1 j c : tj

1 v tj
2 2 C do

8: (Bi·c+j,~a
#
i·c+j,~a

"
i·c+j) SOLVE(tj

1, tj
2,Bi·c+j�1,~a#i·c+j�1,~a"i·c+j�1, true)

9: end for
10: i i + 1
11: until (SAT(Bi·c),~a

#
i·c,~a

"
i·c) = (SAT(B(i�1)·c),~a

#
(i�1)·c,~a

"
(i�1)·c)

12: if Bi·c is unsatisfiable then
13: return Unsat

14: else
15: return (SATSol(Bi·c),~a

#
i·c[~f /~b],~a"i·c[~f /~b])

16: end if

First, the algorithm initialises (B0,~a#0,~a"0) with the most general approximation (∆,
(nil, . . . , nil), (none, . . . , none)). Next, the algorithm iterates over the constraints in C and
constructs a new tuple (Bi,~a

#
i ,~a"i) that is a closer approximation of the solution than

(Bi�1,~a#i�1,~a"i�1).

The function SOLVE(. . .) solves the constraint tj
1 v tj

2 and updates the vectors~a#i·c+j

and ~a"i·c+j with new values. Furthermore, it adds Boolean assertions that ensure 1)

satisfaction of the constraint for any ~b 2 SAT(Bi·c+j), and 2) well-formedness of the
terms occurring in it (as described in Section 7.1). Some approximations require new
Boolean variables to be generated, however, only a finite number of the variables can be
generated (which is explained in more details in Section 7.6). They are kept tracked using
a hash table: a new variable is generated only if another variable for the same condition
was not generated before. The algorithm terminates if Bi·c ⌘ B(i�1)·c,~a

#
i·c =~a#(i�1)·c and

~a"i·c =~a"(i�1)·c.

94 CHAPTER 7. CSP-WS ALGORITHM

The SOLVE(. . .) function

The SOLVE(. . .) function is called from the top-level function (Line 8 in Algorithm 2) of
the algorithm. SOLVE(. . .) finds the next conditional approximation given the current ap-
proximation (B,~a#,~a") and a Boolean condition b. b specifies assignments for b-variables
when the constraint holds. If b is true, then the constraint holds for any assignment.

SOLVE(. . .) matches the given constraint against all possible term category pairs (see
Algorithm 3). Table 7.1 demonstrates which pairs of term categories may or may not have
a solution. In the case a solution does not exist, the constraint ¬b is added to B (Line 26
of Algorithm 3).

The cases in Lines 2 to 14 cover the basic constraints for symbols and tuples (see
Section 7.3.1). Lines 16 to 17 represent the constraint for records from Section 7.3.2 and
Lines 18 to 19 represent the constraint for choices from Section 7.3.3. Finally, Lines 20
to 25 cover the constraints that include switch terms (see Section 7.3.4). Next we discuss
these cases individually.

N DV S T R UV C SW

N 2 6 7 14 16 7 7 23

DV 2 8 8 8 8 7 7 23

S 2 6 4 7 7 7 7 23

T 2 6 7 14 7 7 7 23

R 2 6 7 7 16 7 7 23

UV 7 7 7 7 7 12 10 23

C 7 7 7 7 7 12 18 23
SW 20 20 20 20 20 20 20 20

(UV) up-coerced variable (N) nil (R) record (T) tuple
(DV) down-coerced variable (S) symbol (C) choice (SW) switch

relation for down-coerced terms relation for up-coerced terms

Table 7.1: Combinations of all term categories that can constitute a constraint t v t0. A
number in the table refers to the line in Algorithm 3 that matches the constraint. Invalid
combinations are marked with 7.

SOLVETT(. . .) function is presented in Algorithm 4. It solves the CSP-WS for tuples
as described in Section 7.3.1. The function recursively calls SOLVE(. . .) for tuple elements.

Algorithm 5 describes the SOLVERR(. . .) function. It solves the CSP-WS for records
as described in Section 7.3.2. In the most general case, records, which are provided
as arguments, may contain the tail variables v#1 and v#2. First, the function computes
the tightest approximation for v#2 (Lines 1 to 6) in the form of a switch term s. All
elements t̃i of s must be records as well. Otherwise, a Boolean constraint is added to B

7.5 CSP-WS ALGORITHM 95

Algorithm 3 SOLVE(t1, t2,B,~a",~a#, b)
1: match (t1, t2) with
2: case (t1, nil), where t1 is a down-coerced variable, a symbol, a tuple or a record
3: return (B,~a",~a#)
4: case (s, s0), where s and s0 are symbols and s = s0
5: return (B,~a",~a#)
6: case (t, v#), where t is a symbol, a tuple or a record
7: return SOLVE(t, SGROUND(v#,~a",~a#, b),B,~a",~a#, b)
8: case (v#, t), where t is a down-coerced variable, a symbol, a tuple or a record
9: return SET(v#, SGROUND(t,~a",~a#, b),B,~a",~a#, b)

10: case (v", t), where t is a choice
11: return SOLVE(SGROUND(~a",~a#, b, v"), t,B,~a",~a#, b)
12: case (t, v"), where t is an up-coerced variable or a choice
13: return SET(v", SGROUND(t,~a",~a#, b),B,~a",~a#, b)
14: case ((t1

1 . . . tn
1), (t

1
2 . . . tn

2))
15: return SOLVETT((t1

1 . . . tn
1), (t

1
2 . . . tn

2),B,~a",~a#, b)
16: case ({l1

1

(g1
1): t1

1, . . . , ln
1

(gn
1): tn

1 |v#1}, {l1
2

(g1
2): t1

2, . . . , lm
2

(gm
2): tm

2 |v#2}), where tail vari-
ables v#1 or v#2 may be absent

17: return SOLVERR(t1, t2,B,~a",~a#, b)
18: case ((:l1

1

(g1
1): t1

1, . . . , ln
1

(gn
1): tn

1 |v#1:), (:l1
2

(g1
2): t1

2, . . . , lm
2

(gm
2): tm

2 |v#2:)), where tail
variables v"1 or v"2 may be absent

19: return SOLVECC(t1, t2,B,~a",~a#, b)
20: case (h(g1

1): t1
1, . . . , (gn

1): tn
1i, t2)

21: B B[{b! (g1
1 _ · · · _ gn

1)} [{b! ¬(gi
1 ^ gj

1)|1 i, j n, i 6= j}
22: return SOLVETERMSWITCH(B,~a",~a#, b, h(g1

1): t1
1, . . . , (gn

1): tn
1i, t2)

23: case (t1, h(g1
2): t1

2, . . . , (gn
2): tn

2i)
24: B B[{b! (g1

2 _ · · · _ gn
2)} [{b! ¬(gi

2 ^ gj
2)|1 i, j n, i 6= j}

25: return SOLVESWITCHTERM(B,~a",~a#, b, t, h(g1
2): t1

2, . . . , (gn
2): tn

2i)
26: return (B[{¬b},~a",~a#)

(see Line 28). Next, the elements of each valid record t̃i in s are merged with elements
l

1

2

(g1
2): t1

2, . . . , lm
2

(gm
2): tm

2 . The result is produced as a switch of records (similarly to
Line 10). The steps above find a value for the tail variable from the record in the right
part of the constraint. The final step reduces the CSP-WS for records to a problem for
subterms and approximates the value for v#1 as follows: if, for each elementˆl

xy

(ĝxy): t̂xy,
no element with the same label l̂xy exists in the left record {l1

1

(g1
1): t1

1, . . . , ln
1

(gn
1): tn

1 | v#1},
then v#1 must be down-coerced to {ˆl

xy

(ĝxy): t̂xy}. If the element with the same label does
not exist in the left record and the record lacks the tail variable v#1, then the constraint is
unsatisfiable and the Boolean constraint in Line 22 is generated.

Algorithm 6 describes the function SOLVECC(. . .), which is structured similarly to

96 CHAPTER 7. CSP-WS ALGORITHM

Algorithm 4 SOLVETT(
�
t1
1, . . . , tn

1
�

,
�
t1
2, . . . , tn

2
�
B,~a",~a#, b)

1: (B0,~a"0,~a#0) (B,~a",~a#)
2: for 1 i n do
3: (Bi,~a

"
i ,~a#i) SOLVE(ti

1, ti
2,Bi�1,~a"i�1,~a#i�1, b)

4: end for
5: return (Bn,~a"n,~a#n)

Algorithm 5 (see Section 7.3.3). First, the function obtains the v"1’s tightest approximation
(Line 1alg:solve-choice-choice2) in the form of a switch term s. Next, the elements of
a record t̃i, which is an element of s, are united with elements l

1

1

(g1
1): t1

1, . . . , ln
1

(gn
1): tn

1 .
Due to potential label duplicates, the result of a union in general case is a switch term
(Line 10). Finally, the function reduces the problem for choices to the problem for its
subterms.

SOLVETERMSWITCH(. . .) and SOLVESWITCHTERM(. . .) are discussed in Algorithm 7
and Algorithm 8. The function specify solution for the CSP-WS for a constraint t1 v t2,
where either t1 or t2 is a switch term. In Section 7.3.4 we demonstrate that a constraint
that involves a switch term is naturally reduced to constraints for its subterms. In the
rest of this section we discuss other functions that are used in the solution algorithm.

Algorithm 9 specifies the COMBINERECORDS(. . .) function. The function recursively
merges records and produces a result in the form of a switch term.

Example 7.5.1.

COMBINERECORDS(∆, true, {a(x): int, b(y): int}, {b(z): double, c(u): int}) =
({¬y _ ¬z},

h(¬z): {a(x): int, b(y): int, c(u): int}, (¬y): {a(x): int, b(z): double, c(u): int}i)
(7.11)

4
SGROUND(. . .) is presented in Algorithm 10. The function takes an arbitrary term t

and replaces all t-variables in t with their values from conditional approximation~a# and
~a" given a Boolean condition b. In other words, it transforms t to a semi-ground term.
Since each variable may have multiple values (each corresponding to some instantiation
of b-variables), the result is produced in the form of a switch term. SGROUND(. . .) is a
recursive function. It calls itself to find semi-ground values for t subterms, which are
returned as switch terms too. Next, we bring switch terms to the top-level. Specifically,
we produce the result as switch terms that do not contain switch terms as its subterms.
For this purpose, we perform a combinatorial term construction in Lines 12 and 18.

7.5 CSP-WS ALGORITHM 97

Algorithm 5 SOLVERR({l1
1

(g1
1): t1

1, . . . , ln
1

(gn
1): tn

1 | v#1}, {l1
2

(g1
2): t1

2, . . . , lm
2

(gm
2): tm

2 | v#2},B,
~a",~a#, b)

1: if v#2 is present then
2: s SGROUND(v#2,~a",~a#, b)
3: else
4: s h(true): nili
5: end if
6: s is a switch term of the form h(g̃1): t̃1, . . . , (g̃p): t̃pi
7: for 1 i p do
8: if t̃i is a record then
9: (B, s̃) COMBINERECORDS({l1

2

(g1
2): t1

2, . . . , lm
2

(gm
2): tm

2 }, t̃i,B, b ^ g̃i)
10: s̃ is a switch term of the form h(ĝ1): {ˆl11(ĝ11): t̂11, . . . ,ˆl

1r1(ĝ1r1): t̂1r1},
. . . ,
(ĝq): {ˆlq1(ĝq1): t̂q1, . . . ,ˆl

qrq(ĝqrq): t̂qrq}i
11: for 1 x q do
12: for 1 y rq do
13: if exists w : 1 w n and lw

1 = l̂xy then
14: (B,~a",~a#) SOLVE(tw

1 , t̂xy,B,~a",~a#, b ^ ĝx ^ ĝxy ^ gw)

15: if v#1 is present then
16: (B,~a",~a#) SET(v#1, {ˆl

xy

(ĝxy): t̂xy},B,~a",~a#, b ^ ĝx ^ ¬gw)
17: end if
18: else
19: if v#1 is present then
20: (B,~a",~a#) SET(v#1, {ˆl

xy

(ĝxy): t̂xy},B,~a",~a#, b ^ ĝx)
21: else
22: B B[{¬(b ^ ĝu ^ ĝxy)}
23: end if
24: end if
25: end for
26: end for
27: else
28: B B[{¬(b ^ g̃i)}
29: end if
30: end for
31: return (B,~a",~a#)

Example 7.5.2. Assume that~a# = (h(x): int, (¬x): doublei, h(y): int, (¬y): doublei) is

98 CHAPTER 7. CSP-WS ALGORITHM

Algorithm 6 SOLVECC((:l1
1

(g1
1): t1

1, . . . , ln
1

(gn
1): tn

1 | v"1:), (:l1
1

(g1
1): t1

1, . . . , lm
1

(gm
1): tm

1 | v"2:)B,
~a",~a#, b)

1: if v"1 is present then
2: s SGROUND(v"1,~a",~a#, b)
3: else
4: s h(true): nonei
5: end if
6: s is a switch term of the form h(g̃1): t̃1, . . . , (g̃p): t̃pi
7: for 1 i p do
8: if t̃i is a choice then
9: (B, s) COMBINECHOICES((:l1

1

(g1
1): t1

1, . . . , ln
1

(gn
1): tn

1 :), t̃i,B, b ^ g̃i)
10: s is a switch term of the form h(ĝ1): (:ˆl11(ĝ11): t̂11, . . . ,ˆl

1r1(ĝ1r1): t̂1r1 :),
. . . ,
(ĝq): (:ˆlq1(ĝq1): t̂q1, . . . ,ˆl

qrq(ĝqrq): t̂qrq :)i
11: for 1 x q do
12: for 1 y rq do
13: if exists w : 1 w m and lw

2 = l̂xy then
14: (B,~a",~a#) SOLVE(t̂xy, tw

2 ,B,~a",~a#, b ^ ĝx ^ ĝxy ^ gw
2)

15: if v"2 is present then
16: (v"2, (:ˆl

xy

(ĝxy): t̂xy:),B,~a",~a#) SET(B,~a",~a#, b ^ ĝx ^ ¬gw
2)

17: end if
18: else
19: if v"2 is present then
20: (v"2, (:ˆl

xy

(ĝxy): t̂xy:),B,~a",~a#) SET(B,~a",~a#, b ^ ĝx)
21: else
22: B B[{¬(b ^ ĝx ^ ĝxy)}
23: end if
24: end if
25: end for
26: end for
27: else
28: B B[{¬(b ^ g̃i)}
29: end if
30: end for
31: return (B,~a",~a#)

a vector containing a conditional approximation for variables p# and q#. Then

SGROUND({a(z): p#, b(u): q#},~a#,~a", true) = h(x ^ y): {a(z): int, b(u): int},
(x ^ ¬y): {a(z): int, b(u): double},
(¬x ^ y): {a(z): double, b(u): int},
(¬x ^ ¬y): {a(z): double, b(u): double}i

7.5 CSP-WS ALGORITHM 99

Algorithm 7 SOLVETERMSWITCH(
⌦
(g1

1): t1
1, . . . , (gn

1): tn
1
↵

, t2,B,~a",~a#, b)

1: (B0,~a"0,~a#0) (B,~a",~a#)
2: for 1 i n do
3: (Bi,~a

"
i ,~a#i) SOLVE(ti

1, t2,Bi�1,~a"i�1,~a#i�1, b ^ gi
1)

4: end for
5: return (Bn,~a"n,~a#n)

Algorithm 8 SOLVESWITCHTERM(t1,
⌦
(g1

2): t1
2, . . . , (gn

2): tn
2
↵

,B,~a",~a#, b)

1: (B0,~a"0,~a#0) (B,~a",~a#)
2: for 1 i n do
3: (Bi,~a

"
i ,~a#i) SOLVE(t1, ti

2,Bi�1,~a"i�1,~a#i�1, b ^ gi
2)

4: end for
5: return (Bn,~a"n,~a#n)

4

Algorithm 11 demonstrates the function SET(. . .). The function updates the approx-
imation for some variable v with a new value t2. Essentially, the function produces the
new approximation as the meet term (join term) of the existing approximation and the
new value if t2 is a down-coerced term (an up-coerced term). If the meet term (join term)
does not exist, the function adds a Boolean constraint that forbids such approximation.

Algorithm 9 COMBINERECORDS(B, b,
�
l

1

1

(g1
1): t1

1, . . . , ln
1

(gn
1): tn

1

,�
l

1

2

(g1
2): t1

2, . . . , lm
2

(gm): tm
2

)

1: if n = 0 then
2: return (B, h(true): {l1

1

(g1
1): t1

1, . . . , lm
2

(gm
2): tm

2 }i
3: end if
4: if exists j : 1 j m and l1

1 = l j
2 then

5: (B, s) COMBINERECORDS(B, b, {l2
1

(g2
1): t2

1, . . . , ln
1

(gn
1): tn

1}, {l1
2

(g1
2): t1

2, . . . ,
l

j�1
2

(gj�1
2): tj�1

2 , lj+1

2

(gj+1
2): tj+1

2 , . . . , lm
2

(gm
2): tm

2 })
6: s1 is a switch term obtained by transforming every element ĝ :

{˜l
1

(g̃1): t̃1, . . . ,˜l
p

(g̃p): l̃p} of s to ĝ ^ ¬g0j : {˜l
1

(g̃1): t̃1, . . . ,˜l
p

(g̃p): l̃p, l1
1

(g1
1): t1

1}
7: s2 is a switch term obtained by transforming every element ĝ :

{˜l
1

(g̃1): t̃1, . . . ,˜l
p

(g̃p): l̃p} of s to ĝ ^ ¬g1 : {˜l
1

(g̃1): t̃1, . . . ,˜l
p

(g̃p): l̃p, lj
2

(gj
2): tj

2}
8: return (B[{¬(b ^ g1 ^ g0j)}, a switch term that is a concatenation of s1 and s2)
9: else

10: (B, s) COMBINERECORDS(B, b, {l
2

(g2): t2, . . . , l
n

(gn): tn}, {l0
1

(g01): t01, . . . ,
l

0
m

(g0m): t0m})
11: s0 is a switch term obtained by adding an element l

1

(g1): t1 to every record in s
12: return (B, s0)
13: end if

100 CHAPTER 7. CSP-WS ALGORITHM

Algorithm 10 SGROUND(t,~a#,~a", b)
1: match t with
2: case symbol s
3: return h(b): ti
4: case down-coerced or up-coerced variable v
5: Let h(b1): t1, . . . , (bn): tni be an approximation of v in~a
6: return h(b ^ b1): t1, . . . , (b ^ bn): tni
7: case (t1 . . . tn)
8: for 1 i n do
9: si SGROUND(ti,~a#,~a", b)

10: Let si be of the form h(b1
i): t1

i , . . . , (bmi
i): tmi

i i
11: end for
12: return h(b ^ b1

1 · · · ^ b1
n�1 ^ b1

n): (t1
1 . . . t1

n�1 t1
n),

(b ^ b1
1 · · · ^ b1

n�1 ^ b2
n): (t1

1 . . . t2
n�1 t2

n),
. . . ,

(bm1
1 ^ · · · ^ bmn

n): (tm1
1 . . . tmn

n)i
13: case {l

1

(g1): t1, . . . , l
n

(gn): tn |v#}
14: for 1 i n do
15: si SGROUND(ti,~a#,~a", b)
16: Let si be of the form h(b1

i): t1
i , . . . , (bmi

i): tmi
i i

17: end for
18: r h(b1

1 · · ·^ b1
n�1^ b1

n): {l1(g1): t1
1, . . . , l

n�1(gn�1): t1
n�1, l

n

(gn): t1
n},

(b1
1 · · ·^ b1

n�1^ b2
n): {l1(g1): t1

1, . . . , l
n�1(gn�1): t1

n�1, l
n

(gn): t1
n},

. . . ,
(bm1

1 · · ·^ bmn�1
n�1 ^ bmn

n): {l
1

(g1): tm1
1 , . . . , l

n�1(gn�1): tmn�1
n�1 , l

n

(gn): tmn
n }i

19: if v# is present then
20: s̃0 SGROUND(v#,~a#,~a", b)
21: return r combined with s0
22: else
23: return r
24: end if
25: case (:l

1

(g1): t1, . . . , l
n

(gn): tn |v":)
26: A semi-ground term for a choice is computed in the same way as for a record
27: case h(b1): t1, . . . , (bn): tni
28: for 1 i n do
29: si SGROUND(ti,~a#,~a", b ^ bi)
30: end for
31: return a switch term that is a composition of s1, . . . , sn

7.6 Support for Multiple Flow Inheritance in the
Algorithm

The algorithm in Section 7.5 solves the CSP-WS for service interfaces that do not contain
a UNION term. In Chapter 8 and Chapter 9 we argue that it is impossible to support

7.6 SUPPORT FOR MULTIPLE FLOW INHERITANCE IN THE ALGORITHM 101

Algorithm 11 SET(v, t2,B,~a#,~a", b)

1: t2 is a semi-ground switch of the form h(b1
2): t1

2, . . . , (bn
2): tn

2i
2: t1 SGROUND(v,~a#,~a", b)
3: t1 is a semi-ground switch of the form h(b1

1): t1
1, . . . , (bm

1): tm
1 i

4: s is the empty switch term
5: for 1 i m do
6: for 1 j n do
7: add the element (b ^ gi

1 ^ ¬gj
2): ti

1 to s
8: add the element (b ^ ¬gi

1 ^ gj
2): tj

2 to s
9: if ti

1 and tj
2 are down-coerced terms and the join term ti

1 t tj
2 exists then

10: add the element (b ^ gi
1 ^ gj

2): ti
1 t tj

2 to s
11: else if ti

1 and tj
2 are up-coerced terms and the meet term ti

1 u tj
2 exists then

12: add the element (b ^ gi
1 ^ gj

2): ti
1 u tj

2 to s
13: else
14: B B{¬(b ^ gi

1 ^ gj
2)}

15: end if
16: end for
17: end for
18: if v is a down-coerced term then
19: update the value of v in a# to s
20: else
21: update the value of v in a" to s
22: end if
23: return (B,~a#,~a")

stateful services in the interface configuration protocol without having support for UNION

in the CSP-WS.
Support for UNION can be added on top of the algorithm presented in Section 7.5. We

introduce an additional case to Algorithm 3, which is triggered if t1 is a UNION tuple in
the constraint t1 v t2 (t2 can be any term). In this case, the algorithm performs steps as
follows:

1. First, the algorithm replaces the tuple with a free term variable (for each UNION

tuple, the variable is generated only once). By replacing all UNION tuples with
variables, the set of constraints becomes tuple-free.

2. Then, the algorithm calls a TRANSFORMUNION function (see Algorithm 12), which
sets an approximation for the variable.

3. Finally, the algorithm recursively calls SOLVE for the constraint t1 v t2, where the
union t1 is replaced with the variable.

We implement the three steps as follows. Assume that t1 = (union p# q#) and r#

102 CHAPTER 7. CSP-WS ALGORITHM

Algorithm 12 TRANSFORMUNION(t,B,~a#,~a", b)

1: if t is a down-coerced variable r#, U(r#) exists and U(r#) = (p#, q#) then
2: t0 SGROUND(r,~a#,~a", b)
3: t0 is a semi-ground switch of the form h(b1

1): t1
1, . . . , (bm

1): tm
1 i

4: for 1 i m do
5: if ti

1 is not a record then
6: add ¬(b ^ bi

1) to B

7: else
8: if C(B(b ^ bi

1), r#) does not exist then
9: Assume ti

1 = {˜li
1

(b̃i
1): t̃i

1 . . .˜li
k

(b̃i
k): t̃i

k}
10: r1 {˜li

1

(b̃i
1): t̃i

1 ^ b̄1 . . .˜li
k

(b̃i
k ^ b̄k): t̃i

k}, where b̄1, . . . b̄k are new b-
variables

11: r2 {˜li
1

(b̃i
1 ^ ¬b̄1): t̃i

1 . . .˜li
k

(b̃i
k ^ ¬b̄k): t̃i

k}
12: the value of p# in~a# must be r1 given b
13: the value of q# in~a# must be r2 given b
14: (B,~a#,~a") SET(p, r1,B,~a#,~a", b)
15: (B,~a#,~a") SET(q, r2,B,~a#,~a", b)
16: end if
17: end if
18: end for
19: end if
20: return (B,~a#,~a")

is a variable that replaces the union tuple. We introduce two dictionaries U(r#) and
C(SAT(b), r#). The former maps a down-coerced variable that corresponds to the union

tuple to a pair of down-coerced variables that are subterms in the tuple. The latter maps
a set of solutions to a Boolean constraint and the down-coerced variable to a set of new
Boolean variables.

C stores newly generated b-variables that corresponds to some logical expression and
a down-coerced variable for a union (r#, in our example). While solving the CSP-WS the
algorithm generates a new b-variable that is inserted to C as illustrated in Algorithm 12.

TRANSFORMUNION(. . .) refines a conditional approximation for the down-coerced
variable r# providing that the variable is present in U(r#). Next, for every value of r#,
two records r1 and r2 are generated. Then, an auxiliary b-variable is added to every
guard in r1. As a result, r2 is a record that contains the same labels and terms as in
r1, yet the auxiliary b-variable is negated. r1 and r2 are records that p# and q# must be
coerced to. This guarantees that the records p# and q# contain all elements that are in
r# = (union p# q#), but not in the both records.

Example 7.6.1. Consider a simple example in Figure 7.4 that consists of a merger and a
service that consumes an output from the merger. The merger is generic: it receives two

7.6 SUPPORT FOR MULTIPLE FLOW INHERITANCE IN THE ALGORITHM 103

M C

p#

q#

(union p# q#) {a: int, b: int, c: int}

Figure 7.4: A merger and its consumer

messages as records and combines them in a single output message. A constraint follows
from the interconnection:

(union p# q#) v {a: int, b: int, c: int}.

To resolve the union, the algorithm performs the following steps:

1. Generates a new t-variable r# such that r# = (union p# q#) and adds a new entry to
U: U(r#) = (p#, q#).

2. Replaces the union in the constraint with r#:

r# v {a: int, b: int, c: int}.

3. Calls TRANSFORMUNION(r#, . . .) for r# and

(a) Generates new b-variables x, y and z;

(b) Sets approximations for p# and q#:

p# = {a(x): int, b(y): int, c(z): int}

and
q# = {a(¬x): int, b(¬y): int, c(¬z): int};

(c) Sets C(true, r#) = {x, y, z}.

As a result, the algorithm produces solutions (the number of ways to arrange three
elements in two sets) for p# and q#. Additional constraints may reduce the set of potential
solutions to p#, q# and r#. 4

104 CHAPTER 7. CSP-WS ALGORITHM

Chapter 8

Interface Configuration Protocol
for Service-Based Applications

A service-oriented approach (SOA) facilitates software development and maintenance.
As a relatively new technology, SOA relies heavily on existing technologies, such as
OOP. Object-oriented programming (OOP) is widely used in the implementation of
web services. It provides encapsulation, polymorphism, and inheritance — concepts
that simplify modern software development and maintenance. Many platforms for im-
plementing service-oriented applications are designed as object-oriented frameworks.
For example, Java Business Integration (JBI) [Bin08], Windows Communication Found-
ation (WCF) [MMW06], and the data distribution service (DDS) [PC03] support the
development of service-oriented applications on top of OOP.

However, moving from an object-oriented approach to a service-oriented approach
does not come without its challenges. One reason is that OOP was not originally de-
signed to represent services. Object-oriented methods assume that users of an object are
application developers. Typically, classes and class hierarchies are developed by one
team of developers within one application. Therefore, class interfaces are tightly coupled:
any modification to a method definition requires modification to the caller’s code.

Service loose coupling is the key principle of SOA. In contrast to an objects-based
application, a service-based application is designed in dispersed teams with diverse
requirements. Each service is treated in the form of a black box, which exposes only
its interface. That interface must be generic and should be adaptable to a good many
contexts. The service interface must meet the requirements of all clients that use the
service, because it is impossible to manually adjust the service to meet the needs of all
clients.

Service interoperability is typically achieved by tuning an interface at the client
end so it matches an interface provided at the server end. Therefore, web services

106
CHAPTER 8. INTERFACE CONFIGURATION PROTOCOL FOR SERVICE-BASED

APPLICATION

are tightly coupled, which contradicts the principle of Service Oriented Architecture
(SOA) [AGR13a]. The problem is caused by the fact that the service is represented as an
object that contains a set of methods. A message is received by calling a service’s method;
a service sends a message by returning a value from the method. Interface flexibility can
be achieved by using parametric polymorphism, but this is not enough to achieve service
loose coupling.

Services are often organised in long computational pipelines, which process an input
message step-by-step. A service modifies some elements of the input message and
sends the transformed message further down in the pipeline. In fact, the elements
can be contained in any message. Therefore, a reusable service must contain a specific
interface for elements that are being modified. The rest of the service must remain generic.
Moreover, any part of the input message that remains unmodified must automatically be
inherited from the input to the output, so that it can be processed by other services in the
pipeline. Such behaviour is called flow inheritance [GSS08, GSS10].

Unfortunately, flow inheritance cannot be achieved in a web service that is imple-
mented as a class that exposes a set of methods to other services. A method contains a
set of predefined arguments that cannot be extended if a method caller provides more
arguments than the method requires. Neither method arguments can automatically be
attached to the return value. The method can explicitly be overloaded with additional
arguments, but this delivers tight coupling between all services in the network.

We solve this problem and provide support for flow inheritance using an interface
configuration mechanism as presented in this chapter. Instead of representing a service
as an object, we model it as a black box, which exposes input and output ports to the
environment. A port has a name and an interface. To interact with the service, application
designers must declare communication channels between the service and clients. Clients
must provide and demand messages of formats that are compatible with those ones
specified in the port interface.

Instead of representing a service interface as a set of class methods, we encode it as
an MDL term. The interface is associated with each port and it specifies the format of a
message that can be sent to or received from the port. In our approach, a topology of the
application is statically defined. An application designer must connect the ports of inter-
acting services by means of communication channels. As a result, each communication
channel raises a seniority constraint on the MDL terms.

The MDL term associated with a generic service (i.e. a service that does not depend
upon a particular context) may contain variables. Variables are essentially a form of
parametric polymorphism. The variable is matched with data of any format which is
provided by a communicating service. Furthermore, the variables provide a mechanism

107

for wiring interfaces in a service. Putting the same variable into several interfaces for
the service allows data formats to be propagated across channels. The same format is
expected in all places in which the variable is present.

After creating a service application by connecting the services via communication
channels, it must be ensured that the communication is safe.1 In order to achieve this,
the CSP-WS must be solved (see Chapter 5). A solution for the CSP-WS instantiates
the variables with values that satisfy the constraints. In this way, it can be guaranteed
that the services in the application are compatible. Instantiating variables with the values
contextualises the interfaces. The variable values can also specialse service code, similarly
to the specialisation of C++ templates.

We provide support for flow inheritance using this approach. Firstly, we define a fixed
format for service interfaces. We represent an interface as a choice term at the top level.
Flow inheritance can be supported using tail variables in the choice. If choices in input
and output interfaces contain the same tail variable, then we guarantee that data that is
matched by the tail variable is automatically propagated to the output (see Figure 2.2 on
page 27).

Inheritance in OOP is a local mechanism for structuring stateful objects. A program-
mer always explicitly declares the relation between classes, which is something that
does not depend upon the context. In contrast to OOP, flow inheritance is a non-local
mechanism for structuring transformations (a transformation is a pair of input and output
interfaces) without taking states into consideration. The interfaces are extended auto-
matically provided that the extended interfaces satisfy client requirements. Furthermore,
our mechanism guarantees that the inherited data is always propagated from input to
output.

In this chapter we present an interface configuration protocol, which supports flow
inheritance in services that are coded in C++. In a nutshell, the protocol specifies the
following steps in order:

1. deriving the MDL interfaces from the code;

2. constructing the CSP-WS constraints;

3. providing a solution for the CSP-WS;

4. propagating the CSP-WS solution back to the service code.

Furthermore, we developed a toolchain that performs these steps and, as a result, special-
ises generic services within the context.
1 By safe communication we mean only interface compliance. There are other approaches, such as session
types [CHY07], that provide stronger guarantees about communication safety given a communication
protocol of each service. In contrast to these approaches, our method relies solely on the interfaces and is
not aware of service behaviour.

108
CHAPTER 8. INTERFACE CONFIGURATION PROTOCOL FOR SERVICE-BASED

APPLICATION

In order to address the names matching for messages and processing functions, we
introduce service separation into a core and a shell. The core is the code that implements
the functionality of the service. In our protocol, the core is essentially a set of C++
functions, each of them being responsible for processing a message without taking
environment details into account.

The shell is a layer that connects the core with the environment. Using the shell, the
application designer can match element names in output messages with those which
are expected by consumers. Furthermore, the designer can reroute messages to various
channels from the shell.

Our protocol supports not only records as messages, but also abstract data types, i.e.
collections that, in addition to the data, store methods which can operate upon the data.

An advantage of SOA is the concurrent processing of input messages. Incoming
messages can be processed in multiple threads, where each thread is defined by its
internal state. Thread-safety can be enabled by externalising the state in a message; that
is to say that if a thread crashes, its state can be recovered from the message. In this case,
a generic service has at least two input ports: one for receiving an input message and
another one that represents a state.

We discuss the generic services in Chapter 9. In this chapter we consider only those
services that do not have a port for injecting a message with a state in a service. This
allows us to focus on an interface configuration protocol for a simple case. Such ‘stateless’
services are widely used in the industry. These, for example, are query services: those
services that provide information to a requester without modifying an internal state of
the service.

In Chapter 9 we show that it is possible to reduce the interface configuration protocol
for ‘stateful’ services (those which have a port for injecting a message which carries a state
in the service) to the one for ‘stateless’ services. We achieve this by introducing a special
form of services, called synchronisers, which can merge multiple input messages into a
single output message. To reflect this message relation in the interfaces, we introduce a
special MDL term called a union (see Section 3.5). The union is a macro for a message
format which is constructed by merging two other messages together.

8.1 Overview

We present an interface configuration protocol in Figure 8.1 for services which are coded
in C++. Supporting the C++ services allows us to consider not only web-oriented
applications but also performance-critical applications. In general, the interface configur-
ation protocol is rather generic and can easily be extended for services written in other

8.1 OVERVIEW 109

languages.

AliceSeller Bob Carol

A.cppS.cppSource code B.cpp C.cpp

A.cpp⇤S.cpp⇤Augmentation with macros B.cpp⇤ C.cpp⇤

A.intS.intInterface derivation B.int C.int topology

seniority constraintsConstraint generation

CSP-WSCSP solution

B.hppA.hppS.hppHeader file generation C.hpp

A.libS.libLibrary compilation B.lib C.lib

Figure 8.1: An interface reconciliation workflow performed by the toolchain

In our protocol we assume that each service provider has a source code for a service
that they own. The protocol specifies a sequence of steps that needs to be performed
in order to check the consistency of service interfaces and to configure the interfaces
according to the context in which the services are used. The steps, which are automatically
performed by our toolchain, are defined as follows.

1. First, a code preprocessing is performed for each service. In particular, the code
is annotated with C++ macros. The macros are a placeholder for configuration
parameters, which are generated from the CSP-WS solution.

2. Then we derive the interfaces as MDL terms from the annotated services. This step
is performed by analysing the service code.

3. Given the MDL terms, we construct a set of the seniority constraints by taking an
application topology into account. This is a trivial step: for each pair of interacting
services, we construct a seniority constraint from the MDL terms. This step must be
performed in a centralised manner by a coordinator, because the interfaces from all
services must be collected.

4. Then we solve the CSP-WS.

5. If a solution to the CSP-WS exists, we construct a header file that encodes the solu-
tion in the form of the C++ macro definitions. In other words, the solution contains
configuration parameters for all services. The header file with its configuration is
provided to all services.

6. By including the provided header files, each service provider compiles a service lib-
rary that is configured specifically for the given context. Note that the providers do

110
CHAPTER 8. INTERFACE CONFIGURATION PROTOCOL FOR SERVICE-BASED

APPLICATION

not need to expose the code. They only provide binaries to a runtime environment.

In Figure 8.1, .cpp are the service source files. .cpp*⇤ are source files augmented with
preprocessor’s directives. .int are files with the derived interfaces. topology is a file
specifying the application communication graph. .hpp are header files for the augmented
source files that are generated from the CSP-WS solution. .lib are generated libraries
for the services.

Currently, the protocol supports only stateless services. We discuss a general approach
for supporting stateful services in Chapter 9. Integrating support for the stateful services
in the protocol is a problem for further work.

We illustrate the configuration protocol using the example from Section 3.6. Fig-
ure 8.2 is implementation of the Seller service. request_1 and payment_1 are processing
functions that are triggered when an input message arrives; the input data is passed
to the function with arguments. The processing functions are distinguished from other
functions by special return type service. Output messages are produced by calling
special functions called salvos. Salvos are declared by service developers and must have
salvo as return type. If a processing function calls a salvo function, the salvo arguments
are sent to the output as a message. Using this mechanism, each service produces zero or
more output messages as a response to a single input message.

1 salvo response_1(string title, int money);
2 salvo invoice_1(int id);
3 salvo error_2(string msg);
4 service request_1(string title) {
5 try {
6 int price = ...
7 response_1(title, price);
8 } catch (exception e) {
9 error_2(e.what());

10 }
11 }
12 service payment_1(string title, int money) {
13 try {
14 int invoice_id = ...
15 invoice_1(invoice_id);
16 } catch (exception e) {
17 error_2(e.what());
18 }
19 }

Figure 8.2: The code of the Seller service

8.1 OVERVIEW 111

The names of processing functions and salvos may have suffixes, such as _1 or _2.
The suffixes denote names of service input and output ports. The suffix in a function
name specifies the name of the input port where input messages are received from; the
suffix in a salvo name specifies the name of the output port where output messages are
sent to.

Typically, port routing is specific to an application in which the service is used.
Therefore, for service reusability we provide a mechanism that allows to redefine a
mapping between function/salvo names and ports.

The protocol provides a facility for renaming ports (see Chapter 4 for the port defini-
tion) and message routing. This is performed from a service component called a shell. The
shell is described in Section 8.1.2. In general, the shell is a service wrapper that provides
facilities for port rerouting and function name renaming.

In the example from Figure 8.2, error messages are sent to the second output port.
Our configuration mechanism is flexible: the application designer can decide whether to
accept and process error messages or not. If not, our configuration detects that the port is
unwired and the salvo function error_2 is not generated in the binary.

Figure 8.3 illustrates MDL interfaces derived by our configuration toolchain. In the
protocol we define a fixed interface format for the services. At the top level, an interface
associated with a port is a choice-of-records term. Labels in the choice term of the input
interface are equal to processing function names. As a result, a message is structured as a
labelled data record, where the label specifies the function that processes the message.
The name of a salvo corresponds to a label in an output choice term. Compatibility
of two communicating services is defined by the seniority relation. The interfaces can
automatically be derived using the tool that we developed. The tool is described in
Section 8.4.

IN #1: (:request(x): {title: string |a#}, payment(y): {title: string,money: int |b#} | c":)
OUT #1: (:response(x): {title: string,money: int |d#}, invoice(y): {id: int |e#} | c":)
OUT #2: (:error(x _ y): {msg: string | f #}:)

Figure 8.3: One input and two output interfaces derived from the Seller service’s code.
Additional constraints a# v d#, a# v f #, b# v e#, b# v f # must be generated

Boolean variables maintain relation between choice variants in input and output
interfaces. Using Boolean variables, we can specify that salvos are present in the interface
only if the functions producing the salvos can potentially receive some input.

In our example, response is present in the output interface #1 only if request is present

112
CHAPTER 8. INTERFACE CONFIGURATION PROTOCOL FOR SERVICE-BASED

APPLICATION

in the input one; similarly, error is present in the output interface #2 only if request or
payment is present in the input interface.

The effect achieved by Boolean variables is similar to intersection types [Pie97]. Inter-
section types increase expressiveness of function signatures. For example, the signature
(a ! c) ^ (b ! d) is more expressive comparing to (a ^ b) ! (c ^ d). Likewise, for
configuration of a generic service it is essential to know the relation between input and
output data. Otherwise, it is impossible to track flow of data in the application network.

Now we discuss the structure of constraints and implementation of flow inheritance
in Figure 8.3. c" is an up-coerced variable that stores variants. c" specifies unused
functionality of services inherited from Seller’s producers. The variants are automatically
propagated to output port #1, because c" is also present in the output interface OUT #1.
We designed inheritance to be configurable and, therefore, it can be either enabled or
disabled. In the example, inheritance in the output port #2 is disabled, and, therefore,
OUT #2 lacks the tail variable c".

Besides inheritance for variants, the protocol supports flow inheritance for record
elements. In the example, down-coerced variables d#, e# and f # specify data that is
demanded by Seller’s consumers. This requirement is propagated back to the input using
variables a# and b#. Relation between variables in the input and output interfaces is
maintained using auxiliary constraints a# v d#, a# v f #, b# v e# and b# v f #. Essentially,
they specify that a# must provide data that is required by both d# and f #, b# must provide
data that is required by both e# and f # (note that f # contains element that are present in
both a# and b#). No other auxiliary constraints, such as a# v e# or b# v d#, are needed.
We know that the service cannot produce the response salvo as a response to the payment

input message, and the invoice salvo as a response to the payment input message.
Now we illustrate back-propagation of the CSP-WS solution to services. It is the

final step of the interface configuration mechanism. To simplify this task, we pre-
liminary augment the code of each service with macro definitions as illustrated in
Figure 8.4. BV_x, BV_y, TV_a, TV_b, TV_d_decl, TV_e_decl, TV_f_decl, TV_d_use,
TV_e_use and TV_f_use are macros that are basically placeholders for the data that
needs to be inherited. For example, assume that d# = {id: int}, f # = {rank: float} and
a# = {id: int, rank: float} (recall that a# v d# and a# v f # must hold). Based on the
solution, the header file that contains the following macro definitions will be generated:2

#define COMMA ,

#define TV_a COMMA int id

#define TV_d_decl COMMA int id

#define TV_d_use COMMA id
2 In this example, ‘,’ is replaced by the COMMA macro due to limitations of the C preprocessor

8.1 OVERVIEW 113

#define TV_f_decl COMMA float rank

#define TV_f_use COMMA rank

Providing that the header file is included in the augmented source files, the above
definitions replace their corresponding macro names (see Figure 8.4). As a result, the data
that needs to be inherited will be included in processing functions and salvo functions
before compilation. The configured service is compiled specifically to the given context
and cannot be reused due to inherited context-specific data.

1 #if defined(BV_x)
2 salvo response_1(string title, int money TV_d_decl);
3 #endif
4 #if defined(BV_y)
5 salvo invoice_1(int id TV_e_decl);
6 #endif
7 #if defined(BV_x) || defined(BV_y)
8 salvo error_2(string msg TV_f_decl);
9 #endif

10 #ifdef BV_x
11 service request_1(string title TV_a) {
12 try {
13 int price = ...
14 response_1(title, price TV_d_use);
15 } catch (exception e) {
16 error_2(e.what() TV_f_use);
17 }
18 }
19 #endif
20 #ifdef BV_y
21 service payment_1(string title, int money TV_b) {
22 try {
23 int invoice_id = ...
24 invoice_1(invoice_id TV_e_use);
25 } catch (exception e) {
26 error_2(e.what() TV_f_use);
27 }
28 }
29 #endif

Figure 8.4: The code for the Seller service augmented with preprocessor’s directives.
BV_. . . and TV_. . . are macro names

We not discuss a structure of individual services, in particular, the core and the shell.

114
CHAPTER 8. INTERFACE CONFIGURATION PROTOCOL FOR SERVICE-BASED

APPLICATION

8.1.1 The Core

The core is the code of the service structured in a predefined format as illustrated in
Figures 8.2 and 8.5. The core is context-independent and can be seen as a reusable basic
module. The code of the core is accessible only by a designer of the service. In overall,
the core is observed as a black box. The services interact with each other only using a
predefined API. As a result, our mechanism supports proprietary services, which cannot
publicly expose their source code.

salvo result(int c);
service sum(int a, int b) {
 result (a + b);
}

service mult(int a, int b) {
 result(a * b);
}

core

shell

result -> factorial

result -> square

Figure 8.5: The core and the shell of the service

The core is structured as a set of processing functions, each receiving one input mes-
sage and producing a set of output messages at a time. After finishing input message
processing, the internal state of the service is destroyed. Such design is useful for distrib-
uted processing, where services can be replicated to increase the throughput or migrated
from one core to another without being afraid that the state is lost or unrecoverable.

The processing function is identified by a name, the format of its input message and
the format of the output messages. The name denotes the purpose of the processing
function and is equal to the function name by default. Furthermore, an MDL record,
which represents a message, is mapped to C++ function arguments. It causes a problem,
because elements of a record are ordered by inclusion, although C++ function arguments
are identified by a position. The application layer, which triggers processing functions,
must reorder record elements in a way they are specified in a processing function. On the
other hand, the problem disappears in languages with support for labelled arguments,
such as Python [Glo] or OCaml [OCa].

In order to call the processing function, another service must provide a message with
the same tag and compatible data format. Clearly, services that are developed by different
enterprises rarely share tags and exact data formats. Our reconciliation mechanism solves
this problem by checking compatibility of the formats.

In our mechanism the input and output interfaces of the interacting services are not
required to be exactly the same. The MDL supports depth and width subtyping, and,

8.1 OVERVIEW 115

therefore, input messages can contain more data than the processing function requires.
Assume that a consumer service requires {a: int} as the input format of a processing
function f and a producer service provides it with {a: int, b: float}. Consequently, the
signature of function f is service f(int a);. The configuration mechanism must re-
move an element b: float from the input message since it is required for safe execution.3

Furthermore, the MDL interfaces support polymorphism, which allows to integrate
the configuration mechanism with C++ templates.4 Assume that a processing function
contains an argument of type vector<T>, where T is an unitialised template argument.
The type can be represented as (vector t#), where t# is a free t-variable. After solving
the CSP-WS, t# is instantiated with a specific value, which can be propagated back to the
service as specialisation of T.

Finally, the main contribution of this work is support for flow inheritance. The service
can not only accept ‘more’ data that required, but also propagate excessive data (the one
that is provided, but not required by a consumer) to other services. A solution to CSP-
WS provides information about inherited record elements by analysing the application
topology. Although the inherited data is specific to the context, the core of the service
is reused in all contexts with different macro values (see Figure 8.1, which illustrates
configuration process in the context).

8.1.2 The Shell

Support of subtyping, polymorphism and flow inheritance provided in the MDL facilit-
ates service reusability. On the other hand, fixed names of the processing functions breaks
flexibility. Indeed, independent programming teams have different naming conventions.
It is unlikely that the names of processing functions in a producer and a consumer would
match. Furthermore, the services must be reusable: we want to avoid renaming names of
processing functions in the code. For this purpose, we introduce the shell.

The shell is a layer that is used as an additional configuration mechanism that adapts
services to the application topology. The shell is context-specific and is developed by an
application designer. Transformation of processing function names can be specified in
the shell as illustrated in Figure 8.6.

Furthermore, the services are designed to have multiple input/output logical ports
serving different purposes. For example, it is often natural to split the output into three
ports: the first produces the result of computations, the second produces debug logs, and
the third one produces errors. The environment may ‘connect’ to one or another port or
simply ignore it depending on the context.
3 Generation of such preprocessing function has not been done as part of this work though.4 The existing
implementation of the configuration mechanism lacks such integration.

116
CHAPTER 8. INTERFACE CONFIGURATION PROTOCOL FOR SERVICE-BASED

APPLICATION

There are two ways to specify port routing. First, the routing can be ‘hard-coded’ in
services as illustrated in Figure 8.2. The names of processing functions and salvos contain
suffixes, for example _1 and _2. The suffixes specify port mapping that is used without
the shell.

Developers can also specifiy port routing from the shell. The shell is a text file,
which is associated with a service, that contains 1) processing function/salvo name
transformation and 2) processing function/salvo routing to ports. Figure 8.6 is the shell
file that corresponds to name transformation and salvo routing from Figure 8.5.

result -> 1, 2
1[result/factorial]
2[result/square]

Figure 8.6: Illustration of the shell file. The salvo result is sent to two output ports. In
the first port, the salvo name is renamed to factorial and in the second port the salvo
name is renamed to square

8.2 Qualifiers

Messages in the protocol may contain elements of various types. Using MDL symbols,
we can represent basic types, such as int, string, double, etc. In Section 8.1.1 we also
explained how C++ templates can be supported. For example, (map k# v#) is a map

template and (map int string) is a template’s specialisation with int as a key and
string as a value.

Furthermore, we introduce support for const and volatile C++ qualifiers [CPP]
using tuples and records.5 We wrap all qualified types in a tuple. The first element of the
tuple is a record that contains qualifiers as labels. The second element of the tuple is an
unqualified type itself. For example, ({} int) represents int, ({const: nil} int) represents
const int, ({volatile: nil} int) represents volatile int and ({const: nil, volatile: nil} int)
represents const volatile int, respectively. Such representation of qualified types
allows us to achieve the partial ordering as illustrated in Figure 8.7.

8.3 Interface Classes and Objects

In addition to basic types, polymorphic types (i.e. templates) and qualified types, we also
added support for objects in the form of MDL terms to the configuration protocol.
5 Although there is no practical reason for having volatile qualifier in web services, we use it for
demonstrating support for multiple qualifiers.

8.3 INTERFACE CLASSES AND OBJECTS 117

unqualified

const volatile

const volatile

Figure 8.7: Partial ordering of C++ const and volatile qualifiers

Supporting object orientation in web services is challenging. Object representation
must be preserved when the object is sent from a producer to a consumer. On the other
hand, the producer and the consumer can be written in different languages. In this
case, it is difficult to guarantee that object representation is identical before and after
serialisation. Object binary properties, such as memory offset for fields, is difficult to
encode in structural form in XML or JSON [LM07].

Currently, interoperability of objects is achieved by manual tuning of client’s interfaces.
Furthermore, objects that are used in configuration between external web services do
not support subtyping [AGR13a]. As a result, the services are tightly coupled, which
contradicts the principles of SOA. In this section we demonstrate that expressiveness
of the MDL is sufficient to solve the interoperability problem between objects in web
services.

We encode structure of objects as C++ classes. We divide classes into two categories:
global classes and interface classes.

Global classes are available to all services. The purpose of global classes is to provide
basic primitives and most commonly used operations to all services. Since global classes
are available to all services, objects that belong to global classes can be safely transferred
between the services. On the other hand, a disadvantage is that all services are required
to share class definitions, which violates decontextualisation principles.

As a solution to the problem, we introduce another category called interface classes.
An interface class is a class that is defined inside a service. For an object that belong to
an interfaces class, a class representation must also be transferred along with the object.
Support for the interface classes requires the following properties:

Serialisability. For each interface class, there must exist its representation as a self-
contained MDL term. The term must contain all details about the class and must
unambiguously map to the class representation in binary format.

Flexibility and Compatibility. Typically, only objects of identical classes can be safely
transferred in web services. This breaks flexibility, because in this case use of

118
CHAPTER 8. INTERFACE CONFIGURATION PROTOCOL FOR SERVICE-BASED

APPLICATION

service in various contexts is limited. Our goal is to introduce class subtyping in
web services. With support for subtyping, a consumer can accept an object of any
compatible class. To achieve this, we must ensure that the seniority relation for
terms representing interface objects holds only if the objects are compatible.

We designed configurable interfaces classes that have the following features:

1. In C++ class fields are identified by the memory offset. We provide support for
field inheritance in classes (i.e. fields from other interface classes can be added) and
address the problem of offset misalignment.

Assume a producer declares the interface class struct A { int x; int y; };

and a consumer expects to receive struct B { int y; };. 6 Therefore, the
memory layout of B must be changed to struct B { int id; int y;};, where
id is an arbitrary identifier (the consumer does not use this field anyway).

2. We allow forward-declaration in interface classes. Specifically, a consumer may
specify only declaration of a method in the interface object and a producer can
provide implementation.

Consider the following example. Assume the producer sends the interface class
struct A { int foo() { ... } }; to the consumer and the consumer expects
to receive struct B { int foo(); }. The latter contains only declaration of
foo(). By solving the CSP-WS the definition is propagated from A to B. In our
approach, definitions of various methods can be provided various services.

3. As part of our configuration mechanism, we resolve a ‘conflict’ between method
definitions in a producer’s and a consumer’s class. The conflict arises if the producer
provides a definition of the method in the interface object that is already present in
the consumer’s interface.

4. We introduce support for C++ class private members. Private members are mem-
bers of the class that can only accessible within a service where the class is defined.
On the other hand, the private members cannot be removed from the class, because
it would change field offsets in the class.

To solve the problem, we propose to rename private members to random names
before they are sent to other services. In this way, we keep the private members in
the object and make sure that they cannot be accessed outside the service.

An overview of the existing approaches in [AGR13a, AGR13b] shows that structural
support of objects in web service is limited. Comparing to the existing approaches, our
solution is more functional and expressive.
6 In C++, struct is a class with exclusively public fields.

8.3 INTERFACE CLASSES AND OBJECTS 119

8.3.1 Structure of the Interface Class

For simplicity, we consider only basic features of the C++ class. In this model, we see
class as a collection of public fields and methods. In the following subsections, we expand
the class with other features, such as private members, templates, etc.

In the MDL we encode a class as a record term, where members of the class map to
the record elements. A record is an extendable term. While configuring the interfaces, we
store additional elements, which encode inherited class members, in the tail variable of
the record.

Class fields and methods are encoded in the MDL in the following way. If a class
member is a field, then the record contains an element with the label equal to the field
name; similarly, if a class member is a method, then the record contains an element with
the label equal to the method’s name and argument types provided as a string.

For example, the class struct A { int a; string foo(int x) { ... } }; is de-
scribed by the following term in the MDL: {a: int, foo(int): (string c") |t#}.

If an element of the record represents a class field, then the record subterm encodes the
field type as a symbol (or a tuple, if qualifiers from Section 8.2 are supported). Similarly,
if the element represents a method, then the record subterm encodes the method return
type and a reference to the method implementation, both stored in a tuple. In the example
above, the implementation is stored in the variable c". The structure of c" is discussed in
Section 8.3.3.

Such representation follows the overloading rules for class members in C++ [Str13].
The variables cannot be overloaded, therefore, the class record may contain only one
element for each field in the class. Using method overloading, one can define methods
with the same name, but different arity or argument type. Therefore, an element of the
record for a method is uniquely identified by the name and a list of argument types. For
example, there are two elements for a method overloaded with string foo(int x) and
string foo(string x): an element with the label foo(int) and an element with the
label foo(string).

8.3.2 Field Inheritance

Inheritence of fields in the interface class is similar to the inheritance of message elements
as described in Section 8.1. The interface class can be extended with additional fields.

We illustrate field inheritance using the following example. Assume that the producer
declares the class struct A { int x; int y; }; as an interface class sent to the output.
Then, the consumer may contain any subset of the fields in A. For example, A can be
matched by struct B { int y; };. On the other hand, lack of x in B changes object

120
CHAPTER 8. INTERFACE CONFIGURATION PROTOCOL FOR SERVICE-BASED

APPLICATION

memory layout. Therefore, all fields that are present in A, must be inherited in B. This can
be achieved using the constraint

{x: int, y: int}| {z }
struct A

= {y: int |a#}| {z }
struct B

,

where the left term represents the interface of A and the right term represents the interface
of B (the equality relation on terms is defined in Eq. (3.1)). a# inherits fields that are
present in A, but not present in B. Furthermore, if B contains fields that are not present A,
then the constraint is unsatisfied and a communication error occurs.

If the constraint is satisfied and B is provided with all fields that it lacks from A, then
the memory layout problem needs to be fixed. Indeed, in the current example, inserting
int x to the end of B leads class incompatible with A (see illustration in Figure 8.8a).
After configuration one must ensure that the offsets for all fields in A and B are exactly
the same. For these purposes, our mechanism reorders class members in lexicographical
order on label names.

x
y

struct A
y
x

struct B
0 0

4 4

(a) The field x added to the end of the class breaks compatibility between A and B

x
y

struct A
x
y

struct B
0 0

4 4

(b) The field x added to the correct position, which does not break class compatibility

Figure 8.8: Inherited data placement in the class affect correctness and compatibility of
class memory layouts

8.3.3 Method Inheritance

Configuration of interface class methods is more difficult comparing to configuration of
the fields. We consider several cases.

Consumer’s methods that contain declaration only

In the first case, a consumer may contain an interface object’s method with only declara-
tion. We illustrate it using the following example.

A consumer expects an instance of a class that represents a geographical map. Fur-
thermore, the class declares a method findLocation that retrieves coordinates of the

8.3 INTERFACE CLASSES AND OBJECTS 121

location given an address or a name (for example, Google Places API provides such kind
of functionality [Goo]):

struct Map {

GeoMap data;

// ’findLocation’ returns longitude and latitude as a pair

pair<double, double> findLocation(string place);

};

The producer must provide an implementation of findLocation encoded as an MDL
term.

Implementation of the method is encoded in the MDL in a following way. We specify
a term that stores the code as a singleton choice: c" = (:code: hash_12345:). Here the
code is a keyword and hash_12345 is a hash code of the string representing the method’s
code. A lookup table that maps a hash to the source code (encoded as a string) is shared
between all services in the network.

Defining the term for a code as a choice allows the producer to propagate the method
definition on the corresponding class in the consumer’s interface. In the example above,
assume that the producer intends to provide the consumer with struct Map that contains
the field data and the definition of findLocation method:

struct Map {

GeoMap data;

// ’findLocation’ returns longitude and latitude as a pair

pair<double, double> findLocation(string place) { ... }

};

The relation is specified by the following constraint:7

{‘findLocation(string)0: (‘pair<double, double>’ (:code: hash_12345:)) |p#} =

{‘findLocation(string)0: (‘pair<double, double>’ c") |q#}, (8.1)

where c" is a variable, which corresponds to the definition of findLocation method.
The variable is set to none initially (that is, no definition is present, only declaration).
c" = (:code: hash_12345:) is a solution to the constraint (the code can be obtained by
getting a value for the hash 12345 in the code lookup table. Notice that the c" would
remain equal to the initial approximation nil if a record term would be used instead of a
choice to represent the method implementation.
7 Quotation marks in labels and names are introduced to prevent term ambiguity caused by presence of
spaces and parenthesis in the symbols.

122
CHAPTER 8. INTERFACE CONFIGURATION PROTOCOL FOR SERVICE-BASED

APPLICATION

Availability of method’s source code across the services does not raise privacy issues.
The services exchange the interface objects anyway, so behaviour of the interface objects
is explicitly public.

The constraint for the methods (8.1) is defined in a form of an equality on records
with tail variables. It allows the producer to contain methods that are not required by the
consumer and the consumer to contain methods that are not provided by the producer.
The latter is perfectly acceptable if the consumer’s method contains the definition (that
is, the consumer does not require any information from the producer). Otherwise, the
consumer lacks the method’s definition and the error must be reported. In terms of the
MDL interfaces, c" remains none in the latter case. Since c" = none is a satisfiable solution,
detection of the error while solving the CSP-WS is impossible, but can be done during
the next configuration step (Header file generation step in Figure 8.1) by simply checking
the value of code variables that must not be equal to none.

Consumer’s methods containing definitions

In general case, consumer’s interface objects may contain method definitions, similarly
to producer’s interface objects too. On the other hand, if both the producer and the
consumer contain the same method’s definition, a conflict arises. In this case, there are
three scenarios:

1. In the most trivial scenario, the code provided by the producer is the same as the
one defined by the consumer. To recall, in the MDL we represent the code as a
symbol that is a hash of the original code string. As a result, with the current
implementation, the code of the producer and the consumer can match only if the
strings representing the code are literally identical. For example, the code { return

f(n-1) + f(n-2); } matches only itself, and not { return f(n-1)+f(n-2); }

due to different formatting. Clearly, in real-world scenarios with services developed
independently, the code is almost never matched given this approach. More in-
telligent ‘code matching’ algorithm, specifically the one that compares behaviour
specification, can be used without breaking consistency of the overall configuration
mechanism.

2. In the second scenario, the consumer may want to ignore declaration or definition
of the method provided by the producer and use its own definition instead. In this
case, the definition encoded in the MDL represents a switch like in the following

8.4 IMPLEMENTATION 123

example:

{‘findLocation(string)0: (‘pair<double, double>’ (:code: hash_12345:)) |p#} =

{‘findLocation(string)0: (‘pair<double, double>’ h(r): hash_67890, (¬r): c"i) |q#}.
(8.2)

The term h(r): hash_67890, (¬r): c"i in the consumer’s interface contains the b-
variable r that is true if no definition is provided by the producer or the provided one
matches the consumer’s method (in this case, refer to Item 1); alternatively, r equals
false if the definition provided by the producer does not match the consumer’s
definition. In this case, a hash code of the string representing the method definition
is stored as a value of c". If the consumer wants to use it’s own implementation,
then it ignores the value in c" and uses the value that corresponds to the hash
hash_67890.

3. Finally, in the third scenario a consumer contains the method’s definition but prefers
to replace it with the producer’s method definition if provided. The definition
encoded in the MDL as a switch term (like in the case 1) handles this case too. If the
overrided method is provided, then r equals false and the configuration algorithm
must select the hash value stored in c". Otherwise, r is false and no overrided
version is provided.

The cases 2 and 3 are alternative scenarios. The configuration mechanism selects one
of them depending on service settings. Specifically, for each method it must be specified
whether the method overriding is supported or not. We achieve it by reusing the C++
keyword volatile (the original meaning is meaningless in the context of web services).
The methods that support overloading must have the volatile specifier, which is used
during interface derivation step and is removed before the code derivation.

8.4 Implementation

The toolchain is developed in C++ and OCaml, also using Clang for the C++ code
analysis and the PicoSAT solver as part of the CSP-WS solver [Zai17]. The toolchain
configures the service interfaces in five steps as illustrated in Figure 8.1:

1. For each file that contains a service source code in C++, augment them with macros
acting as placeholders for the code that enables flow inheritance (as illustrated in
Figure 8.4);

2. Derive the interfaces from the code (see Figure 8.2);

124
CHAPTER 8. INTERFACE CONFIGURATION PROTOCOL FOR SERVICE-BASED

APPLICATION

3. Given the interfaces and the application topology, construct the constraints to be
passed on to the CSP-WS algorithm;

4. Run the CSP-WS solver;

5. Based on the solution, generate header files for every service with macro definitions.
In addition, the tool generates the API functions to be called when a service sends
or receives a message;

6. Given the modified service source files and the generated header files, create a
binary library for every service.

The steps 3–5 are performed by a centralised composition coordinator (which could
be any service selected arbitrarily) while other configuration steps can be performed
independently for each service. The coordinator only receives information about service
interfaces.

As a result, the toolchain generates a set of service libraries from the topology and
service source files. The libraries can be used with any runtime, which is able to com-
municate with services using the API. Application execution strategy and resource
management are up to designers of a particular web service technology. In addition to
flexibility, advantages of the presented design are the following:

• Interfaces and the code behind them can be generic as long as they are sufficiently
configurable. No communication between services designers is necessary to ensure
consistency in the design.

• Configuration and compilation of every service is separated from the rest of the
application. This prevents source code leaks in proprietary software running in the
Cloud.8

8 which is otherwise a serious problem. For example, proprietary C++ libraries that use templates cannot
be distributed in binary form due to restrictions of the language’s static specialisation mechanism.

Chapter 9

Message Synchronisation
in Stateful Services

The interface configuration protocol which was presented in Chapter 8 is applicable
only for stateless services. Such services are typically used for querying information
without modifying the service state itself. The interface configuration protocol for such
services is simpler than is the protocol for generic stateful services. This means that
interaction between service input messages is not allowed. In other words, the interface
configuration protocol from the previous chapter can only be applied to services in which
an output message is a function of a single input message.

However, a generic service may indeed have a state. In order to be able to argue
about the correctness of stateful services we need a service behaviour specification
to be expressed in some sort of protocol. There exist approaches, such as multiparty
session types [HYC08], which can be used to prove communication correctness in generic
services. In our approach, we do not prove communication correctness in stateful
services. However, our mechanism can be useful for showing the correctness of message
composition in services, where an output message is produced as a combination of
multiple input messages.

We support stateful services in the configuration protocol by externalising a service
state in the form of a message (see Figure 9.1). This technique is useful for service
reliability and fault-tolerance, because the state of the service can be recovered from a
‘state’ message if the service has crashed. As a result, each service with an externalised
state has at least two input ports, one of them for receiving messages that represent the
externalised state of the service.

We apply the interface configuration protocol for stateful services (in addition to
stateless services) using synchronisers. Synchronisers are special services that combine
several input messages into one message and forward the constructed message to the

126 CHAPTER 9. MESSAGE SYNCHRONISATION IN STATEFUL SERVICES

stateful
service

state

Figure 9.1: A stateful service that stores its state as a message

synchroniser stateless
service

state

state+input message

Figure 9.2: A stateful service is modelled as a synchroniser, which merges an input mes-
sage and a state, and a stateless service, which receives a message from the synchroniser

output. Each stateful service can be represented as a synchroniser prepended to a stateless
service (see Figure 9.2).

A synchroniser is defined as a state transition system in a domain-specific language.
The synchroniser has a set of predefined states and transitions between them. A transition
is associated with one of the input ports and is triggered upon receipt of a message from
the port. The synchroniser may also have a storage for integer values, which is called
state variables, and a storage for input messages, which is called store variables. In each
state, the synchroniser can do the following:

• set or update the value for state or store variable;

• send a message, which is formed using an input message, or a state or store variable,
to output ports (one or more);

• switch a state.

We extend the interface configuration protocol with a mechanism that analyses the
synchroniser and automatically derives interfaces from the synchroniser. This allows us to
reuse the protocol from Chapter 8 for stateful services as well. The interface configuration
protocol for stateful services is reduced to the protocol for stateless services. We replace
each stateful service with a pair consisting of a synchroniser followed by a stateless
service (see Figure 9.2). The synchroniser combines input messages with a state message.
As a result, the service receives its previous state and an input in a single message.

In this chapter we present the syntax for the synchronisers. The interface configuration
protocol does not support the synchronisers as it is; however, below we discuss how
we can represent synchroniser interfaces and internal state transitions in the form of
the seniority constraints. We specialise the synchroniser interfaces by resolving the

9.1 SYNTAX 127

constraints in the CSP-WS. We use the MDL term union (see Section 3.5) to describe a
message that is constructed as a composition of two messages.

The synchronisers described in this chapter are supported in a coordination language
AstraKahn [Sha13], which currently exists in the form of a prototype. The syntax and the
semantics of the language for synchronisers are provided in [Sha13, Kuz16, Tik15].

9.1 Syntax

We define the language of synchronisers as follows.

9.1.1 Header

hsynch_decli ::= ‘synch’ hsynch_namei ‘(’ hports_decli ‘)’
‘{’ hvariable_decli* hstate_decli+ ‘}’

hsynch_namei ::= hidentifieri

The header of the synchroniser contains the name of the synchroniser and a set of
ports that specify a set of input and output ports. The body of the synchroniser is specified
in braces: the body contains declarations of state and store variables that are followed by
a description of a finite-state machine, which specifies the synchroniser behaviour.

hports_decli ::= hinput_port_namei [‘,’ hinput_port_namei]* ‘|’
houtput_port_namei [‘,’ houtput_port_namei]*

hinput_port_namei ::= hintegeri
houtput_port_namei ::= hintegeri

The ports in the header declare a set of input and output ports that are used for wiring
services. Following a convention from the configuration protocol, which is presented in
Chapter 8, the port names are integers.

9.1.2 Body

Variable declaration

hvariable_decli ::= ‘store’ hidentifier_listi ‘;’
| ‘state’ htypei hinit_decli [‘,’ hinit_decli]* ‘;’

htypei ::= ‘int’

hinit_decli ::= hidentifieri [‘=’ hintegeri]

128 CHAPTER 9. MESSAGE SYNCHRONISATION IN STATEFUL SERVICES

hidentifier_listi ::= hidentifieri [‘,’ hidentifieri]*

Store variables are used for storing messages. The variables are typed. A type of
a store variable is specified as an MDL term, which can be derived automatically (see
Section 9.2). If a variable store a message from an input, then the type equals to the MDL
term associated with an input port where the message comes from. Otherwise, if a stored
message is constructed within the synchroniser using a union operation ||, which is
presented in Section 9.1.3, then a union term (union . . .) is used to represent the type.
Similarly to service interface, the types of store variables may be generic (i.e. they may
contain t-variables and b-variables) outside the environment, and contextualised later
using the CSP-WS, when the synchroniser is inserted in the context.

A sychroniser is a coordination primitive. Its purpose is to combine multiple messages
into one before the messages are sent to a stateless service. The synchroniser should be
expressive enough to be able to specify various kinds of synchronisation primitives. For
this purpose, we introduce support for integer arithmetic to synchronisers (see int_expr
rule in Section 9.1.3). The integers can be used for storing array indices, collection sizes,
message depths, etc. We introduce state variables to store a computation result for integer
expressions.

9.1.3 States

hstate_decli ::= hstate_namei ‘{’ ‘on:’ htransitioni+ [‘elseon:’ htransitioni+]* ‘}’

hstate_namei ::= hidentifieri
htransitioni ::= hport_namei [‘.’ hmsg_patterni] [‘&’ hpredicatei]

‘{’ hstatementsi ‘}’

hport_namei ::= hinput_port_namei
| houtput_port_namei

hmsg_patterni ::= hrecord_patterni
| ‘else’

hrecord_patterni ::= ‘(’ hidentifier_listi [‘||’ htaili]‘)’

htaili ::= hidentifieri
hpredicatei ::= hbool_expri

Each state has a name and a set of transitions associated with the state. A synchroniser
must have an initial state, which is called start by convention.

Transition declaration starts with on: or elseon: keyword followed by the pattern
expression. When a new message arrives to one of the input ports, it gets matched

9.1 SYNTAX 129

against one of the predefined patterns in the current state. The pattern consists of a port
name, a record pattern and a Boolean expression that involves local (visible within the
current transition only) and state variables. If a single input message is match by multiple
patterns, by convention the priority is given to the top-most transition that matches the
pattern.

Example 9.1.1.
1.(x, y || z) & p = 0

is a predicate on the port #1, which is matched if a record in the input message contains
elements with labels x and y and the state variable p is zero. For example, a message
{x: 1, y:2, z: 3, w: 4} is matched by the predicate. Furthermore, in this case
the synchroniser will create and initialise local variables x = 1, y = 1, z = 1, and w =

{z: 3, w: 4}. 4

Transition

A transition contains a set of statements that are executed when the transition pattern is
matched. The statements are optional, but the statements are executed in the order they
are specified.

hstatementsi ::= [hset_stmti] [hsend_stmti] [hgoto_stmti]
hset_stmti ::= ‘set’ hassigni [‘,’ hassigni]* ‘;’

hassigni ::= hidentifieri ‘=’ (hint_expi | hdata_expi)
hsend_stmti ::= ‘send’ hdispatchi [‘,’ hdispatchi]* ‘;’

hdispatchi ::= hdata_expi ‘=>’ houtput_port_namei
hgoto_stmti ::= ‘goto’ hstate_namei [‘,’ hstate_namei]* ‘;’

There are three statement categories. The first statement type starts from the set

keyword. Essentially, the statement assigns new values to store or state variables. int_expr
is an expression that evaluates to an integer, and data_expr is an expression that produces
a new message (its syntax is provided below).

The statement that starts with send keyword sends a message (input message, the
one that is stored in a store variable, or a message constructed from other messages) to
the specified output port.

Finally, the last type of the statement starts with goto keyword. It specifies the
next state of the synchroniser. If various states are provided, then the state is selected
non-deterministically.

130 CHAPTER 9. MESSAGE SYNCHRONISATION IN STATEFUL SERVICES

The syntax for message constructing expressions is the following:

hdata_expi ::= hatom_listi | ‘(’ hatom_listi ‘)’

hatom_listi ::= hatomi [‘||’ hatomi]*
hatomi ::= ‘this’ | hidentifieri ‘:’ hrhsi
hrhsi ::= hint_expi | hidentifieri

A message can be produced from 1) a store variable 2) a key-value pair that is
transformed to a singleton record 3) the input message accessed by a keyword this and
4) a union operation || that combines two message expressions into one.

Example 9.1.2. The synchroniser that implements a simple merger (Figure 3.4) can be
defined as follows:

synch merger (1, 2 | 3) {

store a, b;

start {

on: 1 { set a = this; goto wait2; }

elseon: 2 { set b = this; goto wait1; }

};

wait2 {

on: 2 { send (this || a) => 3; goto start; }

};

wait1 {

on: 1 { send(this || b) => 3; goto start; }

};

}

In the start state, the merger expects a message from either a port 1 or 2. If the message
from 1 is received, the merger stores the input message in the variable a and changes its
state to wait2; likewise, if the message from 2 is received, the merger stores the input
message in the variable b and changes the state to wait1. In the states wait1 and wait2

the merger waits for a message from another port, sends it to the output port and transits
to the start state. 4

Below we informally describe a mechanism for deriving interfaces from the synchron-
iser. This allows to integrate synchronisers into the interface configuration protocol and
ensure that store variables declared in the synchronisers and their interface formats are
compatible with interfaces of other services in the environment.

9.2 CONSTRAINT DERIVATION 131

9.2 Constraint Derivation

In this section we describe an idea of an algorithm for deriving generic interface from a
synchroniser. After deriving the interfaces, the interfaces can be configured while solving
the CSP-WS. As a result, the interface configuration protocol for stateless services can be
extended with support for the synchronisers.

The algorithm that derives the MDL interfaces from a synchroniser consists of two
parts. First, with each input and output port in the synchroniser we associate a free
t-variable. A free t-variable encodes the most generic interface. Next, the synchroniser is
analysed and auxiliary seniority constraints which restrict variable values are derived
from the synchroniser. Particular values that satisfy the constraints are found by solving
the CSP-WS.

In order to produce a set of the auxiliary constraints, all transitions in the synchroniser
must be traversed. A transition is triggered when an input message received from a given
port matches a record pattern and a Boolean predicate (if the latter is specified). The
record pattern specifies record labels that must be present in the message. For example,
given a record pattern (a, b, c || t) and t-variable p#, which is associated with an
input port, the constraint

p# v {a: v#1, b: v#2, c: v#3 |t},

where v#1, v#2 and v#3 are free variables, specifies that the input message defined by p#

matches the pattern. In this example, elements identified by the labels a, b, and c can be
accessed as local variables. For example, if a predicate a < 0 is used in a condition, then
a must be an integer and the constraint

v#1 v int.

must be produced.
In a single state only one transition is triggered when the synchroniser receives a

message. As a result, constraints that correspond to different transitions in one state are
alternative. This behaviour can be specified by using a switch term.

In addition to the constraints that correspond to transition patterns, we must add
constraints for statements in a synchroniser. For this purpose with each store variable we
associate a free t-variable. The t-variables represent the format of a message stored in a
given variable. The t-variables can be refined

For an assignment statement set that involves store variables, we can generate
constraints of the form

t v a#,

132 CHAPTER 9. MESSAGE SYNCHRONISATION IN STATEFUL SERVICES

where a# is an interface variable associated with the store variable being assigned, and t
represents a term constructed for an expression data_exp (a procedure for constructing
terms for data_expr is explained below). For the send operator, we generate a constraint
of the same form, where t corresponds to the message being dispatched and a# is the
interface variable of the output port. For goto statement we don’t add any additional
constraints. Instead, we change the state and repeat the constraint derivation algorithm.
If multiple states are specified in the goto statement, then the algorithm must include
all constraints derived from all of the states to a single set, because at runtime the
synchroniser can switch to any of the states.

The data_exp expression is constructed from the input message, messages from the
store variables, a singleton record and || union operation. An MDL term t that corres-
ponds to the expression can be constructed in a straightforward manner. The MDL term
for the input message is the variable associated with the input port; store variables have
a corresponding term as well; a singleton record maps to an MDL record. These three
kinds of the MDL terms can be united with a union tuple (see Sections 3.5 and 7.6).

Example 9.2.1. For the synchroniser in Example 9.1.2, the interfaces and the constraints
are derived as follows.

Let a# and b# be t-variables that are associated with store variables a and b, respect-
ively; and let c#, d# and e# be t-variables that are associated with input ports #1, #2 and
output port #3, respectively.

The constraint aggregation starts from the state start. There are two transitions that
correspond to two input ports. In the first transition, this corresponds to a message
from the input port #1; in the second transition, this corresponds to the input port #2.
From the assignment statements in the start state we derive two constraints:

c# v a#

d# v b#.

From the start state the synchroniser can move to states wait2 and wait1. Therefore,
the constraints that follow from these states must be generated. In both states, the union
operator || is used. As a result, from wait2 the constraint

(union d# a#) v e#

is generated. Similarly, from wait1 the constraint

(union c# b#) v e#

9.2 CONSTRAINT DERIVATION 133

is generated.
The derivation result consists of the interfaces c#, d# and e# associated with the ports

and a set of the constraints that specify relations between the interfaces. 4

134 CHAPTER 9. MESSAGE SYNCHRONISATION IN STATEFUL SERVICES

Chapter 10

Image Processing Use Case for
Interface Configuration Protocol

In this chapter we illustrate the interface configuration protocol, which we presented in
Chapter 8, using a practical use case.

The use case is an image segmentation algorithm that is based on k-means cluster-
ing [Mac67]. The structure of the application is shown in Figure 10.1. We selected the
application that contains only stateless services, because synchronisers (see Chapter 9)
are not yet properly supported in the protocol.

read init kMeans
1 1 1 1 1 1

2 2
2
3

segmented
image

logs/errors

denoise
1
2d

d

Figure 10.1: An image segmentation algorithm based on k-means clustering that is
implemented as a service-oriented application

The application network represents a pipeline composed of four services:

• The service read opens an image file using an input message Mr1 with the file
name, and sends it to the first output port. The service contains 3 functions that
overload behaviour of the service. In terms of the MDL, the input interface of the
component is defined by 3 choice variants: 1) Vr1 loads the colour image in RGB
format; 2) Vr2 loads the grayscale image as an intensity one; and 3) Vr3 loads the
image as it is stored in the file. The second output port of the service is intended for
sending auxiliary and debugging information, such as logs and error messages.

• The service denoise preprocesses the input image by removing the noise from the
images. The service contains two functions that remove the noise from colour and

136
CHAPTER 10. IMAGE PROCESSING USE CASE FOR INTERFACE CONFIGURATION

PROTOCOL

grayscale images, respectively. Both functions produce images of the same format,
which are directed to the first output port. Similarly, to the read service, denoise
has the second output port for producing error messages.

• The service init sets initial parameters for the k-means algorithm. The service
contains one processing function Vi1. The input message can come either from the
service denoise or from the environment with an input message Mi1 if it has been
opened and preprocessed before. The input message must contain the number of
clusters K and the image itself. Similarly to the read and denoise service, init has
a second output port for sending auxiliary output.

• The kMeans service represents an iterative implementation (defined as a function
Vk1) of the k-means algorithm. The result of each iteration is sent to the first output
port, which is circuited back to the input port of the component itself. This kind of
design gives an opportunity to manage system load in the run-time and execute
the next iteration only when sufficient resources are available. Once the cluster
centres have converged, the algorithm yields the result to the second output port.
Furthermore, the service has a third output port for sending logs.

Using flow inheritance, a variant Mi1 is routed directly to the init service bypassing
the services read and denoise. Similarly, again using flow inheritance, a parameter K
that is contained in Mr1 is implicitly bypassed through read and denoise to init.

The interface reconciliation algorithm is capable of finding out that Vr2 and Vr3 are
not used with the provided input, and functions containing the implementations will be
excluded from the generated code.

In Appendices A.1.1 to A.1.4 we provide the code for these four services. All services
include the configuration header mdl.h that contains protocol-specific declarations, such
as salvo, service, as well as API for service communication with the environment.
The core of a service (see Section 8.1.1) contains implementation of the service. The
implementation is structured as a set of processing functions that process input messages
of various formats (these functions are distinguished from other functions by the return
type service). Each processing function calls functions with the return value salvo,
which triggers message dispatch to one or more communication ports depending on a
channel routing specified in the shell (see Section 8.1.2).

The shell is a file that is associated with each service. It allows to

1. rename labels in a choice term that represents output message variants;

2. rename labels in a record term that represents an output message;

3. customise output message port routing.

137

The shell provides a mechanism to solve the problem of service interface mismatch that is
caused by different labels or ports. The problem is addressed during service composition,
because service code should remain unaffected. Indeed, a service designer can choose
any label names and ports without relying on other services and the context.

The network topology for the image processing example is provided in Appendix A.2.
The shells below are created in a way that the names exported from the producing service
match the names in the consuming service.

The shell for the read service is specified as follows:

send_color -> 1

send_grayscale -> 1

1[send_color/denoise_color]

1[send_grayscale/denoise_grayscale]

The shell redirects send_color and send_grayscale salvos to the first output port and
renames the salvo names from send_color and send_grayscale to denoise_color and
denoise_grayscale, respectively.

The shell for the denoise service is specified as follows:

1[send_img/init]

The shell renames the salvo send_img to init in the first output port.
We do not provide the shell for the service init. Therefore, the default port routing,

which is specified in the source file, is used.
The shell for the kMeans service is specified as follows:

result -> 2

error -> 3

1[loop/kMeans]

The shell redirects the salvos result and error renames the salvo that is sent to the first
output port.

The shell is analysed during the interface derivation (see Section 10.2) in the interface
configuration protocol.

An application interacts with the environment. The environment provides an input
for the application and consumes output messages produced by the application. We
model environment as a separate service. In contrast to other services, the environment
does not have an implementation. Instead, it explicitly exposes its interfaces as the terms.
The interfaces expose the data format that is expected or demanded in the environment.
The terms that specify the environment interfaces do not contain variables, because the
format of the provided data is always known.

138
CHAPTER 10. IMAGE PROCESSING USE CASE FOR INTERFACE CONFIGURATION

PROTOCOL

10.1 Service Code Transformation

In the first step of the interface configuration protocol, we modify the code for each
service and introduce a configuration macros. The macros are placeholders for the code
that implements flow inheritance (Section 10.4 contains an example). Furthermore, we
annotate the code with macros that allows to exclude redundant (in the given context)
functions from the library.

Below we demonstrate a transformed code for the read service. A complete code
snippet for transformed services is provided in Appendices A.3.1 to A.3.4.

While transforming the code we wrap salvos and function declarations/definitions in
#if ... #endif macro:

#if defined(f_read_color_1) || defined(f_read_unchanged_1)

salvo send_color(std::vector<std::vector<double>> img

read_read_color_1_read_unchanged_1_send_color_decl);

#endif

In this example f_read_color_1 and f_read_unchanged_1 represent Boolean variables.
Values for Boolean variables are resolved while the CSP-WS is solved. f_read_color_1
is true only if the function read_color_1 is required in the context; similarly, f_read_-
unchanged_1 is true only if the function read_unchanged_1 is used in the given applica-
tion. read_color_1 and read_unchanged_1 are functions that can produce send_color
salvo. If none of these functions is needed, the salvo definition can safely be removed
from the library.

Furthermore, we add a macro read_read_color_1_read_unchanged_1_send_color_-
decl to the declaration of the salvo send_color. The macro corresponds to a tail variable
in an MDL term and implements flow-inheritance: the declaration and the definition of
the function is expanded with additional arguments after the CSP-WS is solved.

We transform a function definition in a similar way:

#ifdef f_read_color_1

service read_color_1(std::string fname read_read_color_1_decl) {

cv::Mat image = cv::imread(fname, CV_LOAD_IMAGE_COLOR);

if(!image.data)

error_2("Could not open or find the image"

read_read_color_1_read_grayscale_1_read_unchanged_1_error_use);

else {

send_color(image

read_read_color_1_read_unchanged_1_send_color_use);

}

}

#endif

10.1 SERVICE CODE TRANSFORMATION 139

In this snippet, the function read_color_1 must be present in a library only if the Boolean
variable f_read_color_1 is true. Otherwise, the function is not used and can be removed
from the library.

Within the service, flow inheritance is propagated using variables read_read_color_-
1_decl, read_read_color_1_read_grayscale_1_read_unchanged_1_error_use and
read_read_color_1_read_unchanged_1_send_color_use. read_read_color_1_decl
provides a list of arguments to propagate to output; read_read_color_1_read_grayscale_-
1_read_unchanged_1_error_use and read_read_color_1_read_unchanged_1_send_-

color_use must contain subsets of arguments from read_read_color_1_decl. Depend-
ing on the context, CSP-WS finds subsets with elements demanded by other services
in the pipeline. The relation between the variables is specified by generating auxiliary
constraints in the constraint generation phase:

read_read_color_1_decl v read_read_color_1_read_grayscale_1_read_unchanged_1_error_use

read_read_color_1_decl v read_read_color_1_read_unchanged_1_send_color_use.

In addition to annotating services and salvos, in this step we generate an API. Spe-
cifically, we generate 1) functions that are called by the run-time environment when a
message arrives to the service, and 2) functions that are called within a library to notify
the run-time environment when the service sends a message.

void input_1(salvo&& _msg) {

#ifdef f_read_color_1

if (_msg.getType() == "read_color") {

cereal::BinaryInputArchive iarchive(_msg.ss);

std::tuple<std::string read_read_color_1_types > _data;

iarchive(std::get<0>(_data) read_read_color_1_tuple_get);

read_color_1(std::get<0>(_data) read_read_color_1_tuple_get);

return;

}

#endif

#ifdef f_read_grayscale_1

...

#endif

#ifdef f_read_unchanged_1

...

#endif

read_read

}

input_1 is a function called by a run-time system when the message _msg is received in
the input port #1. Every message has a ‘type’: a choice variant that the message belongs to.

140
CHAPTER 10. IMAGE PROCESSING USE CASE FOR INTERFACE CONFIGURATION

PROTOCOL

The function unpacks the message, deserialises1 it and calls the service function read_-

color_1 with the unpacked message provided in arguments. The function also contains
the code for unwrapping the messages for read_grayscale_1 and read_unchanged_1

functions. read_read is a placeholder macro for message variants that are inherited and
bypassed further in the pipeline.

Implementation of the salvo function send_color is provided below.

#if defined(f_read_color_1) || defined(f_read_unchanged_1)

salvo send_color(std::vector<std::vector<double> > img

read_read_color_1_read_unchanged_1_send_color_decl) {

for (const std::pair<int, std::string>& _p : read_DOWN_send_color_ochannels)) {

Message _msg;

cereal::BinaryOutputArchive oarchive(_msg.ss);

oarchive(img read_read_color_1_read_unchanged_1_send_color_use);
_msg.setType(_p.second);

output(_p.first, std::move(_msg));

}

}

#endif

It receives the element of the output message img and the inherited arguments stored in
the macro read_read_color_1_read_unchanged_1_send_color_decl. The function
serialises the message and sends the output message to the runtime environment.

After the CSP-WS is solved, the code can be compiled into a library that contains all
functions required for interaction with the run-time.

10.2 Interface Derivation

In the next step, the algorithm derives MDL terms from the annotated service code. Since
the format of the service code is fixed, the algorithm uses code analysis to derive the
structure of salvo and service functions. For analysis we use tools and libraries from
LLVM project, such as LibTooling and ASTMatchers.

As a result, for the read service we obtain the following term as the interface for the
input port #1:

(: read_color(f _read_read_1_color): {fname: string |read_color_1#},

read_grayscale(f _read_read_grayscale_1): {fname: string |read_grayscale_1#},

read_unchanged(f _read_read_1_unchanged): {fname: string |read_unchanged#}|read" :)

1 In our implementation with use cereal serialisation library (http://uscilab.github.io/cereal/).

http://uscilab.github.io/cereal/

10.2 INTERFACE DERIVATION 141

At the top level, the term is a choice term that contains three variants that represent
messages of various formats. Each variant contains a record. In this example, the record
contains a name of an input file. Furthermore, every record contains a tail variable for
supporting flow-inheritance for records; similarly, the choice contains a tail variable read"

for supporting flow-inheritance for variants. The tail variables uniquely map to macros
in the modified source files. Later, values for tail variables are transformed into macros
definitions that are propagated back to the service code.

The rest of the interfaces are structured in a similar way. The interface for the input
port #2 is specified as follows:

(: denoise_color(f _read_read_color_1_ f _read_read_unchanged_1) :

{img: vec<vec<double> > |read_color_1_read_unchanged_1_send_color#},

denoise_grayscale(f _read_read_grayscale_1) :

{img: vec<vec<double> > |read_grayscale_1_send_grayscale#}|read" :),

vec<vec<double> > is a shorthand for vector <vector <double> >— a 2-dimensional
array of doubles, which represents an image matrix.

Similarly,

(: error(f _read_read_color_1_ f _read_read_grayscale_1_ f _read_read_unchanged_1) :

{msg: string |read_color_1_read_grayscale_1_read_unchanged_1_error#} :)

is the interface for the output port #1.
In addition to term derivation, we derive auxiliary constraints that specify a relation

between t-variables in input and output interfaces:

read_color_1# v read_color_1_read_unchanged_1_send_color# (10.1)

read_unchanged_1# v read_color_1_read_unchanged_1_send_color# (10.2)

read_color_1# v read_color_1_read_grayscale_1_read_unchanged_error# (10.3)

read_grayscale_1# v read_color_1_read_grayscale_1_read_unchanged_error# (10.4)

read_unchanged_1# v read_color_1_read_grayscale_1_read_unchanged_error# (10.5)

read_grayscale_1# v read_grayscale_1_send_grayscale#. (10.6)

read_color_1_read_unchanged_1_send_color# is a variable that specifies the data inherited
in send_color salvo. Since the salvo is produced by read_color and read_unchanged

services (where read_color_1# and read_unchanged_1# are inheriting variables), the vari-
able read_color_1_read_unchanged_1_send_color# must contain a subset of elements from

142
CHAPTER 10. IMAGE PROCESSING USE CASE FOR INTERFACE CONFIGURATION

PROTOCOL

read_color_1# and read_unchanged_1# (not all elements need to be inherited). Similarly,
elements in read_color_1_read_grayscale_1_read_unchanged_error# must be a subset of
elements in read_color_1#, read_grayscale_1# and read_unchanged_1#, and elements in
the record read_grayscale_1_send_grayscale# must be a subset of read_grayscale_1#.

Services interact with the environment. Terms that are associated with the environ-
ment ports are provided explicitly. They specify the format of messages that is received
from the external context.

10.3 Constraint Satisfaction

After generating terms and auxiliary constraints, the interface configuration protocol
constructs a set of constraints C as the input for the CSP-WS. The auxiliary constraints
are simply added to C. Also, new constraints are constructed from the terms: for every
communication channel in the topology graph, we take a pair of terms and construct a
new constraint.

The constraints are solved using the algorithm from Section 7.5. The algorithm
produces a set of possible solutions for the CSP-WS that depend on instantiations of
Boolean variables. One can use different heuristics to select a solution that fits their needs.
For example, a solution that contains more false variables is a solution that contains less
data (because elements from collections are excluded by false guards). This allows us
to drop all record/choice elements (i.e. to inherit less data) if they are not required by
consumers. Other strategies for selecting a solution can be applied as well.

10.4 Library Generation

After finding a solution to the CSP-WS, we need to transform the solution to macro
definitions and propagate them back to the service code. The transformation is straight-
forward. MDL symbols, such as string, int vector<vector<double», are mapped
to their corresponding C++ types. Only trueBoolean values are translated to macros;
macros that corresponds to falsevalues remains undefined (as a result, condition #ifdef

evaluates to false).
In the current version of the protocol, choices and records can appear on the top two

levels of interface terms, and therefore, they cannot encode C++ types. The top level
choices are transformed as illustrated in the following example. The algorithm finds a
value for read" variable:

read" = (: init: . . . :),

10.4 LIBRARY GENERATION 143

It means that read service must redirect messages with the tag init to the output. To
achieve this, we generate a definition of the macro read:

#define read_read do {\

if (_msg.getType() == "init") {\

output(1, std::move(_msg));\

return;\

}\

} while (0);

This is an implementation of flow inheritance for elements of a top-level choice term. The
code is triggered when an input message is received in port #1. If the message has tag
init, it directly gets forwarded to the output port.

Flow inheritance for records is implemented as illustrated in the following example.
Consider variables read_color_1# and read_color_1_read_unchanged_1_send_color#, which
are evaluated to the records:

read_color_1# v{K: int}
read_color_1_read_unchanged_1_send_color# v{K: int}.

read_color_1# is the tail variable in the input interface of the read_color function. Simil-
arly, read_color_1_read_unchanged_1_send_color# is the tail variable in the output inter-
face of the send_color salvo, which is called from read_color. Therefore, according
to our configuration protocol, the argument int K must be propagated through the
processing function to the output. To achieve this, we construct the following macros
based on the CSP-WS solution:

#define read_read_color_1_decl COMMA int K

#define read_read_color_1_use COMMA K

#define read_read_color_1_read_unchanged_1_send_color_decl COMMA int K

#define read_read_color_1_read_unchanged_1_send_color_use COMMA K

If we include a header with the macros in the transformed service read (Appendix A.3.1,
a configured service that propagates K argument from input to output will be obtained.

In such a way, we specialise all services in the network. After this, the service source
files can be separately compiled into contextualised libraries. Such compilation does
not raise security or privacy, because the code of individual services is not exposed to
each other. Instead, the services only exchange their interface terms. As a result, our
mechanism prevents source code leaks in proprietary software running in the Cloud.

144
CHAPTER 10. IMAGE PROCESSING USE CASE FOR INTERFACE CONFIGURATION

PROTOCOL

Chapter 11

Conclusions and Outlook

Web services are often developed independently and without aiming for a specific context.
As a result, the error-free composition of such services into a service-based application
requires a great deal of effort. This often requires the modification of the service code,
which is impossible for proprietary services (the ones for which the code is not available
publicly).

In this thesis we solved the composition problem for web services. We developed a
mechanism for configuring interfaces for generic services in the context. In our approach,
services designers need to expose only service interfaces for application composition,
and are not required to expose the code behind the services. We designed a language for
describing service interfaces in the form of a term algebra with support for subtyping,
polymorphism, flow inheritance [GSS08, GSS10], and configuration parameters. The
configuration mechanism analyses the application topology and derives communication
constraints for pairs of the interfaces. In order to accomplish this, we designed a simple
type system, which collects relations between services in the application.

The constraints give rise to a constraint satisfaction problem (CSP). The problem can-
not be solved in a straightforward manner using the existing SMT solvers. Furthermore,
the presence of Boolean variables makes the problem NP-complete.

On theoretical grounds, our contribution is twofold:

• We designed a fixed-point algorithm that solves the CSP for constraints that do not
contain Boolean variables.

• We designed a fixed-point algorithm that solves the CSP and improves the brute-
force approach. The latter applies the fixed-point algorithm for each of the 2n

instantiations of Boolean variables. In contrast, the improved approach applies the
fixed-point algorithm once for all Boolean variables.

On the practical side, we developed an interface configuration protocol for configuring

146 CHAPTER 11. CONCLUSIONS AND OUTLOOK

interfaces for web services coded in C++ [Zai17]. The protocol performs the following
steps:

1. it automatically derives the interfaces from the code and constructs the communica-
tion constraints;

2. it solves the CSP using the original algorithm;

3. it propagates the solution back to the services in a form of configuration parameters.

The protocol is compatible with the proprietary service: the services do not need to
expose their code to configure the interfaces. Furthermore, the protocol does not rely on
a run-time model or a particular framework for implementing web services.

Currently, the protocol supports only stateless services, but it can also be extended to
support stateful services. The stateful services can be described in the form of synchron-
isers. The synchronisers are state-transition systems for the specification of arbitrary
message synchronisation patterns. In this thesis we described how interfaces can be
derived from the synchroniser and how the interface configuration protocol can be reused
for applications that contain synchronisers.

Unfortunately, the configuration mechanism currently lacks error reporting, some-
thing which is highly useful for application debugging. If the constraints cannot be
satisfied then the solver should provide feedback which will point an application de-
signer towards the interface for the particular service that is causing the problem.

We designed the Message Definition language (MDL) to be flexible enough to be able
to specify messages of any format. It provides support not only for basic formats, such
as symbols, integers and labelled collections, but also for objects. The objects are data
types that contain methods in addition to data fields, which can be inherited in pipelines
using flow inheritance. In the future, it will be useful to add support for other data
formats, such as generic collections, subtyped arrays [Sch03], and functions with support
for behavioural subtyping (subtyping on object methods is not currently supported).

The efficiency of the proposed algorithm will be improved in future work. We can
use the advantage of having an incremental SAT solver (MiniSAT, for example) [ES03]. It
efficiently solves a sequence of incrementally-generated SAT instances, which is relevant
to the algorithm. We can also provide an ordering of constraints in the problem, which
minimises the number of constraint traversals.

The next major milestone in this direction of the research will be the integration of
the interface configuration mechanism with a full fledged service management system
(such as Google Borg [VPK+15]) or a stream-based coordination language (such as
AstraKahn [Sha13]). These systems can provide an execution environment for managing
data and computations, but they lack a mechanism for checking the compatibility of

147

components. Our mechanism can be provided as an ‘out of the box’ solution, because it
does not rely on a computational model or on data management in the system.

Appendix A

Additional Details
of Image Processing Use Case

A.1 Source Code

A.1.1 Read Service

1 #include "cal.h"

2

3 salvo send_color(vector<vector<double>> img);

4 salvo send_grayscale(vector<vector<double>> img);

5 salvo error_2(string msg);

6

7 service read_color_1(string fname) {

8 cv::Mat image = cv::imread(fname, CV_LOAD_IMAGE_COLOR);

9 if(!image.data)

10 error_2("Could not open or find the image");

11 else {

12 send_color(image);

13 }

14 }

15

16 service read_grayscale_1(string fname) {

17 cv::Mat image = cv::imread(fname, CV_LOAD_IMAGE_GRAYSCALE);

18 if(!image.data)

19 error_2("Could not open or find the image");

20 else {

150 APPENDIX. A. ADDITIONAL DETAILS OF IMAGE PROCESSING USE CASE

21 send_grayscale(image);

22 }

23 }

24

25 service read_unchanged_1(string fname) {

26 cv::Mat image = cv::imread(fname, CV_LOAD_IMAGE_UNCHANGED);

27 if(!image.data)

28 error_2("Could not open or find the image");

29 else {

30 send_color(image);

31 }

32 }

A.1.2 Denoise Service

1 #include "cal.h"

2

3 salvo send_img(vector<vector<double>> img);

4 salvo error_2(string msg);

5

6 sevice denoise_color_1(vector<vector<double>> img) {

7 cv::Mat result;

8 cv::fastNlMeansDenoisingColored(img, result);

9 if(result.empty())

10 error_2("error");

11 else

12 send_img(result);

13 }

14

15 service _1_denoise_grayscale(vector<vector<double>> img) {

16 cv::Mat result;

17 cv::fastNlMeansDenoising(img, result);

18 if(result.empty())

19 error_2("error");

20 else

21 send_img(result);

22 }

A.1 SOURCE CODE 151

A.1.3 Init Service

1 #include "cal.h"

2 #include <time.h>

3

4 salvo kMeans_1(vector<vector<double>> img,

5 vector<vector<double>> old_centers_v,

6 int K, double epsilon);

7 salvo error_2(string msg);

8

9 static void generateRandomCenter(const vector<cv::Vec2f>& box,

10 float* center) {

11 size_t j, dims = box.size();

12 float margin = 1.f / dims;

13 for (j = 0; j < dims; ++j)

14 center[j] = ((float) rand() * (1.f + margin * 2.f) - margin) *
15 (box[j][1] - box[j][0]) + box[j][0];

16 }

17

18 service init_1(vector<vector<double>> img, int K) {

19 cv::Mat data0(img);

20 bool isrow = data0.rows == 1 && data0.channels() > 1;

21 int N = !isrow ? data0.rows : data0.cols;

22 int dims = (!isrow ? data0.cols : 1) * data0.channels();

23 int type = data0.depth();

24

25 if (!(data0.dims <= 2 && type == CV_32F && K > 0 && N >= K)) {

26 error_2("Cannot perform K-means algorithm for this configuration");

27 return;

28 }

29

30 cv::Mat data(N, dims, CV_32F, data0.ptr(),

31 isrow ? dims * sizeof(float) :

32 static_cast<size_t>(data0.step));

33

34 cv::Mat centers(K, dims, type), old_centers(K, dims, type),

35 temp(1, dims, type);

152 APPENDIX. A. ADDITIONAL DETAILS OF IMAGE PROCESSING USE CASE

36 vector<int> counters(K);

37 vector<cv::Vec2f> _box(dims);

38 cv::Vec2f* box = &_box[0];

39 double best_compactness = DBL_MAX, compactness = 0;

40 int a, iter, i, j, k;

41 double epsilon = 0.;

42

43 const float* sample = data.ptr<float>(0);

44 for (j = 0; j < dims; ++j)

45 box[j] = cv::Vec2f(sample[j], sample[j]);

46

47 for (i = 1; i < N; ++i) {

48 sample = data.ptr<float>(i);

49 for (j = 0; j < dims; ++j) {

50 float v = sample[j];

51 box[j][0] = min(box[j][0], v);

52 box[j][1] = max(box[j][1], v);

53 }

54 }

55

56 generateRandomCenter(_box, centers.ptr<float>(k));

57

58 vector<vector<double>> _centers;

59 centers.copyTo(_centers);

60 kMeans_1(img, _centers, K, epsilon);

61 }

A.1.4 KMeans Service

1 #include "cal.h"

2

3 salvo loop_1(vector<vector<double>> img,

4 vector<vector<double>> old_centers_v,

5 int K, double epsilon);

6 salvo result(vector<vector<double>> centers);

7 salvo error(string msg);

8

A.1 SOURCE CODE 153

9 service kMeans_1(vector<vector<double>> img,

10 vector<vector<double>> old_centers_v,

11 int K, double epsilon) {

12 cv::Mat centers(cv::Scalar(0)), old_centers(old_centers_v);

13 cv::Mat data0(img);

14 bool isrow = data0.rows == 1 && data0.channels() > 1;

15 int N = !isrow ? data0.rows : data0.cols;

16 int dims = (!isrow ? data0.cols : 1) * data0.channels();

17 int type = data0.depth();

18

19 if (!(data0.dims <= 2 && type == CV_32F && K > 0 && N >= K)) {

20 error("Cannot perform K-means algorithm for this configuration");

21 return;

22 }

23

24 cv::Mat data(N, dims, CV_32F, data0.ptr(),

25 isrow ? dims * sizeof(float) :

26 static_cast<size_t>(data0.step));

27 cv::Mat temp(1, dims, type);

28

29 vector<int> counters(K, 0);

30 const float* sample = data.ptr<float>(0);

31

32 double max_center_shift = 0;

33

34 for (int k = 0; k < K; ++k) {

35 if (counters[k] != 0)

36 continue;

37

38 int max_k = 0;

39 for (int k1 = 1; k1 < K; ++k1) {

40 if (counters[max_k] < counters[k1])

41 max_k = k1;

42 }

43

44 double max_dist = 0;

45 int farthest_i = -1;

154 APPENDIX. A. ADDITIONAL DETAILS OF IMAGE PROCESSING USE CASE

46 float* new_center = centers.ptr<float>(k);

47 float* old_center = centers.ptr<float>(max_k);

48 float* _old_center = temp.ptr<float>();

49 float scale = 1.f/counters[max_k];

50 for (int j = 0; j < dims; ++j)

51 _old_center[j] = old_center[j]*scale;

52

53 for (int i = 0; i < N; ++i) {

54 sample = data.ptr<float>(i);

55 double dist = cv::normL2Sqr_(sample, _old_center, dims);

56

57 if (max_dist <= dist) {

58 max_dist = dist;

59 farthest_i = i;

60 }

61 }

62

63 counters[max_k]--;

64 counters[k]++;

65 sample = data.ptr<float>(farthest_i);

66

67 for (int j = 0; j < dims; ++j) {

68 old_center[j] -= sample[j];

69 new_center[j] += sample[j];

70 }

71 }

72

73 for (int k = 0; k < K; ++k) {

74 float* center = centers.ptr<float>(k);

75 if (counters[k] == 0) {

76 error("One of the clusters is empty");

77 return;

78 }

79 float scale = 1.f/counters[k];

80 for (int j = 0; j < dims; ++j)

81 center[j] *= scale;

82

A.2 TOPOLOGY DESCRIPTION 155

83 double dist = 0;

84 const float* old_center = old_centers.ptr<float>(k);

85 for (int j = 0; j < dims; ++j) {

86 double t = center[j] - old_center[j];

87 dist += t * t;

88 }

89 max_center_shift = max(max_center_shift, dist);

90 }

91

92 vector<vector<double>> _centers;

93 centers.copyTo(_centers);

94 if (max_center_shift <= epsilon) {

95 result(_centers);

96 } else {

97 loop_1(img, _centers, K, epsilon);

98 }

99 }

A.2 Topology Description

1 environment@1 1@read

2 read@1 1@denoise

3 read@2 2@environment

4 denoise@1 1@init

5 denoise@2 2@environment

6 init@1 1@kMeans

7 init@2 2@environment

8 kMeans@1 1@kMeans

9 kMeans@2 1@environment

10 kMeans@3 2@environment

A.3 Source Code Augmented with Macros

A.3.1 Transformed Read Service

1 #include "cal.h"

2

156 APPENDIX. A. ADDITIONAL DETAILS OF IMAGE PROCESSING USE CASE

3 #if defined(f_read_color_1) || defined(f_read_unchanged_1)

4 salvo send_color(vector<vector<double>> img

5 read_read_color_1_read_unchanged_1_send_color_decl);

6 #endif

7

8 #ifdef f_read_grayscale_1

9 salvo send_grayscale(vector<vector<double>> img

10 read_read_grayscale_1_send_grayscale_decl);

11 #endif

12

13 #if defined(f_read_color_1) || defined(f_read_grayscale_1) || \

14 defined(f_read_unchanged_1)

15 salvo error_2(string msg

16 read_read_color_1_read_grayscale_1_read_unchanged_1_error_decl);

17 #endif

18

19 #ifdef f_read_color_1

20 service read_color_1(string fname read_read_color_1_decl) {

21 cv::Mat image = cv::imread(fname, CV_LOAD_IMAGE_COLOR);

22 if(!image.data)

23 error_2("Could not open or find the image"

24 read_read_color_1_read_grayscale_1_read_unchanged_1_error_use);

25 else {

26 send_color(image

27 read_read_color_1_read_unchanged_1_send_color_use);

28 }

29 }

30 #endif

31

32 #ifdef f_read_grayscale_1

33 service read_grayscale_1(string fname read_read_grayscale_1_decl) {

34 cv::Mat image = cv::imread(fname, CV_LOAD_IMAGE_GRAYSCALE);

35 if(!image.data)

36 error_2("Could not open or find the image"

37 read_read_color_1_read_grayscale_1_read_unchanged_1_error_use);

38 else {

39 send_grayscale(image

A.3 SOURCE CODE AUGMENTED WITH MACROS 157

40 read_read_grayscale_1_send_grayscale_use);

41 }

42 }

43 #endif

44

45 #ifdef f_read_unchanged_1

46 service read_unchanged_1(string fname read_read_unchanged_1_decl) {

47 cv::Mat image = cv::imread(fname, CV_LOAD_IMAGE_UNCHANGED);

48 if(!image.data)

49 error_2("Could not open or find the image"

50 read_read_color_1_read_grayscale_1_read_unchanged_1_error_use);

51 else {

52 send_color(image

53 read_read_color_1_read_unchanged_1_send_color_use);

54 }

55 }

56 #endif

57

58 void input_1(salvo&& _msg) {

59 #ifdef f_read_color_1

60 if (_msg.getType() == "read_color") {

61 cereal::BinaryInputArchive iarchive(_msg.ss);

62 tuple<string read_read_color_1_types > _data;

63 iarchive(get<0>(_data) read_read_color_1_tuple_get);

64 read_color_1(get<0>(_data) read_read_color_1_tuple_get);

65 return;

66 }

67 #endif

68 #ifdef f_read_grayscale_1

69 if (_msg.getType() == "read_grayscale") {

70 cereal::BinaryInputArchive iarchive(_msg.ss);

71 tuple<string read_read_grayscale_1_types > _data;

72 iarchive(get<0>(_data) read_read_grayscale_1_tuple_get);

73 read_grayscale_1(get<0>(_data) read_read_grayscale_1_tuple_get);

74 return;

75 }

76 #endif

158 APPENDIX. A. ADDITIONAL DETAILS OF IMAGE PROCESSING USE CASE

77 #ifdef f_read_unchanged_1

78 if (_msg.getType() == "read_unchanged") {

79 cereal::BinaryInputArchive iarchive(_msg.ss);

80 tuple<string read_read_unchanged_1_types > _data;

81 iarchive(get<0>(_data) read_read_unchanged_1_tuple_get);

82 read_unchanged_1(get<0>(_data) read_read_unchanged_1_tuple_get);

83 return;

84 }

85 #endif

86 read_read

87 }

88

89 #if defined(f_read_color_1) || defined(f_read_grayscale_1) || \

90 defined(f_read_unchanged_1)

91 salvo error_2(string msg

92 read_read_color_1_read_grayscale_1_read_unchanged_1_error_decl) {

93 for (const pair<int, string>& _p : read_error_2_ochannels) {

94 Message _msg;

95 cereal::BinaryOutputArchive oarchive(_msg.ss);

96 oarchive(msg read_read_color_1_read_grayscale_1_read_unchanged_1_error_use);

97 _msg.setType(_p.second);

98 output(_p.first, move(_msg));

99 }

100 }

101 #endif

102

103 #if defined(f_read_color_1) || defined(f_read_unchanged_1)

104 salvo send_color(vector<vector<double> > img

105 read_read_color_1_read_unchanged_1_send_color_decl) {

106 for (const pair<int, string>& _p : read_send_color_ochannels) {

107 Message _msg;

108 cereal::BinaryOutputArchive oarchive(_msg.ss);

109 oarchive(img

110 read_read_color_1_read_unchanged_1_send_color_use);

111 _msg.setType(_p.second);

112 output(_p.first, move(_msg));

113 }

A.3 SOURCE CODE AUGMENTED WITH MACROS 159

114 }

115 #endif

116

117 #ifdef f_read_grayscale_1

118 salvo send_grayscale(vector<vector<double> > img

119 read_read_grayscale_1_send_grayscale_decl) {

120 for (const pair<int, string>& _p : read_DOWN_send_grayscale_ochannels) {

121 Message _msg;

122 cereal::BinaryOutputArchive oarchive(_msg.ss);

123 oarchive(img read_read_grayscale_1_send_grayscale_use);

124 _msg.setType(_p.second);

125 output(_p.first, move(_msg));

126 }

127 }

128 #endif

A.3.2 Transformed Denoise Service

1 #include "cal.h"

2

3 #if defined(f_denoise_color_1) || defined(f_denoise_grayscale_1)

4 salvo send_img(vector<vector<double>> img

5 denoise_denoise_color_1_denoise_grayscale_1_send_img_decl);

6 #endif

7

8 #if defined(f_denoise_color_1) || defined(f_denoise_grayscale_1)

9 salvo error_2(string msg

10 denoise_denoise_color_1_denoise_grayscale_1_error_decl);

11 #endif

12

13 #ifdef f_denoise_color_1

14 service denoise_color_1(vector<vector<double>> img denoise_denoise_color_1_decl)

15 {

16 cv::Mat result;

17 cv::fastNlMeansDenoisingColored(img, result);

18 if(result.empty())

19 error_2("error" denoise_denoise_color_1_denoise_grayscale_1_error_use);

160 APPENDIX. A. ADDITIONAL DETAILS OF IMAGE PROCESSING USE CASE

20 else

21 send_img(result denoise_denoise_color_1_denoise_grayscale_1_send_img_use);

22 }

23 #endif

24

25 #ifdef f_denoise_grayscale_1

26 service denoise_grayscale_1(vector<vector<double>> img

27 denoise_denoise_grayscale_1_decl) {

28 cv::Mat result;

29 cv::fastNlMeansDenoising(img, result);

30 if(result.empty())

31 error_2("error" denoise_denoise_color_1_denoise_grayscale_1_error_use);

32 else

33 send_img(result denoise_denoise_color_1_denoise_grayscale_1_send_img_use);

34 }

35 #endif

36

37 void input_1(Message&& _msg) {

38 #ifdef f_denoise_color_1

39 if (_msg.getType() == "denoise_color") {

40 cereal::BinaryInputArchive iarchive(_msg.ss);

41 tuple<vector<vector<double>> denoise_denoise_color_1_types > _data;

42 iarchive(get<0>(_data) denoise_denoise_color_1_tuple_get);

43 denoise_color_1(get<0>(_data) denoise_denoise_color_1_tuple_get);

44 return;

45 }

46 #endif

47 #ifdef f_denoise_grayscale_1

48 if (_msg.getType() == "denoise_grayscale") {

49 cereal::BinaryInputArchive iarchive(_msg.ss);

50 tuple<vector<vector<double> > denoise_denoise_grayscale_1_types > _data;

51 iarchive(get<0>(_data) denoise_denoise_grayscale_1_tuple_get);

52 denoise_grayscale_1(get<0>(_data) denoise_denoise_grayscale_1_tuple_get);

53 return;

54 }

55 #endif

56 denoise_UP_denoise

A.3 SOURCE CODE AUGMENTED WITH MACROS 161

57 }

58

59 #if defined(f_denoise_color_1) || defined(f_denoise_grayscale_1)

60 salvo error_2(string msg denoise_denoise_color_1_denoise_grayscale_1_error_decl)

61 {

62 for (const pair<int, string>& _p :

63 vector<pair<int, string>>({ denoise_error_2_ochannels })) {

64 Message _msg;

65 cereal::BinaryOutputArchive oarchive(_msg.ss);

66 oarchive(msg denoise_denoise_color_1_denoise_grayscale_1_error_use);

67 _msg.setType(_p.second);

68 output(_p.first, move(_msg));

69 }

70 }

71 #endif

72

73 #if defined(f_denoise_color_1) || defined(f_denoise_grayscale_1)

74 salvo send_img(vector<vector<double> > img

75 denoise_denoise_color_1_denoise_grayscale_1_send_img_decl) {

76 for (const pair<int, string>& _p :

77 vector<pair<int, string>>({ denoise_send_img_ochannels })) {

78 Message _msg;

79 cereal::BinaryOutputArchive oarchive(_msg.ss);

80 oarchive(img denoise_denoise_color_1_denoise_grayscale_1_send_img_use);

81 _msg.setType(_p.second);

82 output(_p.first, move(_msg));

83 }

84 }

85 #endif

A.3.3 Transformed Init Service

1 #include "cal.h"

2 #include <time.h>

3

4 #ifdef f_init_1

5 salvo kMeans_1(vector<vector<double>> img,

162 APPENDIX. A. ADDITIONAL DETAILS OF IMAGE PROCESSING USE CASE

6 vector<vector<double>> old_centers_v,

7 int K, double epsilon init_init_1_kMeans_decl);

8 #endif

9

10 #ifdef f_init_1

11 salvo error_2(string msg init_init_1_error_decl);

12 #endif

13

14 static void generateRandomCenter(const vector<cv::Vec2f>& box,

15 float* center) {

16 size_t j, dims = box.size();

17 float margin = 1.f / dims;

18 for (j = 0; j < dims; ++j)

19 center[j] = ((float) rand() * (1.f + margin * 2.f) - margin) *
20 (box[j][1] - box[j][0]) + box[j][0];

21 }

22

23 #ifdef f_init_1

24 service init_1(vector<vector<double>> img, int K init_init_1_decl) {

25 cv::Mat data0(img);

26 bool isrow = data0.rows == 1 && data0.channels() > 1;

27 int N = !isrow ? data0.rows : data0.cols;

28 int dims = (!isrow ? data0.cols : 1) * data0.channels();

29 int type = data0.depth();

30

31 if (!(data0.dims <= 2 && type == CV_32F && K > 0 && N >= K)) {

32 error_2("Cannot perform K-means algorithm for this configuration"

33 init_init_1_error_use);

34 return;

35 }

36

37 cv::Mat data(N, dims, CV_32F, data0.ptr(),

38 isrow ? dims * sizeof(float) :

39 static_cast<size_t>(data0.step));

40

41 cv::Mat centers(K, dims, type), old_centers(K, dims, type),

42 temp(1, dims, type);

A.3 SOURCE CODE AUGMENTED WITH MACROS 163

43 vector<int> counters(K);

44 vector<cv::Vec2f> _box(dims);

45 cv::Vec2f* box = &_box[0];

46 double best_compactness = DBL_MAX, compactness = 0;

47 int a, iter, i, j, k;

48 double epsilon = 0.;

49

50 const float* sample = data.ptr<float>(0);

51 for (j = 0; j < dims; ++j)

52 box[j] = cv::Vec2f(sample[j], sample[j]);

53

54 for (i = 1; i < N; ++i) {

55 sample = data.ptr<float>(i);

56 for (j = 0; j < dims; ++j) {

57 float v = sample[j];

58 box[j][0] = min(box[j][0], v);

59 box[j][1] = max(box[j][1], v);

60 }

61 }

62

63 generateRandomCenter(_box, centers.ptr<float>(k));

64

65 vector<vector<double>> _centers;

66 centers.copyTo(_centers);

67 kMeans_1(img, _centers, K, epsilon init_init_1_kMeans_use);

68 }

69 #endif

70

71 void input_1(Message&& _msg) {

72 #ifdef f_init_1

73 if (_msg.getType() == "init") {

74 cereal::BinaryInputArchive iarchive(_msg.ss);

75 tuple<vector<vector<double>>, int init_init_1_types> _data;

76 iarchive(get<0>(_data), get<1>(_data) init_init_1_tuple_get);

77 init_1(get<0>(_data), get<1>(_data) init_init_1_tuple_get);

78 return;

79 }

164 APPENDIX. A. ADDITIONAL DETAILS OF IMAGE PROCESSING USE CASE

80 #endif

81 init_init

82 }

83

84 #ifdef f_init_1

85 salvo kMeans_1(vector<vector<double>> img,

86 vector<vector<double>> old_centers_v,

87 int K, double epsilon init_init_1_kMeans_decl) {

88 for (const pair<int, string>& _p : init_kMeans_1_ochannels) {

89 Message _msg;

90 cereal::BinaryOutputArchive oarchive(_msg.ss);

91 oarchive(img, old_centers_v, K, epsilon init_init_1_kMeans_use);

92 _msg.setType(_p.second);

93 output(_p.first, move(_msg));

94 }

95 }

96 #endif

97

98 #ifdef f_init_1

99 salvo error_2(string msg init_init_1_error_decl) {

100 for (const pair<int, string>& _p : init_error_2_ochannels) {

101 Message _msg;

102 cereal::BinaryOutputArchive oarchive(_msg.ss);

103 oarchive(msg init_init_1_error_use);

104 _msg.setType(_p.second);

105 output(_p.first, move(_msg));

106 }

107 }

108 #endif

A.3.4 Transformed KMeans Service

1 #include "cal.h"

2 #include "kMeans_CAL_FI_variables.h"

3

4 #ifdef f_kMeans_1

5 salvo loop_1(vector<vector<double>> img,

A.3 SOURCE CODE AUGMENTED WITH MACROS 165

6 vector<vector<double>> old_centers_v,

7 int K, double epsilon kMeans_kMeans_1_loop_1_decl);

8 #endif

9

10 #ifdef f_kMeans_1

11 salvo result(vector<vector<double>> centers

12 kMeans_kMeans_1_result_decl);

13 #endif

14

15 #ifdef f_kMeans_1

16 salvo error(string msg kMeans_kMeans_1_error_decl);

17 #endif

18

19 #ifdef f_kMeans_1

20 service kMeans_1(vector<vector<double>> img,

21 vector<vector<double>> old_centers_v,

22 int K, double epsilon kMeans_kMeans_1_decl) {

23 cv::Mat centers(cv::Scalar(0)), old_centers(old_centers_v);

24 cv::Mat data0(img);

25 bool isrow = data0.rows == 1 && data0.channels() > 1;

26 int N = !isrow ? data0.rows : data0.cols;

27 int dims = (!isrow ? data0.cols : 1) * data0.channels();

28 int type = data0.depth();

29

30 if (!(data0.dims <= 2 && type == CV_32F && K > 0 && N >= K)) {

31 error("Cannot perform K-means algorithm for this configuration"

32 kMeans_kMeans_1_error_use);

33 return;

34 }

35

36 cv::Mat data(N, dims, CV_32F, data0.ptr(),

37 isrow ? dims * sizeof(float) :

38 static_cast<size_t>(data0.step));

39 cv::Mat temp(1, dims, type);

40

41 vector<int> counters(K, 0);

42 const float* sample = data.ptr<float>(0);

166 APPENDIX. A. ADDITIONAL DETAILS OF IMAGE PROCESSING USE CASE

43

44 double max_center_shift = 0;

45

46 for (int k = 0; k < K; ++k) {

47 if (counters[k] != 0)

48 continue;

49

50 int max_k = 0;

51 for (int k1 = 1; k1 < K; ++k1) {

52 if (counters[max_k] < counters[k1])

53 max_k = k1;

54 }

55

56 double max_dist = 0;

57 int farthest_i = -1;

58 float* new_center = centers.ptr<float>(k);

59 float* old_center = centers.ptr<float>(max_k);

60 float* _old_center = temp.ptr<float>();

61 float scale = 1.f/counters[max_k];

62 for (int j = 0; j < dims; ++j)

63 _old_center[j] = old_center[j]*scale;

64

65 for (int i = 0; i < N; ++i) {

66 sample = data.ptr<float>(i);

67 double dist = cv::normL2Sqr_(sample, _old_center, dims);

68

69 if (max_dist <= dist) {

70 max_dist = dist;

71 farthest_i = i;

72 }

73 }

74

75 counters[max_k]--;

76 counters[k]++;

77 sample = data.ptr<float>(farthest_i);

78

79 for (int j = 0; j < dims; ++j) {

A.3 SOURCE CODE AUGMENTED WITH MACROS 167

80 old_center[j] -= sample[j];

81 new_center[j] += sample[j];

82 }

83 }

84

85 for (int k = 0; k < K; ++k) {

86 float* center = centers.ptr<float>(k);

87 if (counters[k] == 0) {

88 error("For some reason one of the clusters is empty"

89 kMeans_kMeans_1_error_use);

90 return;

91 }

92 float scale = 1.f/counters[k];

93 for (int j = 0; j < dims; ++j)

94 center[j] *= scale;

95

96 double dist = 0;

97 const float* old_center = old_centers.ptr<float>(k);

98 for (int j = 0; j < dims; ++j) {

99 double t = center[j] - old_center[j];

100 dist += t * t;

101 }

102 max_center_shift = max(max_center_shift, dist);

103 }

104

105 vector<vector<double>> _centers;

106 centers.copyTo(_centers);

107 if (max_center_shift <= epsilon) {

108 result(_centers kMeans_kMeans_1_result_use);

109 } else {

110 loop_1(img, _centers, K, epsilon kMeans_kMeans_1_loop_use);

111 }

112 }

113 #endif

114

115 void input_1(Message&& _msg) {

116 #ifdef f_kMeans_1

168 APPENDIX. A. ADDITIONAL DETAILS OF IMAGE PROCESSING USE CASE

117 if (_msg.getType() == "kMeans") {

118 cereal::BinaryInputArchive iarchive(_msg.ss);

119 tuple<vector<vector<double>>,

120 vector<vector<double>>,

121 int, double kMeans_kMeans_1_types> _data;

122 iarchive(get<0>(_data),

123 get<1>(_data),

124 get<2>(_data),

125 get<3>(_data) kMeans_kMeans_1_tuple_get);

126 kMeans_1(get<0>(_data),

127 get<1>(_data),

128 get<2>(_data),

129 get<3>(_data) kMeans_kMeans_1_tuple_get);

130 return;

131 }

132 #endif

133 kMeans_UP_kMeans

134 }

135

136 #ifdef f_kMeans_1

137 salvo loop_1(vector<vector<double>> img,

138 vector<vector<double>> old_centers_v,

139 int K, double epsilon kMeans_kMeans_loop_1_decl) {

140 for (const pair<int, string>& _p : kMeans_loop_1_ochannels) {

141 Message _msg;

142 cereal::BinaryOutputArchive oarchive(_msg.ss);

143 oarchive(img, old_centers_v, K, epsilon kMeans_kMeans_1_loop_use);

144 _msg.setType(_p.second);

145 output(_p.first, move(_msg));

146 }

147 }

148 #endif

149

150 #ifdef f_kMeans_1

151 salvo error(string msg kMeans_kMeans_1_error_decl) {

152 for (const pair<int, string>& _p : kMeans_DOWN_error_ochannels) {

153 Message _msg;

A.3 SOURCE CODE AUGMENTED WITH MACROS 169

154 cereal::BinaryOutputArchive oarchive(_msg.ss);

155 oarchive(msg kMeans_kMeans_1_error_use);

156 _msg.setType(_p.second);

157 output(_p.first, move(_msg));

158 }

159 }

160 #endif

161

162 #ifdef f_kMeans_1

163 salvo result(vector<vector<double>> centers kMeans_kMeans_1_result_decl) {

164 for (const pair<int, string>& _p : kMeans_result_ochannels) {

165 Message _msg;

166 cereal::BinaryOutputArchive oarchive(_msg.ss);

167 oarchive(centers kMeans_kMeans_1_result_use);

168 _msg.setType(_p.second);

169 output(_p.first, move(_msg));

170 }

171 }

172 #endif

170 APPENDIX. A. ADDITIONAL DETAILS OF IMAGE PROCESSING USE CASE

References

[AAF+02] Assaf Arkin, Sid Askary, Scott Fordin, Wolfgang Jekeli, Kohsuke Kawaguchi, David
Orchard, Stefano Pogliani, Karsten Riemer, Susan Struble, Pal Takacsi-Nagy, et al.
Web service choreography interface (WSCI) 1.0. Standards proposal by BEA Systems,
Intalio, SAP, and Sun Microsystems, 2002. (Cited on page 21.)

[ABB+13] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava Chernyak, Josh Haberman, Re-
uven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle. Millwheel:
fault-tolerant stream processing at internet scale. Proceedings of the VLDB Endowment,
6(11):1033–1044, 2013. (Cited on page 38.)

[ABB+16] Davide Ancona, Viviana Bono, Mario Bravetti, G Castagna, J Campos, Pierre-Malo
Deniélou, S Gay, Nils Gesbert, Elena Giachino, Raymond Hu, et al. Behavioral types
in programming languages. Now Publishers Incorporated, 2016. (Cited on page 3.)

[ABP12] Vasilios Andrikopoulos, Salima Benbernou, and Michael P Papazoglou. On the
evolution of services. IEEE Transactions on Software Engineering, 38(3):609–628, 2012.
(Cited on page 2.)

[ACD+03] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes Klein,
Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith, Satish Thatte, et al. Business
process execution language for web services, 2003. (Cited on page 19.)

[ACG86] Sudhir Ahuja, N Curriero, and David Gelernter. Linda and friends. Computer, 19(8),
1986. (Cited on page 22.)

[AGR13a] Diana Allam, Hervé Grall, and Jean-Claude Royer. From object-oriented program-
ming to service-oriented computing: How to improve interoperability by preserving
subtyping. In WEBIST 2013-9th International Conference on Web Information Systems
and Technologies, pages 169–173. SciTePress Digital Library, 2013. (Cited on pages
17, 25, 106, 117, and 118.)

[AGR13b] Diana Allam, Hervé Grall, and Jean-Claude Royer. The substitution principle in an
object-oriented framework for web services: From failure to success. In Proceedings
of International Conference on Information Integration and Web-based Applications &
Services, page 250. ACM, 2013. (Cited on pages 4, 19, and 118.)

172

[AHS93] Farhad Arbab, Ivan Herman, and Pål Spilling. An overview of manifold and its
implementation. Concurrency: practice and experience, 5(1):23–70, 1993. (Cited on
page 23.)

[Apa11] Apache. Apache Thrift. https://thrift.apache.org/, 2011. (Cited on page 25.)

[Arb04] Farhad Arbab. Reo: a channel-based coordination model for component compos-
ition. Mathematical structures in computer science, 14(03):329–366, 2004. (Cited on
page 23.)

[B+81] Barry W Boehm et al. Software engineering economics, volume 197. Prentice-hall
Englewood Cliffs (NJ), 1981. (Cited on page 16.)

[BBB+02] Arindam Banerji, Claudio Bartolini, Dorothea Beringer, Venkatesh Chopella, Kan-
nan Govindarajan, Alan Karp, Harumi Kuno, Mike Lemon, Gregory Pogossiants,
Shamik Sharma, et al. Web services conversation language (wscl) 1.0. W3C Note, 14,
2002. (Cited on page 2.)

[BBC05] Andrea Bracciali, Antonio Brogi, and Carlos Canal. A formal approach to component
adaptation. Journal of Systems and Software, 74(1):45–54, 2005. (Cited on page 17.)

[BBC+10] Zoran Budimlić, Michael Burke, Vincent Cavé, Kathleen Knobe, Geoff Lowney,
Ryan Newton, Jens Palsberg, David Peixotto, Vivek Sarkar, Frank Schlimbach, et al.
Concurrent collections. Scientific Programming, 18(3-4):203–217, 2010. (Cited on
page 22.)

[BBDCL97] Viviana Bono, Michele Bugliesi, Mariangiola Dezani-Ciancaglini, and Luigi Liquori.
Subtyping constraints for incomplete objects. In TAPSOFT’97: Theory and Practice of
Software Development, pages 465–477. Springer, 1997. (Cited on page 33.)

[BCDGM05] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, and Massimo Mecella.
Automatic composition of process-based web services: a challenge. In Proc. of the
WWW, volume 5, 2005. (Cited on page 20.)

[BCK+09] Zoran Budimlic, Aparna Chandramowlishwaran, Kathleen Knobe, Geoff Lowney,
Vivek Sarkar, and Leo Treggiari. Multi-core implementations of the concurrent
collections programming model. In CPC’09: 14th International Workshop on Compilers
for Parallel Computers, 2009. (Cited on page 22.)

[BCP04] Antonio Brogi, Carlos Canal, and Ernesto Pimentel. On the specification of software
adaptation. Electronic Notes in Theoretical Computer Science, 97:47–65, 2004. (Cited
on page 17.)

[BCP06] Antonio Brogi, Carlos Canal, and Ernesto Pimentel. Component adaptation through
flexible subservicing. Science of Computer Programming, 63(1):39–56, 2006. (Cited on
page 17.)

https://thrift.apache.org/

REFERENCES 173

[BCS+09] Robert D Bjornson, Nicholas J Carriero, Martin H Schultz, Patrick M Shields, and
Stephen B Weston. Networkspace: a coordination system for high-productivity
environments. International journal of parallel programming, 37(1):106–125, 2009.
(Cited on page 22.)

[BCZ15] Massimo Bartoletti, Tiziana Cimoli, and Roberto Zunino. Compliance in behavioural
contracts: a brief survey. In Programming Languages with Applications to Biology and
Security, pages 103–121. Springer, 2015. (Cited on pages 11 and 15.)

[BDO05] Alistair Barros, Marlon Dumas, and Phillipa Oaks. A critical overview of the web
services choreography description language. BPTrends Newsletter, 3:1–24, 2005.
(Cited on page 21.)

[BEK+00] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn,
Henrik Frystyk Nielsen, Satish Thatte, and Dave Winer. Simple object access protocol
(SOAP) 1.1, 2000. (Cited on page 18.)

[BFT10] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB standard — version
2.5, 2010. (Cited on page 57.)

[BHM05] Tomás Barros, Ludovic Henrio, and Eric Madelaine. Behavioural models for hier-
archical components. In Model Checking Software, pages 154–168. Springer, 2005.
(Cited on pages 11 and 15.)

[Bin08] CA Binildas. Service oriented java business integration. Birmingham-Mumbai: Packt
Publishing, 2008. (Cited on page 105.)

[BK98] Nat Brown and Charlie Kindel. Distributed component object model protocol –
DCOM/1.0. Online, November, 1998. (Cited on page 18.)

[BLHL+01] Tim Berners-Lee, James Hendler, Ora Lassila, et al. The semantic web. Scientific
american, 284(5):28–37, 2001. (Cited on page 20.)

[BPR02] Antonio Brogi, Ernesto Pimentel, and Ana M Roldan. Compatibility of Linda-based
component interfaces. Electronic Notes in Theoretical Computer Science, 66(4):82–96,
2002. (Cited on page 17.)

[BS90] Bonnie Berger and Peter W Shor. Approximation alogorithms for the maximum
acyclic subgraph problem. In Proceedings of the first annual ACM-SIAM symposium on
Discrete algorithms, pages 236–243. Society for Industrial and Applied Mathematics,
1990. (Cited on page 51.)

[BSD13] Athman Bouguettaya, Quan Z Sheng, and Florian Daniel. Advanced web services.
Springer, 2013. (Cited on pages 19 and 41.)

174

[BSS12] Scott Bourne, Claudia Szabo, and Quan Z Sheng. Ensuring well-formed conversa-
tions between control and operational behaviors of web services. In Service-Oriented
Computing, pages 507–515. Springer, 2012. (Cited on page 21.)

[BW98] Alan W Brown and Kurt C Wallnau. The current state of CBSE. IEEE software,
(5):37–46, 1998. (Cited on page 17.)

[CCKT86] David Callahan, Keith D Cooper, Ken Kennedy, and Linda Torczon. Interprocedural
constant propagation. In ACM SIGPLAN Notices, volume 21, pages 152–161. ACM,
1986. (Cited on page 61.)

[CCM+01] Erik Christensen, Francisco Curbera, Greg Meredith, Sanjiva Weerawarana, et al.
Web services description language (WSDL) 1.1, 2001. (Cited on pages 21 and 31.)

[CDM09] Anis Charfi, Tom Dinkelaker, and Mira Mezini. A plug-in architecture for self-
adaptive web service compositions. In Web Services, 2009. ICWS 2009. IEEE Interna-
tional Conference on, pages 35–42. IEEE, 2009. (Cited on page 21.)

[cF16] Standard C++ Foundation. Why can’t i separate the definition of my templates
class from its declaration adn put it inside a .cpp file. https://isocpp.org/wiki/
faq/templates#templates-defn-vs-decl, 2016. (Cited on page 5.)

[CGP09] Giuseppe Castagna, Nils Gesbert, and Luca Padovani. A theory of contracts for
web services. ACM Transactions on Programming Languages and Systems (TOPLAS),
31(5):19, 2009. (Cited on page 2.)

[CHY07] Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured communication-
centred programming for web services. In Programming Languages and Systems,
pages 2–17. Springer, 2007. (Cited on pages 1, 20, and 107.)

[CJ99] Grady H Campbell Jr. Adaptable components. In Proceedings of the 21st international
conference on Software engineering, pages 685–686. ACM, 1999. (Cited on page 17.)

[CL06] Samuele Carpineti and Cosimo Laneve. A basic contract language for web services.
In Programming Languages and Systems, pages 197–213. Springer, 2006. (Cited on
page 25.)

[CPP] cv (const and volatile) type qualifiers. http://en.cppreference.com/w/cpp/

language/cv. (Cited on page 116.)

[CRR98] Lobel Crnogorac, Anand S Rao, and Kotagiri Ramamohanarao. Classifying in-
heritance mechanisms in concurrent object-oriented programming. In ECOOP’98
Object-Oriented Programming, pages 571–600. Springer, 1998. (Cited on pages 13
and 14.)

https://isocpp.org/wiki/faq/templates#templates-defn-vs-decl
https://isocpp.org/wiki/faq/templates#templates-defn-vs-decl
http://en.cppreference.com/w/cpp/language/cv
http://en.cppreference.com/w/cpp/language/cv

REFERENCES 175

[Cus91] Elspeth Cusack. Inheritance in object oriented Z. In ECOOP’91 European Conference
on Object-Oriented Programming, pages 167–179. Springer, 1991. (Cited on page 13.)

[DAH01] Luca De Alfaro and Thomas A Henzinger. Interface automata. In ACM SIGSOFT
Software Engineering Notes, volume 26, pages 109–120. ACM, 2001. (Cited on pages
11 and 15.)

[Dij82] Edsger W Dijkstra. On the role of scientific thought. In Selected Writings on Computing:
A Personal Perspective, pages 60–66. Springer, 1982. (Cited on pages 11 and 13.)

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Tools and
Algorithms for the Construction and Analysis of Systems, pages 337–340. Springer, 2008.
(Cited on page 57.)

[DS05] Schahram Dustdar and Wolfgang Schreiner. A survey on web services composition.
International journal of web and grid services, 1(1):1–30, 2005. (Cited on pages 19
and 20.)

[DSWdS09] Rodrigo Pereira Dos Santos, Cláudia Maria Lima Werner, and Marcio Antelio
da Silva. Incorporating information of value in a component repository to support
a component marketplace infrastructure. In Information Reuse & Integration, 2009.
IRI’09. IEEE International Conference on, pages 266–271. IEEE, 2009. (Cited on page
17.)

[DYV12] Qiang Duan, Yuhong Yan, and Athanasios V Vasilakos. A survey on service-oriented
network virtualization toward convergence of networking and cloud computing.
Network and Service Management, IEEE Transactions on, 9(4):373–392, 2012. (Cited on
pages 19 and 41.)

[Erl05] Thomas Erl. Service-oriented architecture: concepts, technology, and design. Pearson
Education India, 2005. (Cited on page 9.)

[ES03] Niklas Eén and Niklas Sörensson. Temporal induction by incremental sat solving.
Electronic Notes in Theoretical Computer Science, 89(4):543–560, 2003. (Cited on pages
83 and 146.)

[Fer04] Andrea Ferrara. Web services: a process algebra approach. In Proceedings of the
2nd international conference on Service oriented computing, pages 242–251. ACM, 2004.
(Cited on page 45.)

[FKF98] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Classes and mix-
ins. In Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 171–183. ACM, 1998. (Cited on page 15.)

176

[FSW+06] Peter Feiler, Kevin Sullivan, Kurt Wallnau, Richard Gabriel, John Goodenough,
Richard Linger, Thomas Longstaff, Rick Kazman, Mark Klein, Linda Northrop, and
Douglas Schmidt. Ultra-Large-Scale Systems: The Software Challenge of the Future.
Software Engineering Institute, Carnegie Mellon University, 2006. (Cited on page
11.)

[G+02] Web Services Choreography Working Group et al. Web services choreography
description language, 2002. (Cited on pages 1, 2, and 21.)

[GC92] David Gelernter and Nicholas Carriero. Coordination languages and their signific-
ance. Communications of the ACM, 35(2):96, 1992. (Cited on page 22.)

[GGRV15] Simon J Gay, Nils Gesbert, António Ravara, and Vasco Thudichum Vasconcelos.
Modular session types for objects. Logical Methods in Computer Science, 11(4), 2015.
(Cited on page 14.)

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
elements of reusable object-oriented software. Pearson Education, 1994. (Cited on page
15.)

[GJ96] Benedict R Gaster and Mark P Jones. A polymorphic type system for extensible
records and variants. 1996. (Cited on page 31.)

[Glo] Python Glossary. Term argument. https://docs.python.org/3/glossary.

html#term-argument. (Cited on page 114.)

[Goo] Google. Places API. https://developers.google.com/places/. (Cited on page
121.)

[Goo08] Google. Protocol buffers. https://developers.google.com/protocol-buffers,
2008. (Cited on pages 3 and 25.)

[GS14] Vincent Gramoli and Andrew E Santosa. Why inheritance anomaly is not worth
solving. In Proceedings of the 9th International Workshop on Implementation, Compilation,
Optimization of Object-Oriented Languages, Programs and Systems PLE, page 6. ACM,
2014. (Cited on page 14.)

[GSS08] Clemens Grelck, Sven-Bodo Scholz, and Alex Shafarenko. A gentle introduction
to S-Net: Typed stream processing and declarative coordination of asynchronous
components. Parallel Processing Letters, 18(02):221–237, 2008. (Cited on pages 5, 22,
26, 106, and 145.)

[GSS10] Clemens Grelck, Sven-Bodo Scholz, and Alex Shafarenko. Asynchronous stream
processing with S-Net. International Journal of Parallel Programming, 38(1):38–67, 2010.
(Cited on pages 5, 22, 26, 38, 53, 106, and 145.)

https://docs.python.org/3/glossary.html#term-argument
https://docs.python.org/3/glossary.html#term-argument
https://developers.google.com/places/
https://developers.google.com/protocol-buffers

REFERENCES 177

[Had06] Marc J Hadley. Web application description language (WADL). 2006. (Cited on
page 21.)

[HC01] George T Heineman and William T Councill. Component-based software engineer-
ing. Putting the Pieces Together, Addison-Westley, 2001. (Cited on page 16.)

[HM05] Seyyed Vahid Hashemian and Farhad Mavaddat. A graph-based approach to web
services composition. In Applications and the Internet, 2005. Proceedings. The 2005
Symposium on, pages 183–189. IEEE, 2005. (Cited on pages 2 and 20.)

[HNT08] Ramy Ragab Hassen, Lhouari Nourine, and Farouk Toumani. Protocol-based
web service composition. In Service-Oriented Computing–ICSOC 2008, pages 38–53.
Springer, 2008. (Cited on page 20.)

[HO98] George T Heineman and Helgo Ohlenbusch. An evaluation of component adapta-
tion techniques. 1998. (Cited on page 17.)

[Hon93] Kohei Honda. Types for dyadic interaction. In CONCUR’93, pages 509–523. Springer,
1993. (Cited on pages 11 and 15.)

[HS11] Torsten Hoefler and Marc Snir. Generic topology mapping strategies for large-scale
parallel architectures. In Proceedings of the international conference on Supercomputing,
pages 75–84. ACM, 2011. (Cited on page 53.)

[HYC08] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous
session types. ACM SIGPLAN Notices, 43(1):273–284, 2008. (Cited on pages 1, 2, 41,
and 125.)

[Inc03] Sun Microsystems Inc. Specification, enterprise JavaBeans. Technical report, 2003.
(Cited on page 18.)

[Ing81] Daniel HH Ingalls. Design principles behind Smalltalk. BYTE magazine, 6(8):286–298,
1981. (Cited on page 13.)

[JEA+07] Diane Jordan, John Evdemon, Alexandre Alves, Assaf Arkin, Sid Askary, Charlton
Barreto, Ben Bloch, Francisco Curbera, Mark Ford, Yaron Goland, et al. Web services
business process execution language version 2.0. OASIS standard, 11(120):5, 2007.
(Cited on page 2.)

[JF88] Ralph E Johnson and Brian Foote. Designing reusable classes. Journal of object-
oriented programming, 1(2):22–35, 1988. (Cited on page 13.)

[Jon97] Capers Jones. Applied software measurement, volume 8. McGraw Hill New York, 1997.
(Cited on page 16.)

178

[JRSS14] Andrea Janes, Tadas Remencius, Alberto Sillitti, and Giancarlo Succi. Towards
understanding of structural attributes of web apis using metrics based on api call
responses. In Open Source Software: Mobile Open Source Technologies, pages 83–92.
Springer, 2014. (Cited on page 1.)

[Kah62] Arthur B Kahn. Topological sorting of large networks. Communications of the ACM,
5(11):558–562, 1962. (Cited on page 51.)

[KDPG16] Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J Gay. Typechecking
protocols with mungo and stmungo. 2016. (Cited on page 3.)

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and Wil-
liam G Griswold. An overview of AspectJ. In ECOOP 2001 Object-Oriented Program-
ming, pages 327–354. Springer, 2001. (Cited on page 15.)

[Kil73] Gary A Kildall. A unified approach to global program optimization. In Proceedings
of the 1st annual ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 194–206. ACM, 1973. (Cited on pages 58, 59, 61, 62, and 64.)

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. Springer, 1997.
(Cited on pages 15 and 16.)

[KMNB+09] Woralak Kongdenfha, Hamid Reza Motahari-Nezhad, Boualem Benatallah, Fabio
Casati, and Regis Saint-Paul. Mismatch patterns and adaptation aspects: A found-
ation for rapid development of web service adapters. Services Computing, IEEE
Transactions on, 2(2):94–107, 2009. (Cited on page 21.)

[Kno02] Kirk Knoernschild. Java design: objects, UML, and process. Addison-Wesley Profes-
sional, 2002. (Cited on page 15.)

[Kos03] Jussi Koskinen. Software maintenance costs. Information Technology Research Institute,
ELTIS-Project University of Jyväskylä, 2003. (Cited on page 16.)

[Kum92] Vipin Kumar. Algorithms for constraint-satisfaction problems: A survey. AI
magazine, 13(1):32, 1992. (Cited on page 57.)

[Kuz16] Maksim Kuznetcov. Data-driven self-tuning in a coordination programming lan-
guage. Master’s thesis, University of Hertfordshire, 2016. (Cited on page 127.)

[LC10] Thomas Y Lee and David W Cheung. Formal models and algorithms for XML data
interoperability. Journal of Computing Science and Engineering, 4(4):313–349, 2010.
(Cited on page 25.)

[Lei05] Daan Leijen. Extensible records with scoped labels. Trends in Functional Programming,
5:297–312, 2005. (Cited on page 31.)

REFERENCES 179

[Len73] Hendrik Willem Lenstra. The acyclic subgraph problem. 1973. (Cited on page 51.)

[LFMS10] Xitong Li, Yushun Fan, Stuart Madnick, and Quan Z Sheng. A pattern-based
approach to protocol mediation for web services composition. Information and
Software Technology, 52(3):304–323, 2010. (Cited on page 21.)

[LM07] Ralf Lämmel and Erik Meijer. Revealing the X/O impedance mismatch. In Datatype-
Generic Programming, pages 285–367. Springer, 2007. (Cited on pages 25 and 117.)

[LNW07] Kim G Larsen, Ulrik Nyman, and Andrzej Wąsowski. Modal i/o automata for
interface and product line theories. In European Symposium on Programming, pages
64–79. Springer, 2007. (Cited on page 2.)

[LP07] Cosimo Laneve and Luca Padovani. The must preorder revisited. In International
Conference on Concurrency Theory, pages 212–225. Springer, 2007. (Cited on page 2.)

[LPSZ08] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mistakes:
a comprehensive study on real world concurrency bug characteristics. In ACM
Sigplan Notices, volume 43, pages 329–339. ACM, 2008. (Cited on page 2.)

[MA03] Brandon Morel and Perry Alexander. Automating component adaptation for re-
use. In Automated Software Engineering, 2003. Proceedings. 18th IEEE International
Conference on, pages 142–151. IEEE, 2003. (Cited on page 17.)

[Mac67] J. MacQueen. Some methods for classification and analysis of multivariate obser-
vations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and
Probability, Volume 1: Statistics, pages 281–297. University of California Press, 1967.
(Cited on page 135.)

[MASM13] Sujith Samuel Mathew, Yacine Atif, Quan Z Sheng, and Zakaria Maamar. The web of
things-challenges and enabling technologies. In Internet of things and inter-cooperative
computational technologies for collective intelligence, pages 1–23. Springer, 2013. (Cited
on page 19.)

[MBE03] Brahim Medjahed, Athman Bouguettaya, and Ahmed K Elmagarmid. Composing
web services on the semantic web. The VLDB Journal — The International Journal on
Very Large Data Bases, 12(4):333–351, 2003. (Cited on page 20.)

[MBH+04] David Martin, Mark Burstein, Jerry Hobbs, Ora Lassila, Drew McDermott, Sheila
McIlraith, Srini Narayanan, Massimo Paolucci, Bijan Parsia, Terry Payne, et al. Owl-
s: Semantic markup for web services. W3C member submission, 22:2007–04, 2004.
(Cited on page 20.)

[Men09] Gregoris Mentzas. Semantic Enterprise Application Integration for Business Processes:
Service-Oriented Frameworks: Service-Oriented Frameworks. IGI Global, 2009. (Cited
on page 25.)

180

[MG06] A Bucciaroneand Maurice and S Gnesi. A survey on service composition approaches:
From industrial standards to formal methods. In Proceedings of the 2nd Inter Conf on
Internet and Web Applications and Services (ICIW’07), pages 10–129, 2006. (Cited on
page 19.)

[MKD93] Jeff Magee, Jeff Kramer, and Naranker Dulay. Darwin/mp: An environment for
parallel and distributed programming. In System Sciences, 1993, Proceeding of the
Twenty-Sixth Hawaii International Conference on, volume 2, pages 337–346. IEEE, 1993.
(Cited on page 23.)

[MM04] Nikola Milanovic and Miroslaw Malek. Current solutions for web service composi-
tion. IEEE Internet Computing, (6):51–59, 2004. (Cited on page 19.)

[MMW06] Craig McMurtry, Marc Mercuri, and Nigel Watling. Microsoft Windows communication
foundation: hands-on! Sams Publishing, 2006. (Cited on page 105.)

[MNXB10] Hamid Reza Motahari Nezhad, Guang Yuan Xu, and Boualem Benatallah. Protocol-
aware matching of web service interfaces for adapter development. In Proceedings of
the 19th international conference on World wide web, pages 731–740. ACM, 2010. (Cited
on page 21.)

[MS98] Leonid Mikhajlov and Emil Sekerinski. A study of the fragile base class problem. In
ECOOP’98 Object-Oriented Programming, pages 355–382. Springer, 1998. (Cited on
page 13.)

[MS04] Giuseppe Milicia and Vladimiro Sassone. The inheritance anomaly: ten years after.
In Proceedings of the 2004 ACM symposium on Applied computing, pages 1267–1274.
ACM, 2004. (Cited on page 14.)

[MY93] Satoshi Matsuoka and Akinori Yonezawa. Analysis of inheritance anomaly in
object-oriented concurrent programming languages. Research directions in concurrent
object-oriented programming, 3:107–150, 1993. (Cited on page 13.)

[OCa] Variant types and labeled arguments. http://caml.inria.fr/pub/docs/

u3-ocaml/ocaml051.html#toc23. (Cited on page 114.)

[Par71] David Lorge Parnas. Information distribution aspects of design methodology.
Technical report, 1971. (Cited on page 13.)

[Par72] David Lorge Parnas. On the criteria to be used in decomposing systems into
modules. Communications of the ACM, 15(12):1053–1058, 1972. (Cited on pages 13
and 15.)

[PC03] Gerardo Pardo-Castellote. Omg data-distribution service: Architectural overview.
In Distributed Computing Systems Workshops, 2003. Proceedings. 23rd International
Conference on, pages 200–206. IEEE, 2003. (Cited on page 105.)

http://caml.inria.fr/pub/docs/u3-ocaml/ocaml051.html#toc23
http://caml.inria.fr/pub/docs/u3-ocaml/ocaml051.html#toc23

REFERENCES 181

[Pel03] Chris Peltz. Web services orchestration and choreography. Computer, (10):46–52,
2003. (Cited on page 20.)

[Pet06] Helmut Petritsch. Service-oriented architecture (SOA) vs. component based archi-
tecture. Vienna University of Technology, Vienna, 2006. (Cited on page 18.)

[Pie97] Benjamin C Pierce. Intersection types and bounded polymorphism. Mathematical
Structures in Computer Science, 7(02):129–193, 1997. (Cited on pages 29, 32, and 112.)

[PL03] Randall Perrey and Mark Lycett. Service-oriented architecture. In Applications and
the Internet Workshops, 2003. Proceedings. 2003 Symposium on, pages 116–119. IEEE,
2003. (Cited on pages 1 and 18.)

[PMR99] Gian Pietro Picco, Amy L Murphy, and Gruia-Catalin Roman. Lime: Linda meets
mobility. In Proceedings of the 21st international conference on Software engineering,
pages 368–377. ACM, 1999. (Cited on page 22.)

[Pro13] ProgrammableWeb. ProgrammableWeb research center. http://www.

programmableweb.com/api-research, 2013. (Cited on pages 1 and 19.)

[RDL+09] Vinay Kumar Reddy, Alpana Dubey, Sala Lakshmanan, Srihari Sukumaran, and
Rajendra Sisodia. Evaluating legacy assets in the context of migration to soa. Software
Quality Journal, 17(1):51–63, 2009. (Cited on page 9.)

[RGB+11] Mohammad Javad Rashti, Jonathan Green, Pavan Balaji, Ahmad Afsahi, and William
Gropp. Multi-core and network aware mpi topology functions. In Recent Advances
in the Message Passing Interface, pages 50–60. Springer, 2011. (Cited on page 53.)

[RS05] Jinghai Rao and Xiaomeng Su. A survey of automated web service composition
methods. In Semantic Web Services and Web Process Composition, pages 43–54. Springer,
2005. (Cited on page 19.)

[SAK07] Mark Slee, Aditya Agarwal, and Marc Kwiatkowski. Thrift: Scalable cross-language
services implementation. Facebook White Paper, 5(8), 2007. (Cited on pages 4 and 25.)

[SBMN09] Quan Z Sheng, Boualem Benatallah, Zakaria Maamar, and Anne HH Ngu. Config-
urable composition and adaptive provisioning of web services. Services Computing,
IEEE Transactions on, 2(1):34–49, 2009. (Cited on page 21.)

[SBS06] Gwen Salaun, Lucas Bordeaux, and Marco Schaerf. Describing and reasoning on
web services using process algebra. International Journal of Business Process Integration
and Management, 1(2):116–128, 2006. (Cited on pages 17 and 45.)

[SBW99] Clemens Szyperski, Jan Bosch, and Wolfgang Weck. Component-oriented pro-
gramming. In Object-oriented technology ECOOP’99 workshop reader, pages 184–192.
Springer, 1999. (Cited on page 16.)

http://www.programmableweb.com/api-research
http://www.programmableweb.com/api-research

182

[Sch03] Sven-Bodo Scholz. Single assignment c: efficient support for high-level array
operations in a functional setting. Journal of functional programming, 13(06):1005–
1059, 2003. (Cited on page 146.)

[SDNB03] Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P Black. Traits:
Composable units of behaviour. In ECOOP 2003–Object-Oriented Programming, pages
248–274. Springer, 2003. (Cited on page 15.)

[Sha13] Alex Shafarenko. Astrakahn: A coordination language for streaming networks.
arXiv preprint arXiv:1306.6029, 2013. (Cited on pages 127 and 146.)

[Sie00] Jon Siegel. CORBA 3 fundamentals and programming, volume 2. John Wiley & Sons
New York, NY, USA:, 2000. (Cited on page 18.)

[SK03] Biplav Srivastava and Jana Koehler. Web service composition-current solutions and
open problems. In ICAPS 2003 workshop on Planning for Web Services, volume 35,
pages 28–35, 2003. (Cited on page 19.)

[SMY+14] Quan Z Sheng, Zakaria Maamar, Lina Yao, Claudia Szabo, and Scott Bourne. Be-
havior modeling and automated verification of web services. Information Sciences,
258:416–433, 2014. (Cited on pages 20 and 21.)

[SPK+12] Hari Subramoni, Sreeram Potluri, Krishna Kandalla, B Barth, Jérôme Vienne, Jeff
Keasler, Karen Tomko, K Schulz, Adam Moody, and Dhabaleswar K Panda. Design
of a scalable infiniband topology service to enable network-topology-aware place-
ment of processes. In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, page 70. IEEE Computer Society Press,
2012. (Cited on page 53.)

[SQV+14] Quan Z Sheng, Xiaoqiang Qiao, Athanasios V Vasilakos, Claudia Szabo, Scott
Bourne, and Xiaofei Xu. Web services composition: A decade’s overview. Information
Sciences, 280:218–238, 2014. (Cited on pages 19 and 20.)

[Sta09] Stack Overflow. Why can templates only be implemented in the header file? http:

//stackoverflow.com/questions/495021/, 2009. (Cited on page 5.)

[Ste06] Friedrich Steimann. The paradoxical success of aspect-oriented programming. In
ACM Sigplan Notices, volume 41, pages 481–497. ACM, 2006. (Cited on page 16.)

[Str13] Bjarne Stroustrup. The C++ programming language. Pearson Education, 2013. (Cited
on page 119.)

[T+55] Alfred Tarski et al. A lattice-theoretical fixpoint theorem and its applications. Pacific
journal of Mathematics, 5(2):285–309, 1955. (Cited on page 76.)

http://stackoverflow.com/questions/495021/
http://stackoverflow.com/questions/495021/

REFERENCES 183

[THK94] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An interaction-based language
and its typing system. In PARLE’94 Parallel Architectures and Languages Europe, pages
398–413. Springer, 1994. (Cited on pages 11 and 15.)

[Tik15] Anna Tikhonova. A synchronisation facility for a stream processing coordination
language. Master’s thesis, University of Hertfordshire, 2015. (Cited on page 127.)

[TYN13] Ewan Tempero, Hong Yul Yang, and James Noble. What programmers do with
inheritance in Java. In ECOOP 2013–Object-Oriented Programming, pages 577–601.
Springer, 2013. (Cited on page 15.)

[VPK+15] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric
Tune, and John Wilkes. Large-scale cluster management at google with borg. In
Proceedings of the Tenth European Conference on Computer Systems, page 18. ACM, 2015.
(Cited on page 146.)

[VVR06] Antonio Vallecillo, Vasco T Vasconcelos, and António Ravara. Typing the behavior
of software components using session types. Fundamenta Informaticæ, 73(4):583–598,
2006. (Cited on page 17.)

[WDW07] Matthias Weidlich, Gero Decker, and Mathias Weske. Efficient analysis of BPEL
2.0 processes using p-calculus. In Asia-Pacific Service Computing Conference, The 2nd
IEEE, pages 266–274. IEEE, 2007. (Cited on page 20.)

[WHW+11] Michael Wilde, Mihael Hategan, Justin M Wozniak, Ben Clifford, Daniel S Katz, and
Ian Foster. Swift: A language for distributed parallel scripting. Parallel Computing,
37(9):633–652, 2011. (Cited on page 22.)

[Wis06] Ryan J Wisnesky. The inheritance anomaly revisited, 2006. (Cited on page 14.)

[WRW96] Ann Wollrath, Roger Riggs, and Jim Waldo. A distributed object model for the Java
system. Computing Systems, 9:265–290, 1996. (Cited on page 19.)

[XFZ10] PengCheng Xiong, YuShun Fan, and MengChu Zhou. A Petri net approach to
analysis and composition of web services. Systems, Man and Cybernetics, Part A:
Systems and Humans, IEEE Transactions on, 40(2):376–387, 2010. (Cited on page 21.)

[YT86] Akinori Yonezawa and Mario Tokoro. Object-oriented concurrent programming. The
MIT Press, Cambridge, MA, 1986. (Cited on page 14.)

[Zai17] Pavel Zaichenkov. Interface configuration protocol for web services. https://

github.com/zayac/joule, 2017. (Cited on pages 6, 123, and 146.)

[ZGG+14] Pavel Zaichenkov, Bert Gijsbers, Clemens Grelck, Olga Tveretina, and Alex Sha-
farenko. A case study in coordination programming: Performance evaluation of

https://github.com/zayac/joule
https://github.com/zayac/joule

184

s-net vs intel’s concurrent collections. In Parallel & Distributed Processing Symposium
Workshops (IPDPSW), 2014 IEEE International, pages 1059–1067. IEEE, 2014. (Cited
on pages 22 and 23.)

[ZL13] Zibin Zheng and Michael R Lyu. Personalized reliability prediction of web services.
ACM Transactions on Software Engineering and Methodology (TOSEM), 22(2):12, 2013.
(Cited on page 21.)

	Abstract
	Acknowledgments
	1 Introduction
	1.1 Contribution
	1.1.1 Publications

	1.2 Thesis Structure

	2 Background
	2.1 Engineering Modular Software Systems
	2.1.1 Object-Oriented Programming
	2.1.2 Aspect-Oriented Programming
	2.1.3 Component-Based Software Engineering
	2.1.4 Service-Oriented Architecture and Web Services

	2.2 Coordination Programming
	2.2.1 Tuple Space Model
	2.2.2 Streaming Model

	2.3 Subtyping, Polymorphism and Flow Inheritance
	2.3.1 Flow Inheritance
	2.3.2 Dependable and Adaptable Service Composition

	3 Interface Definition Language for Web Services
	3.1 Terms
	3.2 Seniority Relation
	3.3 Configuration Parameters
	3.4 Flow Inheritance
	3.5 Multiple Flow Inheritance
	3.6 Motivating Example: Three Buyer Use Case

	4 Description of Service-Based Application in Language of Combinators
	4.1 Wiring
	4.2 Types
	4.2.1 Typing Rules

	4.3 Subtyping
	4.4 Arbitrary Topology
	4.5 Subnetworks

	5 Constraint Satisfaction Problem for Web Services
	5.1 CSP-WS Definition
	5.2 CSP-WS Solution Discussion

	6 Solving the CSP-WS Without Boolean Variables
	6.1 Idea of the Iterative Algorithm
	6.2 Extension of the Semilattices
	6.3 Iterated Function
	6.3.1 Iterated Function for Constraints on Atomic Terms and Variables
	6.3.2 Iterated Function for Constraint on Tuples
	6.3.3 Iterated Function for Constraints on Records
	6.3.4 Iterated Function for Constraints on Choices

	6.4 Monotonicity of the Iterated Function
	6.5 Fixed-Point Algorithm

	7 CSP-WS Algorithm
	7.1 Boolean Constraints for CSP-WS
	7.1.1 Well-Formedness Constraints
	7.1.2 Seniority Constraints

	7.2 Iterative method
	7.2.1 Boolean Satisfiability

	7.3 Iterated function
	7.3.1 Iterated Function for Constraints on Basic Terms and Tuples
	7.3.2 Iterated Function for Constraints on Records
	7.3.3 Iterated Function for Constraints on Choices
	7.3.4 Iterated Function for Constraints on Switches

	7.4 Algorithm Decomposition
	7.5 CSP-WS Algorithm
	7.6 Support for Multiple Flow Inheritance in the Algorithm

	8 Interface Configuration Protocol for Service-Based Application
	8.1 Overview
	8.1.1 The Core
	8.1.2 The Shell

	8.2 Qualifiers
	8.3 Interface Classes and Objects
	8.3.1 Structure of the Interface Class
	8.3.2 Field Inheritance
	8.3.3 Method Inheritance

	8.4 Implementation

	9 Message Synchronisation in Stateful Services
	9.1 Syntax
	9.1.1 Header
	9.1.2 Body
	9.1.3 States

	9.2 Constraint Derivation

	10 Image Processing Use Case for Interface Configuration Protocol
	10.1 Service Code Transformation
	10.2 Interface Derivation
	10.3 Constraint Satisfaction
	10.4 Library Generation

	11 Conclusions and Outlook
	A Additional Details of Image Processing Use Case
	A.1 Source Code
	A.1.1 Read Service
	A.1.2 Denoise Service
	A.1.3 Init Service
	A.1.4 KMeans Service

	A.2 Topology Description
	A.3 Source Code Augmented with Macros
	A.3.1 Transformed Read Service
	A.3.2 Transformed Denoise Service
	A.3.3 Transformed Init Service
	A.3.4 Transformed KMeans Service

	References

