99,779 research outputs found

    ๋ฌธ๋งฅ ์ธ์‹๊ธฐ๋ฐ˜์˜ ๋ฌธ์„œ ๋‹จ์œ„ ์‹ ๊ฒฝ๋ง ๊ธฐ๊ณ„ ๋ฒˆ์—ญ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2022.2. ์ •๊ต๋ฏผ.The neural machine translation (NMT) has attracted great attention in recent years, as it has yielded state-of-the-art translation quality. Despite of their promising results, many current NMT systems are sentence-level; translating each sentence independently. This ignores contexts on text thus producing inadequate and inconsistent translations at the document-level. To overcome the shortcomings, the context-aware NMT (CNMT) has been proposed that takes contextual sentences as input. This dissertation proposes novel methods for improving the CNMT system and an application of CNMT. We first tackle the efficient modeling of multiple contextual sentences on CNMT encoder. For this purpose, we propose a hierarchical context encoder that encodes contextual sentences from token-level to sentence-level. This novel architecture enables the model to achieve state-of-the-art performance on translation quality while taking less computation time on training and translation than existing methods. Secondly, we investigate the training method for CNMT models, where most models rely on negative log-likelihood (NLL) that do not fully exploit contextual dependencies. To overcome the insufficiency, we introduce coreference-based contrastive learning for CNMT that generates contrastive examples from coreference chains between the source and target sentences. The proposed method improves pronoun resolution accuracy of CNMT models, as well as overall translation quality. Finally, we investigate an application of CNMT on dealing with Korean honorifics which depends on contextual information for generating adequate translations. For the English-Korean translation task, we propose to use CNMT models that capture crucial contextual information on the English source document and adopt a context-aware post-editing system for exploiting contexts on Korean target sentences, resulting in more consistent Korean honorific translations.์‹ ๊ฒฝ๋ง ๊ธฐ๊ณ„๋ฒˆ์—ญ ๊ธฐ๋ฒ•์€ ์ตœ๊ทผ ๋ฒˆ์—ญ ํ’ˆ์งˆ์— ์žˆ์–ด์„œ ํฐ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์ด๋ฃฉํ•˜์—ฌ ๋งŽ์€ ์ฃผ๋ชฉ์„ ๋ฐ›๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ํ˜„์žฌ ๋Œ€๋ถ€๋ถ„์˜ ์‹ ๊ฒฝ๋ง ๋ฒˆ์—ญ ์‹œ์Šคํ…œ์€ ํ…์ŠคํŠธ๋ฅผ ๋…๋ฆฝ๋œ ๋ฌธ์žฅ ๋‹จ์œ„๋กœ ๋ฒˆ์—ญ์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ํ…์ŠคํŠธ์— ์กด์žฌํ•˜๋Š” ๋ฌธ๋งฅ์„ ๋ฌด์‹œํ•˜๊ณ  ๊ฒฐ๊ตญ ๋ฌธ์„œ ๋‹จ์œ„๋กœ ํŒŒ์•…ํ–ˆ์„ ๋•Œ ์ ์ ˆํ•˜์ง€ ์•Š์€ ๋ฒˆ์—ญ๋ฌธ์„ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋Š” ๋‹จ์ ์ด ์žˆ๋‹ค. ์ด๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์ฃผ๋ณ€ ๋ฌธ์žฅ์„ ๋™์‹œ์— ๊ณ ๋ คํ•˜๋Š” ๋ฌธ๋งฅ ์ธ์‹ ๊ธฐ๋ฐ˜ ์‹ ๊ฒฝ๋ง ๋ฒˆ์—ญ ๊ธฐ๋ฒ•์ด ์ œ์•ˆ๋˜๊ณ  ์žˆ๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์€ ๋ฌธ๋งฅ ์ธ์‹ ๊ธฐ๋ฐ˜ ์‹ ๊ฒฝ๋ง ๋ฒˆ์—ญ ์‹œ์Šคํ…œ์˜ ์„ฑ๋Šฅ์„ ๊ฐœ์„ ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ๊ธฐ๋ฒ•๋“ค๊ณผ ๋ฌธ๋งฅ ์ธ์‹ ๊ธฐ๋ฐ˜ ์‹ ๊ฒฝ๋ง ๋ฒˆ์—ญ ๊ธฐ๋ฒ•์˜ ํ™œ์šฉ ๋ฐฉ์•ˆ์„ ์ œ์‹œํ•œ๋‹ค. ๋จผ์ € ์—ฌ๋Ÿฌ ๊ฐœ์˜ ๋ฌธ๋งฅ ๋ฌธ์žฅ๋“ค์„ ํšจ๊ณผ์ ์œผ๋กœ ๋ชจ๋ธ๋งํ•˜๊ธฐ ์œ„ํ•ด ๋ฌธ๋งฅ ๋ฌธ์žฅ๋“ค์„ ํ† ํฐ ๋ ˆ๋ฒจ ๋ฐ ๋ฌธ์žฅ ๋ ˆ๋ฒจ๋กœ ๋‹จ๊ณ„์ ์œผ๋กœ ํ‘œํ˜„ํ•˜๋Š” ๊ณ„์ธต์  ๋ฌธ๋งฅ ์ธ์ฝ”๋”๋ฅผ ์ œ์‹œํ•˜์˜€๋‹ค. ์ œ์‹œ๋œ ๋ชจ๋ธ์€ ๊ธฐ์กด ๋ชจ๋ธ๋“ค๊ณผ ๋น„๊ตํ•˜์—ฌ ๊ฐ€์žฅ ์ข‹์€ ๋ฒˆ์—ญ ํ’ˆ์งˆ์„ ์–ป์œผ๋ฉด์„œ ๋™์‹œ์— ํ•™์Šต ๋ฐ ๋ฒˆ์—ญ์— ๊ฑธ๋ฆฌ๋Š” ์—ฐ์‚ฐ ์‹œ๊ฐ„์„ ๋‹จ์ถ•ํ•˜์˜€๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ๋Š” ๋ฌธ๋งฅ ์ธ์‹ ๊ธฐ๋ฐ˜ ์‹ ๊ฒฝ๋ง ๋ฒˆ์—ญ๋ชจ๋ธ์˜ ํ•™์Šต ๋ฐฉ๋ฒ•์„ ๊ฐœ์„ ํ•˜๊ณ ์ž ํ•˜์˜€๋Š”๋ฐ ์ด๋Š” ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ๋Š” ๋ฌธ๋งฅ์— ๋Œ€ํ•œ ์˜์กด ๊ด€๊ณ„๋ฅผ ์ „๋ถ€ ํ™œ์šฉํ•˜์ง€ ๋ชปํ•˜๋Š” ์ „ํ†ต์ ์ธ ์Œ์˜ ๋กœ๊ทธ์šฐ๋„ ์†์‹คํ•จ์ˆ˜์— ์˜์กดํ•˜๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์ด๋ฅผ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•ด ๋ฌธ๋งฅ ์ธ์‹ ๊ธฐ๋ฐ˜ ์‹ ๊ฒฝ๋ง ๋ฒˆ์—ญ๋ชจ๋ธ์„ ์œ„ํ•œ ์ƒํ˜ธ์ฐธ์กฐ์— ๊ธฐ๋ฐ˜ํ•œ ๋Œ€์กฐํ•™์Šต ๊ธฐ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ œ์‹œ๋œ ๊ธฐ๋ฒ•์€ ์›๋ฌธ๊ณผ ์ฃผ๋ณ€ ๋ฌธ๋งฅ ๋ฌธ์žฅ๋“ค ์‚ฌ์ด์— ์กด์žฌํ•˜๋Š” ์ƒํ˜ธ์ฐธ์กฐ ์‚ฌ์Šฌ์„ ํ™œ์šฉํ•˜์—ฌ ๋Œ€์กฐ ์‚ฌ๋ก€๋ฅผ ์ƒ์„ฑํ•˜๋ฉฐ, ๋ฌธ๋งฅ ์ธ์‹ ๊ธฐ๋ฐ˜ ์‹ ๊ฒฝ๋ง ๋ฒˆ์—ญ ๋ชจ๋ธ๋“ค์˜ ์ „๋ฐ˜์ ์ธ ๋ฒˆ์—ญ ํ’ˆ์งˆ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋Œ€๋ช…์‚ฌ ํ•ด๊ฒฐ ์„ฑ๋Šฅ๋„ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œ์ผฐ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ๋Š” ๋งฅ๋ฝ ์ •๋ณด๊ฐ€ ํ•„์š”ํ•œ ํ•œ๊ตญ์–ด ๊ฒฝ์–ด์ฒด ๋ฒˆ์—ญ์— ์žˆ์–ด์„œ ๋ฌธ๋งฅ ์ธ์‹ ๊ธฐ๋ฐ˜ ์‹ ๊ฒฝ๋ง ๋ฒˆ์—ญ ๊ธฐ๋ฒ•์˜ ํ™œ์šฉ ๋ฐฉ์•ˆ์— ๋Œ€ํ•ด์„œ๋„ ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ์ด์— ์˜์–ด-ํ•œ๊ตญ์–ด ๋ฒˆ์—ญ ๋ฌธ์ œ์— ๋ฌธ๋งฅ ์ธ์‹ ๊ธฐ๋ฐ˜ ์‹ ๊ฒฝ๋ง ๋ฒˆ์—ญ ๊ธฐ๋ฒ•์„ ์ ์šฉํ•˜์—ฌ ์˜์–ด ์›๋ฌธ์—์„œ ํ•„์ˆ˜์ ์ธ ๋งฅ๋ฝ ์ •๋ณด๋ฅผ ์ถ”์ถœํ•˜๋Š” ํ•œํŽธ ํ•œ๊ตญ์–ด ๋ฒˆ์—ญ๋ฌธ์—์„œ๋„ ๋ฌธ๋งฅ ์ธ์‹ ์‚ฌํ›„ํŽธ์ง‘ ์‹œ์Šคํ…œ์„ ํ™œ์šฉํ•˜์—ฌ ๋ณด๋‹ค ์ผ๊ด€๋œ ํ•œ๊ตญ์–ด ๊ฒฝ์–ด์ฒด ํ‘œํ˜„์„ ๋ฒˆ์—ญํ•˜๋„๋ก ๊ฐœ์„ ํ•˜๋Š” ๊ธฐ๋ฒ•์„ ์ œ์‹œํ•˜์˜€๋‹ค.Abstract i Contents ii List of Tables vi List of Figures viii 1 Introduction 1 2 Background: Neural Machine Translation 7 2.1 A Brief History 7 2.2 Problem Setup 9 2.3 Encoder-Decoder architectures 10 2.3.1 RNN-based Architecture 11 2.3.2 SAN-based Architecture 13 2.4 Training 16 2.5 Decoding 16 2.6 Evaluation 17 3 Efficient Hierarchical Architecture for Modeling Contextual Sentences 18 3.1 Related works 20 3.1.1 Modeling Context in NMT 20 3.1.2 Hierarchical Context Modeling 21 3.1.3 Evaluation of Context-aware NMT 21 3.2 Model description 22 3.2.1 Context-aware NMT encoders 22 3.2.2 Hierarchical context encoder 27 3.3 Data 28 3.3.1 English-German IWSLT 2017 corpus 29 3.3.2 OpenSubtitles corpus 29 3.3.3 English-Korean subtitle corpus 31 3.4 Experiments 31 3.4.1 Hyperparameters and Training details 31 3.4.2 Overall BLEU evaluation 32 3.4.3 Model complexity analysis 32 3.4.4 BLEU evaluation on helpful/unhelpful context 34 3.4.5 EnKo pronoun resolution test suite 35 3.4.6 Qualitative Analysis 37 3.5 Summary of Efficient Hierarchical Architecture for Modeling Contextual Sentences 43 4 Contrastive Learning for Context-aware Neural Machine Translation 44 4.1 Related Works 46 4.1.1 Context-aware NMT Architectures 46 4.1.2 Coreference and NMT 47 4.1.3 Data augmentation for NMT 47 4.1.4 Contrastive Learning 47 4.2 Context-aware NMT models 48 4.3 Our Method: CorefCL 50 4.3.1 Data Augmentation Using Coreference 50 4.3.2 Contrastive Learning for Context-aware NMT 52 4.4 Experiments 53 4.4.1 Datasets 53 4.4.2 Settings 54 4.4.3 Overall BLEU Evaluation 55 4.4.4 Results on English-German Contrastive Evaluation Set 57 4.4.5 Analysis 58 4.5 Summary of Contrastive Learning for Context-aware Neural Machine Translation 59 5 Improving English-Korean Honorific Translation Using Contextual Information 60 5.1 Related Works 63 5.1.1 Neural Machine Translation dealing with Korean 63 5.1.2 Controlling the Styles in NMT 63 5.1.3 Context-Aware NMT Framework and Application 64 5.2 Addressing Korean Honorifics in Context 65 5.2.1 Overview of Korean Honorifics System 65 5.2.2 The Role of Context on Choosing Honorifics 68 5.3 Context-Aware NMT Frameworks 69 5.3.1 NMT Model with Contextual Encoders 71 5.3.2 Context-Aware Post Editing (CAPE) 71 5.4 Our Proposed Method - Context-Aware NMT for Korean Honorifics 73 5.4.1 Using CNMT methods for Honorific-Aware Translation 74 5.4.2 Scope of Honorific Expressions 75 5.4.3 Automatic Honorific Labeling 76 5.5 Experiments 77 5.5.1 Dataset and Preprocessing 77 5.5.2 Model Implementation and Training Details 80 5.5.3 Metrics 80 5.5.4 Results 81 5.5.5 Translation Examples and Analysis 86 5.6 Summary of Improving English-Korean Honorific Translation Using Contextual Information 89 6 Future Directions 91 6.1 Document-level Datasets 91 6.2 Document-level Evaluation 92 6.3 Bias and Fairness of Document-level NMT 93 6.4 Towards Practical Applications 94 7 Conclusions 96 Abstract (In Korean) 117 Acknowledgment 119๋ฐ•

    Controlled generation in example-based machine translation

    Get PDF
    The theme of controlled translation is currently in vogue in the area of MT. Recent research (Schยจaler et al., 2003; Carl, 2003) hypothesises that EBMT systems are perhaps best suited to this challenging task. In this paper, we present an EBMT system where the generation of the target string is filtered by data written according to controlled language specifications. As far as we are aware, this is the only research available on this topic. In the field of controlled language applications, it is more usual to constrain the source language in this way rather than the target. We translate a small corpus of controlled English into French using the on-line MT system Logomedia, and seed the memories of our EBMT system with a set of automatically induced lexical resources using the Marker Hypothesis as a segmentation tool. We test our system on a large set of sentences extracted from a Sun Translation Memory, and provide both an automatic and a human evaluation. For comparative purposes, we also provide results for Logomedia itself

    Capturing translational divergences with a statistical tree-to-tree aligner

    Get PDF
    Parallel treebanks, which comprise paired source-target parse trees aligned at sub-sentential level, could be useful for many applications, particularly data-driven machine translation. In this paper, we focus on how translational divergences are captured within a parallel treebank using a fully automatic statistical tree-to-tree aligner. We observe that while the algorithm performs well at the phrase level, performance on lexical-level alignments is compromised by an inappropriate bias towards coverage rather than precision. This preference for high precision rather than broad coverage in terms of expressing translational divergences through tree-alignment stands in direct opposition to the situation for SMT word-alignment models. We suggest that this has implications not only for tree-alignment itself but also for the broader area of induction of syntaxaware models for SMT

    An Algorithm for Automatic Service Composition

    Get PDF
    Telecommunication companies are struggling to provide their users with value-added services. These services are expected to be context-aware, attentive and personalized. Since it is not economically feasible to build services separately by hand for each individual user, service providers are searching for alternatives to automate service creation. The IST-SPICE project aims at developing a platform for the development and deployment of innovative value-added services. In this paper we introduce our algorithm to cope with the task of automatic composition of services. The algorithm considers that every available service is semantically annotated. Based on a user/developer service request a matching service is composed in terms of component services. The composition follows a semantic graph-based approach, on which atomic services are iteratively composed based on services' functional and non-functional properties

    Uncertainty-Aware Organ Classification for Surgical Data Science Applications in Laparoscopy

    Get PDF
    Objective: Surgical data science is evolving into a research field that aims to observe everything occurring within and around the treatment process to provide situation-aware data-driven assistance. In the context of endoscopic video analysis, the accurate classification of organs in the field of view of the camera proffers a technical challenge. Herein, we propose a new approach to anatomical structure classification and image tagging that features an intrinsic measure of confidence to estimate its own performance with high reliability and which can be applied to both RGB and multispectral imaging (MI) data. Methods: Organ recognition is performed using a superpixel classification strategy based on textural and reflectance information. Classification confidence is estimated by analyzing the dispersion of class probabilities. Assessment of the proposed technology is performed through a comprehensive in vivo study with seven pigs. Results: When applied to image tagging, mean accuracy in our experiments increased from 65% (RGB) and 80% (MI) to 90% (RGB) and 96% (MI) with the confidence measure. Conclusion: Results showed that the confidence measure had a significant influence on the classification accuracy, and MI data are better suited for anatomical structure labeling than RGB data. Significance: This work significantly enhances the state of art in automatic labeling of endoscopic videos by introducing the use of the confidence metric, and by being the first study to use MI data for in vivo laparoscopic tissue classification. The data of our experiments will be released as the first in vivo MI dataset upon publication of this paper.Comment: 7 pages, 6 images, 2 table
    • โ€ฆ
    corecore