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Abstract

The neural machine translation (NMT) has attracted great attention in recent years,

as it has yielded state-of-the-art translation quality. Despite of their promising re-

sults, many current NMT systems are sentence-level; translating each sentence inde-

pendently. This ignores contexts on text thus producing inadequate and inconsistent

translations at the document-level. To overcome the shortcomings, the context-aware

NMT (CNMT) has been proposed that takes contextual sentences as input. This dis-

sertation proposes novel methods for improving the CNMT system and an application

of CNMT. We first tackle the efficient modeling of multiple contextual sentences on

CNMT encoder. For this purpose, we propose a hierarchical context encoder that en-

codes contextual sentences from token-level to sentence-level. This novel architecture

enables the model to achieve state-of-the-art performance on translation quality while

taking less computation time on training and translation than existing methods. Sec-

ondly, we investigate the training method for CNMT models, where most models rely

on negative log-likelihood (NLL) that do not fully exploit contextual dependencies.

To overcome the insufficiency, we introduce coreference-based contrastive learning

for CNMT that generates contrastive examples from coreference chains between the

source and target sentences. The proposed method improves pronoun resolution accu-

racy of CNMT models, as well as overall translation quality. Finally, we investigate an

application of CNMT on dealing with Korean honorifics which depends on contextual

information for generating adequate translations. For the English-Korean translation

task, we propose to use CNMT models that capture crucial contextual information

on the English source document and adopt a context-aware post-editing system for

exploiting contexts on Korean target sentences, resulting in more consistent Korean

honorific translations.
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Chapter 1

Introduction

Recently deep neural networks have achieved remarkable success in the field of natural

language processing (NLP), including text classification, summarization, question an-

swering, dialog systems, and so on. Machine translation (MT) is also a classic sub-field

in NLP that automates translation between natural languages with computer software.

MT has received great attention from academics since MT shares a similar objective

with many other NLP and artificial intelligence (AI) tasks, that is to fully understand

and resemble the human text (speech) at the semantic level. In addition, translation

itself is a difficult task even for humans, achieving good MT performance is thus chal-

lenging and would attract many researchers. On the other hand, MT has huge poten-

tial for business values as the demands on multilingual content like video streaming

and global collaboration amongst institutions and individuals, are still increasing. This

huge growth of demands for translation exceeds the capability of human translation,

so the needs for developing high-quality MT systems become even more increasing.

In the past years, the majority of MT systems were implemented through statisti-

cal machine translation (SMT) which uses statistical models [3, 4] and hand-crafted

features to represent translation between bilingual sentence pairs. In contrast, neu-

ral machine translation (NMT) systems that are based on novel deep neural network

architectures [5, 6, 7] require little to no feature engineering. Because of its simple ar-

1



chitecture and ability in capturing long dependency in the sentence, NMT has achieved

great success on translation quality, and become more popular among the researchers

and public [8, 9].

Despite its success, MT systems including NMT are mainly sentence-level systems

that translate each sentence in isolation, regardless of their inter-document dependen-

cies. In reality, however, the text does not consist of an isolated, unrelated sentence,

but collocated and structured groups of sentences. These sentences are often combined

by complex linguistic elements, referred to as the discourse [10]. Ignoring the relation-

ships among these discourse elements results in translations that may looks good but

lack crucial properties of the text. In other words, ignoring the document context in

translation hinders conveyance of the intended meaning.

Figure 1.1 illustrates one of the such limitation of sentence-level translations [11].

In German, the grammatical genders of a pronoun and its antecedent should agree[1].

Since the “Statue” is feminine, referring pronoun should also be feminine as shown in

human translation (“its” translated as “deren”). However, the MT generated pronoun

with wrong grammatical gender, as “seine” is masculine.

Source In fairness, Miller did not attack the statue itself. (...) But he did atta
ck its meaning.

Human Um fair zu bleiben, Miller griff nicht die Statue selbst an. (...) Aber e
r griff deren Bedeutung an.

MT Fairerweise hat Miller die Statue nicht selbst angegriffen. (...) Aber 
er griff seine Bedeutung an.

Figure 1.1: Grammatical genders of a pronoun deren should agree with its antecedent

Statue (feminine), however sentence-level translation resulted in inadequate choice of

pronoun seine (masculine).

Figure 1.2 is another example of inconsistencies between translations in isolation.

The source Korean sentence is a piece of a press release and showing its English trans-

2



lations from Google Translate. Even without seeing the human translation, we can

easily find that the translations of the same name of the shelter “아동안전지킴이집”

(House of children’s safety guardian) do not agree with each other. Although all the

translations shown above may be perceived as adequate on sentence-level, it contains

a word that is inconsistent with the rest of the text, resulting in decreased fluency.

From these examples, we can conclude that despite its success in sentence-level per-

formance, the MT system would struggle in achieving human-level translation when it

still relies on sentence-level and isolated translation.

Source 서울경찰청은네이버(주)ㆍ서울시와협력하여아동의긴급보호
소역할을하고있는아동안전지킴이집의위치정보서비스를
제공한다고밝혔다.

PC나스마트폰으로 ‘네이버’또는 ‘스마트서울맵(서울시운영)’
의검색창에 ‘아동안전지킴이집’을검색하면서울시내에있는
아동안전지킴이집위치를한눈에확인할수있다.

아동안전지킴이집은 ’08년부터아동범죄예방정책일환으로시
행하여서울시내 1,357개소가지정되어있고, 각종범죄로부터
아동을보호하는역할을수행하고있다.

Google 
Translate

The Seoul Metropolitan Police Agency announced that it would pro
vide the location information service of the Child Safety Keeper Ho
use, which serves as an emergency shelter for children, in cooperati
on with Naver Corporation and the City of Seoul.

You can check the location of the child safety guard house in downt
own Seoul at a glance by searching for 'child safety guard house' in 
the search bar of 'Naver' or 'Smart Seoul Map (operated by Seoul Ci
ty)' with a PC or smartphone.

Child Safety Keepers have been implemented as part of the child cri
me prevention policy since 2008, and 1,357 locations in Seoul have 
been designated, and they are playing a role in protecting children f
rom various crimes.

Figure 1.2: The Google Translate (retrieved on 24 Nov. 2021) have failed to maintain

coherence in translations of the same name of the shelter, ”아동안전지킴이집”.

To overcome the limitation of sentence-level systems, researchers have pioneered
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the use of contextual information extracted from surrounding texts on the source and

target document. However, most of the existing works to include document context in

SMT failed to yield significant improvements due to the limitations of SMT [13]. Re-

cently, with the success of neural machine translation, many researchers are focusing

on context-aware neural machine translation (CNMT).

Researchers have first proposed to model the inter-dependencies among the sen-

tences in a document for implementing CNMT systems. The context can either be in

the source or the target language, the first few studies have only exploited source-side

context [14, 15, 16, 17]. In another studies, researchers have investigated to incorpo-

rate target-side context [18, 19, 20, 21] as well. All of the above researches have been

focused on modeling architectures for representing contexts in NMT encoder or de-

coder. For example, researchers first just concatenated preceding and/or succeeding

sentence(s) with source sentence [19] and eventually augmented NMT model with an

additional encoder that encodes context sentences and fed into NMT encoder and/or

decoder [14, 17]. These approaches are quite effective in improving translation qual-

ity when using single context sentences but do not consider incorporating broader

context by taking multiple sentences. To overcome this limitation, hierarchical archi-

tectures for encoding sentences from token-level to sentence-level have been proposed

[16, 22, 23]. By compressing token-level representation into sentence-level, these hier-

archical models can more efficiently deal with multiple contextual sentences. However,

these approaches still rely on source to context token-level attention mechanisms, in-

creasing the computational complexity and becoming more prone to the data sparsity

problem.

This dissertation proposes two approaches for improving the CNMT system, one

is introducing a new model architecture and the other is developing a new train-

ing process. In addition, this dissertation discusses an application of CNMT method.

For a new model architecture, we introduce a hierarchical context encoder (HCE) to

tackle shortcomings of existing hierarchical CNMT models [24]. HCE first abstracts
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sentence-level information from preceding sentences, and then hierarchically encodes

context-level information. Although the HCE eliminates the source-to-context atten-

tion at the token level, it instead thoroughly compresses the token-level representation

using an attentive weighted sum network and models inter-context dependency by us-

ing self-attentional networks in the upper level of hierarchy. This increases the com-

putation speed of the encoder as well as minimizes insufficiency in capturing source-

to-context dependency. In the experiment, the proposed model records state-of-the-

art performance measured in BLEU score on English-Korean, English-German, and

English-Turkish corpus. In addition, we show that our HCE also achieves the best

performance in 2 specially designed test suits derived from the same English-Korean

corpus; a) a crowd-sourced test set which is designed to evaluate how well an encoder

can exploit contextual information, b) an English-Korean pronoun resolution test suite

for assessing how the model can discriminate the correct and wrong translation of

ambiguous pronouns.

After success in improving a hierarchical encoder for CNMT, we move on to the

training method for CNMT. Most of the existing CNMT methods have proposed model

architectures that employ structural or input modifications in the base sentence-level

NMT model to incorporate context information. For learning the parameters, however,

these works follow conventional negative log-likelihood (NLL) minimization with tak-

ing context as an extra input. Formally, given the source x, target y, n contextual sen-

tences C = [c1, · · · , cn] in the data D, we want to find the optimum parameters θ∗ as

follows:

θ∗ = argmin
θ

∑
(x,y,C)∈D

−logPθ(y|x, C). (1.1)

Since the NLL objective function does not directly make use of contextual infor-

mation, the CNMT model trained in this way tends to exploit context implicitly, such

as regularization[25, 26]. To fill the gap, we propose a novel coreference-based con-

trastive learning method (CorefCL) for training CNMT [27]. The CorefCL consists

of data augmentation and contrastive learning scheme based on coreference between
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the source and contextual sentences. By corrupting automatically detected coreference

mentions in the contextual sentence, CorefCL can train the model to be sensitive to

coreference inconsistency. The empirical result demonstrates the superiority of our

proposed approach, which consistently improves the pronoun resolution accuracy of

several CNMT models as well as the overall translation quality.

Finally, we further investigate an application of the CNMT method that how the

CNMT can improve a language-dependent problem. This topic is also closely related

to CNMT evaluation because traditional metrics like BLEU [28] or METEOR [29]

do not consider such problems, and thus may fail to assess the models especially on

longer translations. So recent works have focused on designing test suits for addressing

specific discourse phenomena such as pronoun resolution in English-German transla-

tion [1]. Many of these discourse phenomena are language-specific and still remain

undiscovered in the field of CNMT, especially for Asian languages.

To this end, we investigate how the CNMT method can promote translation im-

provements of Korean honorifics [30]. Our intuition is that the model should exploit the

information such as the relationship between speakers from the surrounding sentences

for managing the use of honorific expressions. In contrast to previous studies in this

dissertation which only used source-side context, we added the target-side context by

adopting a context-aware post-editing (CAPE) technique to refine a set of inconsistent

sentence-level honorific translations. For evaluation, we design a heuristic to create

honorific-labeled test data and we found that using CNMT outperforms sentence-level

NMT baselines both in overall translation quality and honorific translations.

The remaining part of this dissertation is organized as follows. Chapter 2 provides

a background on NMT. In chapter 3, we explain the proposed hierarchical encoder

for efficiently modeling contextual sentences. Chapter 4 explains a contrastive learn-

ing framework for enhancing context-aware NMT models. Further investigation on a

context-aware NMT application in Korean honorific translation is discussed in Chapter

5. Finally, the dissertation is concluded in Chapter 6.
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Chapter 2

Background: Neural Machine Translation

In this chapter, we briefly overview the neural machine translation (NMT). First we

present a short history of NMT. Then we review the problem formulation and core

components of NMT including the commonly used encoder-decoder architectures,

training/decoding techniques, and evaluation metrics for NMT.

2.1 A Brief History

Prior to the recent resurgence of the neural network, most machine translation research

focused on statistical MT (SMT) which models the probability of possible transla-

tions [3, 31]. SMT consist of two major components; the translation model (TM) and

the language model (LM). The TM represents the probability of translation between

words and/or phrases and the LM is used to generate more fluent target sentence. Since

both can be trained using only text data, SMT rendered many complex engineering ef-

forts obsolete which existed in traditional approaches like rule-based MT (RBMT) or

example-based MT (EBMT).

On the other hand, although there were a few early attempts to incorporate neural

networks into the translation process (e.g. [32]), none of the neural-based MT methods

were able to get reasonable results beyond toy examples at the time. Few years later,
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the resurrection of neural networks in MT was started with the introduction of neural

language models [33]. One of the earliest works [34] integrated a neural LM instead

of the n-gram LM commonly used in SMT and achieved significant improvements

in translation quality. In addition to the neural LM, researchers also studied several

other uses of neural networks in SMT including word/phrase re-ordering of translated

sentence [35], and replacing/extending the TM [36].

Then efforts to model MT by neural networks eventually moved to (pure) neu-

ral machine translation, with increased availability of computational resources like

graphics processing unit (GPU) and development of novel deep neural network archi-

tectures. The earliest and the most widely used architecture for NMT is a sequence-

to-sequence, a.k.a. encoder-decoder model [5, 6] that consist of two neural networks

to model the source and target sentences. We will further review the encoder-decoder

model later regarding its importance for understanding rest of this dissertation.

Soon after the introduction of encoder-decoder model, NMT has dominated the

field of MT research with advances in model architecture like attentional network

[7], training methods like back-translation [37], and additional techniques in pre/post-

processing. This trend is apparent in the list of submitted MT systems in the shared task

of Conference of Machine Translation (WMT), one of the oldest and the most active

conference specialized in MT. In 2015, only one system [38] was based on pure NMT.

However, starting from 2017 almost all submitted systems were NMT-based [39, 40]

since many of the NMT systems have outperformed state-of-the-art SMT systems and

the performance of NMT is still increasing.

Currently, NMT research is still progressing rapidly, reflected as the growing num-

ber of publications NMT related papers in the past few years (Figure 2.1)1. As the

number of papers grows, many new research directions are being discovered, and of

course, the context-aware NMT is one of the ongoing directions.
1Example search query: https://scholar.google.com/scholar?q=neural+

machine+translation&hl=ko&as_sdt=0%2C5&as_ylo=2021&as_yhi=2021
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Figure 2.1: Number of papers mentioning “neural machine translation” per year found

on Google Scholar (as of 11 Jan. 2022).

2.2 Problem Setup

In this section, we review the problem formulation of NMT. Consider the source sen-

tence x = (x1, · · · , xn) as an input and the target sentence y = (y1, · · · , ym) as a

output, the goal of sentence-level NMT is to find the most probable target sequence ŷ

given a source sentence, that is:

ŷ = argmax
y

= Pθ(y|x), (2.1)

where θ denotes the trainable set of parameters. The conditional probabilityPθ(y|x)

is modelled using neural networks and can be decomposed as:

Pθ(y|x) =
M∏
n=1

Pθ(yn|y<n,x, ) (2.2)

where yn is the current target word and y<n are the previously generated words.

Note that this decomposition scheme is generally refereed as auto-regressive [41]

which models conditional probability of each token (word) as left-to-right causal struc-

ture. There are also several implementations of non-auto-regressive NMT (NAT) which

9



eliminate the causal dependencies and models the whole output tokens at once [42, 43].

However, the following discussion would only focus on auto-regressive methods due

to the scope of this dissertation, as most of current CNMT systems are auto-regressive.

Encoder Decoder

𝑥!
어제

𝑥"#!
햄버거를

𝑥"
먹었다 <sos>

𝑦!
Yesterday

𝑦$
I

𝑦%
hamburger

Yesterday
𝑦!

I
𝑦$

ate
𝑦$

<eos>

… …

…

Figure 2.2: An overview of general encoder-decoder model for sentence-level NMT.

2.3 Encoder-Decoder architectures

Generally NMT models are based on an encoder-decoder structure as illustrated in Fig-

ure 2.2, where the encoder reads the source sentence to compute a set of vector repre-

sentation, and the decoder generates the target translation one word at a time given the

previously computed source representation. Initially, models used a fixed representa-

tion like the last hidden state of encoder network generate the target sentence [5, 6]. It

was quickly replaced by the attention-based model [44] that dynamically generates the

context representation. These models were based on recurrent neural network (RNN)

such as a long short-term memory (LSTM) [45], which is suitable for modelling se-

quential information. However, RNN’s strict sequential computation hindered paral-

lelization within training examples and became a bottleneck when processing long

sentences. Recently, a new model architecture based solely on attention mechanisms

has been proposed [7]. This self-attentional networks (SANs) removed the recurrence
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entirely and has proved to achieve state-of-the-art results on several language-pairs.

There have been also numerous other NMT models such as convolutional neu-

ral network (CNN) based models [46] and variations of the SAN like the Universal

Transformer [9]. However, we will only cover the RNN and SAN based models in

the remaining part of this chapter as these two have been widely used in the field of

CNMT. We further review these two models as it is necessary to develop a thorough

understanding of rest of this dissertation.

I Love You . <end>

너를 …

Decoder

Encoder

사랑해

𝒄!

𝒔!"# 𝒔!

𝛼!# 𝛼!$
𝛼!%𝛼!&

𝛼!'

𝒉# 𝒉' 𝒉& 𝒉% 𝒉$

Figure 2.3: RNN-based NMT model with attention mechanism

2.3.1 RNN-based Architecture

In RNN-based NMT models, hidden states of encoder RNN represent individual words

of the source sentence. These representation can either be left-to-right direction [6] or

bidirectional [44] which consist of the forward and backward RNNs followed by the

concatenation of the corresponding bidirectional hidden states. These representations

capture information of the corresponding word and its surrounding words in the sen-

tence.

Once the source sentence is processed by encoder RNN, the decoder RNN gen-
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erates each words of target sentence given the hidden representations of the source

sentence. In the early studies, decoder RNN only have used fixed representation re-

gardless of currently decoding word. With the introduction of attention mechanism,

the decoder can dynamically attend to relevant parts of the source sentence at each

step of generating the target sentence as shown in Figure 2.3 The context vector or

attentional vector cn is computed as a weighted summation of the hidden states pro-

duced by the encoder RNN, where the weights can be thought of as the alignment

probability between a target token (word) at position n and a source symbol at posi-

tion m. The decoder RNN generates words of the target translation one-by-one in a

left-to-right direcetion. The decoder hidden state is computed as follows:

sn = RNN(sn−1, ey[yn−1], cn), (2.3)

where sn−1 is the previous decoder state, ey[yn] is embedding of the word yn from

the embedding table ey of the target language, and cn is the dynamic context vector

that is calculated through attention mechanism:

cn =

|x|∑
m=1

αnmhm. (2.4)

The weight αnm of each source representation hm is computed as:

αnm =
efnm∑|x|
k=1 e

fnk

, (2.5)

where fnk is a scoring function that is generally a feedforward neural network tak-

ing sn−1 and hm as inputs. This scoring function calculates a alignment score which

represent similarity between the query sn−1 and the key hm. Initially the scoring func-

tion is implemented as additive [44] that consist of weighted summation of the query

and the key. On the other hand, multiplicative scoring function which calculates simi-

larity using dot-product of the query and the key has also been widely used [47].

The probability of generation of each word yn is then conditioned on all of the

previously generated words y<n via the state of the RNN decoder sn, and the source

sentence via cn:
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un = tanh(sn +Wuccn +Wuney[yn−1]) (2.6)

Pθ(yn|y<n,x) = softmax(Wyun + by) (2.7)

yn ∼ Pθ(yn|y<n,x), (2.8)

where Wuc,Wun,Wy and by are also parameters of the NMT model.

2.3.2 SAN-based Architecture

Add & Norm
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Output
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Encoding
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Encoder-
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Figure 2.4: Transformer [7], a SAN-based architecture.

RNN-based NMT models have two major limitations. The first limitation is the se-

quential nature of RNNs. When the model process each input token, the model has to
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wait until all previous input tokens have been processed. This can be a bottleneck when

processing long sequences. The second limitation is learning long-range dependencies

among the tokens . The number of operations required to relate signals from two ar-

bitrary input or output positions grows with the distance between positions, making

it difficult to learn complex dependencies between distant positions. The recent self-

attentional networks (SAN) like Transformer [7] used stacked self-attention networks

followed by point-wise and fully connected layers for both the encoder and decoder

for overcoming the limitations of RNN-based NMT models.

The core component of SAN is an attentional network. This can be described as

mapping a query (Q) and a set of key-value (K −V) pairs into an output, where the

query, keys, values, and the output are all sequences of vector. Similar to the attention

mechanism in RNN-based NMT, it computes a weighted sum of the values as the

output, where the weight of each value is computed by a scoring function of the query

with the corresponding key.

Matmul

Scale

Mask (opt.)

Matmul

Softmax

Linear

Concat

Scaled Dot-Product
Attention

Linear Linear Linear

Figure 2.5: Scaled dot-product attention (left) and multi-head attention (right).

The SAN’s attentional network consist of the two architectures, scaled dot-product

attention and multi-head attention as shown in Figure 2.5. In scaled dot-product atten-
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tion, output is computed as:

Attention(Q,K,V) = softmax(
QKᵀ

√
d

)V, (2.9)

where d is the hidden diemsion of attentional network and acts as a scaling factor.

This scaling factor prevents performance drop especially when d is large. The SAN

also performs the multi-head attention, which applies multiple attentional networks to

obtain output:

MultiHead(Q,K,V) = concatenate(head1, · · · , headh)WO (2.10)

headi = Attention(QWQ
i ,KWK

i ,VWV
i ), (2.11)

where WQ
i ,W

K
i ,W

V
i , and WO are parameter metrices that are also changing dimen-

sions of Q,K,V and the output resepectively. The multi-head attention is beneficial

on jointly attending to information from different representation sub-spaces at different

positions.

In addition to the attentional network, each of the SAN hidden layers contain point-

wise feed-forward network:

FNN(x) = ReLU(xW1 + b1)W2 + b2, (2.12)

where W1,W2,b1,b2 are all trainable parameters.

In general, the encoder stack of SAN is composed ofL identical hidden layers. The

attentional network in the encoder stack is a multi-head self-attention allowing each

position in the encoder to attend to all positions in the previous layer of the encoder. In

this case, Q,K,V are the same input. On the other hand, the decoder stack has another

attentional network, named encoder-decoder attention that is a multi-head attention

over the output of the encoder layer. On encoder-decoder attention, the query Q is an

output of self-attentional network and the key-value (K−V) pairs are obtained from

the encoder. In addition, masking is used in the self-attention sub-layer in the decoder

stack to prevent positions from attending to subsequent positions.
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2.4 Training

To train the model, all parameters in the model are jointly optimized via backpropaga-

tion to minimize the loss function over the training set. The loss function is defined as

the sum of the negative log-likelihood of predicting a correct symbol yn in the output

sequence for each instance x in the training set D. Thus, we want to find the optimum

set of parameters θ∗ as follows:

θ∗ = argmin
θ

∑
(x,y)∈D

−logPθ(y|x) (2.13)

= argmin
θ

∑
(x,y)∈D

|y|∑
n=1

−logPθ(yn|y<n,x). (2.14)

Generally, the model can be trained using random initialization of parameters (”from

scratch”). However, when the training data is small, transfer learning from a model

that is pre-trained on larger dataset, is adopted to improve the model’s performance

[48]. Recently, pre-trained language models (PLMs) like BERT [49] and GPT [50]

using a variety of unsupervised pre-training methods have shown remarkable success

in NLP. Since PLMs are also available in encoder-decoder architectures (e.g. MASS

[51], BART [52], and T5 [53]), PLMs are now adopted in several MT transfer learning

tasks.

2.5 Decoding

Once the NMT model has been trained, we can use it to translate or decode unseen

source sentences. The best output sequence for a given input sequence is produced by:

ŷ = argmax
y

= Pθ(y|x), (2.15)

Since solving this optimization problem exactly is computationally intractable, ap-

proximations such as greedy decoding or beam search are widely used. The basic idea

of greedy decoding is to pick the most probable word, i.e. the word having the highest
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probability, at each decoding step until the end-of-sentence token is generated. Beam

search [54], however, keeps a fixed number of translation hypotheses with the highest

log-probability at each time step. A complete hypothesis that is containing the end-

of-sentence token is added to the final candidate list. The algorithm then picks the

translation with the highest log-probability from this list. If the number of candidates

at each timestep is chosen to be one, beam search reduces to greedy decoding. In prac-

tice, the translation quality obtained via beam search is significantly better than that

obtained via greedy decoding in expense of decoding speed.

2.6 Evaluation

To evaluate the quality of the generated translations, numerous automatic evaluation

metrics have been proposed. BLEU [28] has been the most widely used metric for

evaluating translation outputs. The main idea of BLEU is to aggregate the count of

n-grams that overlap between machine and reference translations. The BLEU metric

ranges from 0 to 1, where 1 means an identical output with the reference. Although

BLEU correlates well with human judgment, it relies on precision alone and does not

take into account recall—the proportion of the matched n-grams out of the total num-

ber of n-grams in the reference translation. METEOR [29] was proposed to address the

shortcomings of BLEU. It scores a translation output by performing a word-to-word

alignment between the translation output and a given reference translation. The align-

ments are produced via a sequence of word-mapping modules, that is, if the words are

exactly the same, same after they are stemmed using the Porter stemmer, and if they

are synonyms of each other. After obtaining the final alignment, METEOR computes

the parameterized harmonic mean of unigram precision and recall.
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Chapter 3

Efficient Hierarchical Architecture for Modeling Con-

textual Sentences

Recently, interests on context-awareness in neural machine translation tasks have been

increasing since additional contextual information is often crucial to produce ade-

quate translations. However, current state-of-the-art translation models including self-

attentional networks (SANs) [7] operate on sentence-level do not take account of con-

textual sentences, hence they record lower performances in spoken languages com-

pared to those in written and formal language documents.

A few studies have addressed this issue by introducing a secondary context en-

coder to represent contextual sentences then combining them with the source sentence

prior to passing them onto the decoder [17, 22, 55]. They proposed context encoders

that encode contextual information in the sentence level vectors and use that infor-

mation in translating input words. These context encoders handle multiple sentences

as long word vectors by concatenating them and do not involve the contextual level

information.

Such approaches cause critical drawbacks in handling a larger span of contextual

sentences. First, the computational complexity of context encoder scales quadratically

both with the number of tokens in each contextual sentence and the number of con-
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textual sentences. Second, [56, 57] have empirically shown that SAN is limited at

capturing long-range dependencies in translation tasks. Hence, concatenating multiple

contextual sentences as a long single sentence is not only computationally expensive,

but it also weakens the context-awareness of the model for large contexts.

In this chapter, we propose a Hierarchical Context Encoder (HCE) to resolve this

issue by hierarchically encoding multiple sentences into a contextual level tensor. HCE

first encodes each sentence to a tensor with the SAN encoder, then it converts the

encoded tensors into a sentence embedding vector by the attentive weighted summa-

tion. Since each sentence embedding vector contains the contextual information of

each contextual sentence, we are able to build a context-level tensor by listing all the

sentence embedding vectors. Then the context-level tensor is fed into another SAN

encoder in order to get a tensor with correlative information between contextual sen-

tences, and the obtained tensor is finally combined with the source encoder to form

the final encoder output. Our HCE processes each context sentence separately instead

of a long concatenated sentence, hence it shows efficiency in computational complex-

ity. The computational complexity of HCE increases linearly as the number of context

sentences increase and HCE shows the fastest running time among standard baseline

models in our experiments.

We conduct a series of extensive experiments on NMT with various language

pairs to empirically show that our HCE properly yields better translation with multiple

context sentences. Our experiments include public OpenSubtitles corpus in English-

German, English-Turkish and our web-crawled movie subtitles corpus in English-

Korean. On all language pairs, we observed that the translation qualities of our model

outperform all the other models measured in BLEU score.

Furthermore, we have constructed an English→Korean evaluation set by crowd-

sourcing in order to analyze how well our HCE exploits contextual information. Our

evaluation set consists of two parts, a part where contextual information is helpful for

translation and another part where contextual information is unhelpful. We measure
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translation performances in each part and analyze the effects of contextual encoders

including HCE by evaluating the performance gap of the two parts. The results from

this evaluation set also show that our HCE performs the best among the baseline mod-

els. Lastly we create a test suite for pronoun resolution on English→Korean similar to

[1, 17]. Evaluation results on the pronoun resolution test suite also reveal the effective-

ness of our proposed model.

3.1 Related works

3.1.1 Modeling Context in NMT

Context-aware machine translation models need to focus on additional contexts. In Sta-

tistical Machine Translation (SMT), context-awareness is modeled explicitly which is

designed for the specific discourse phenomena [13]. For example, anaphora resolu-

tion in translation typically involves identifying previously stated nouns, numbers, and

genders in source documents and manipulating restoration in target sentences accord-

ingly.

In NMT, either context of the source or the target language can be considered.

Exploiting source-side of contexts requires an encoder to represent the multiple context

sentence efficiently [17, 22]. On the other hand, the use of target-side contexts often

involves multi-pass decoding which translates a part of documents or discourses in the

sentence level at first, then refines translations using the previous translations as target

contexts [20, 21]. Our proposed model targets to exploit the source side of context-

awareness.

The simplest approach to incorporate contexts in the source documents is con-

catenating all context sentences and passing them into a sentence-level model [18]. In

addition, multi-encoder approaches that have an extra encoder for contexts are then

introduced. An extra encoder module for context sentences is a natural extension since

the source and context sentences do not have the same significance in translation. In
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those studies, the context sentences are separately encoded then integrated into the

source sentence representations using context-source attention and/or gating network

on encoder [17], decoder [14] or both [55].

3.1.2 Hierarchical Context Modeling

The early multi-encoder approaches have inefficiency on modeling broader span of

context, since they do not take account of having multiple context sentences. Hierar-

chical modeling of context sentences is suggested to overcome the inefficiency and

capture complex dependencies between a source sentence and context sentences. For

example, Wang et. al. [16] uses Recurrent Neural Networks (RNN) encoders operating

both on sentence and document level. Miculicich el. al. [22] introduces a hierarchical

attention network that encodes context sentences first then summarizes those contexts

using a hierarchical structure. Maruf and Haffari [58] introduces a memory network

augmented model that summarizes and stores context sentences. Our method is closely

related to those approaches, as our proposed encoder also incorporates a hierarchically

structured abstraction of encoded context sentences. Maruf et. al. [23] suggests a con-

text attention module which attends to contexts in both word and sentence level. It uses

an averaged word embedding as a sentence-level representation, whereas ours generate

sentence-level tensor with SAN encoders resulting in richer sentence representation.

3.1.3 Evaluation of Context-aware NMT

On the other hand, how the quality of translation can be benefited with contextual

information is a viable research question [14, 19]. Those researches mainly focus on

the design of evaluation tasks that assess the performance of the translation model

on handling discourse phenomena problems such as pronoun resolution [1, 17]. Voita

et. al. [21] also suggests that a carefully designed test suite to evaluate context-aware

translation models is crucial since the standard metrics such as BLEU are insensitive

on measuring consistency in translation with contexts.
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3.2 Model description

In this section, we briefly review common parts of encoders in the context-aware NMT

framework. We also review structures of the context-aware encoders which are our

baseline models. Then we introduce a detailed structure of our Hierarchical Context

Encoder (HCE). In addition, we analyze computational complexities in our proposed

encoder and other baseline models.

3.2.1 Context-aware NMT encoders

NMT models without contexts take an input sentence x in a source language and return

an output sentence y∗ in a target language. We denote a target sentence as y which is

used as a golden truth sentence in supervised learning. Each of x, y, and y∗ is a tensor

that is composed of word vectors, also learnable weights during training.

We especially focus on SAN-based models like Transformer [7] which has recently

been widely used in NMT because of its performance and efficiency. Transformer

consists of an encoder module and a decoder module, an encoder extract features in

x using self-attention and a decoder generate an output y∗ from the extracted features

using both self-attention with itself and attention with the encoder.

Through a single layer in Transformer encoder, an input tensor passes a self-

attention layer using multi-head dot product attention and a position-wise feed-forward

layer [7]:

TransformerEncoder(x) = FFN(MultiHead(x, x, x)). (3.1)

The position-wise feed forward layer, denoted as FFN(x), is composed double linear

transformation layer with a ReLU activation as described in Eq. (2.12). The MultiHead(·)

denotes a multi-head dot product attention in Eq. (2.10).

Both the self-attention layer and position-wise feed-forward layer are followed by

skip connection and layer normalization. In addition, a stack with multiple

TransformerEncoder is generally used in order to capture more abundant representa-
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tions.

With N many additional context sentences C = [c0, · · · , cN−1] are given, an en-

coder has to capture contextual information among them then combine the contextual

information with source sentence representations. We list four previously suggested

models as follows, which are also our baseline models in our experiments;

• Transformer without contexts (TwoC): As a baseline, we have experimented

with Transformer without contexts (TwoC) model which has the same structure

as [7]. TwoC completely ignores given additional context sentences and only

incorporates with the input x and the target y. The computational complexity is

O((Ls)2), where Ls is a length of input x.

• Transformer with contexts (TwC): The simplest approach is concatenating all

context sentences and an input sentence and consider the concatenated sentence

as a single input sentence;

x′ = concatenate(x, c0, · · · , cN−1). (3.2)

Then, the output of TwoC encoder is the output of a stacked transformer encoder

with x′. The computational complexity isO((Ls+NLc)
2), where Lc is a fixed

length of context sentences. The complexity becomes quadratically expensive as

N grows.

• Discourse Aware Transformer (DAT) [17]: DAT handles context sentences

with an extra context encoder which is also a stacked transformer encoder. We

slightly modified DAT to make it available at handling multiple context sen-

tences since [17] is originally designed for handling a single context sentence.

The context encoder has the same structure and even shares its weights with

the source encoder through NLayer − 1 layers. In the last layer, the context

encoder has another transformer encoder module without sharing its weights.

The last layer of the source encoder takes an intermediate output tensor h′ which
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is resulted from NLayer − 1 stacked transformer encoder, processes both self-

attention and context-source attention with t using MultiHead;

t = concatenate(StackedTransformerEncoder(c0), · · · ,

StackedTransformerEncoder(cN )),
(3.3)

hcontext = MultiHead(h′, t, t), (3.4)

and

hsource = MultiHead(h′,h′,h′). (3.5)

the final output tensor of encoder h is given with the gated sum as follows;

h = σ(Wh[hsource,hcontext] + bh), (3.6)

where Wh is a learnable weights and bh is a learnable bias term.

The computational complexity of DAT isO(L2
s+NL

2
c), which is comparable to

our model. However, in order to process context-source attention with multiple

context sentences, it concatenates all tensors from each context encoders to a

long tensor where long-range dependencies of SAN may be limited.

• Document-level Context Transformer (DCT) [55]: The encoder of DCT is

similar to the DAT, except for the integration of the context and source encoder.

Instead of context-source attention and gated sum at the output of both encoders,

each layer of the source encoder takes encoded contextual information t and

compute context-source attention followed by point-wise feed-forward layer;

hcontext = MultiHead(h′, t, t), (3.7)

and

h = FFN(hcontext). (3.8)

Since the extensive use of the context-source attention in the encoder, the com-

putational complexity of DCT is O(NLcLs + L2
s +NL2

c). This can grow pro-

hibitively, especially on handling long context sentences or when the number of

context sentences is large.
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• Hierarchical Attention Networks (HAN) [22]: HAN has a hierarchical struc-

ture with two stage at every HAN layer. At the first level of the hierarchy, a

single HAN layer encodes each context sentence ci to an intermediate tensor

ei ∈ RLc×D with context-source attention;

ei = MultiHead(h′, ci, ci), (3.9)

where h′ denotes an output from a previous layer or an input x. Each ei is a

tensor with a length of Lc and let eji be the j-th vector of ei.

At the second level of hierarchy, eji in all context sentences are concatenated

through i dimension, resulting tensors sj ∈ RN×D;

sj = concatenate(ej0, · · · , e
j
N ), (3.10)

where N is a number of context sentences. Then, an intermediate output tensor

t which contains contextual information queried by each word from the input

sentence can be given as follows;

t = MultiHead(h′, sj , sj). (3.11)

All MultiHead layers are followed by position-wise feed forward layers and

normalization layers. Finally, the output tensor h of HAN encoder is computed

with a gated-sum module introduced by [59]. The aforementioned structure of a

single layer in HAN is stacked NLayer times.

The computational complexity of HAN encoder is O(NLcLs + L2
s + NL2

c)

which is also comparable to our proposed model. Nonetheless, HAN encoder

requires context-source attention two times at every layers. Also, since the sec-

ond context-source attention is performed on si = concatenate(ej0, · · · , e
j
N ),

HAN does not take account of internal correlations among (e0i , · · · , e
Lc
i ).
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Figure 3.1: The structure of our proposed Hierarchical Context Encoder. Each context

sentences ci is encoded through transformer encoders to the tensor ei and the attentive

weighted sum module vectorizes each ei to the vector si. Upper transformer encoder

encodes the input tensor s composed by concatenation s = (s0, · · · , sN ) and outputs

our final context representation tensor t. Then the context representation is combined

to the source encoder by gated sum.
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3.2.2 Hierarchical context encoder

We propose a novel context encoder that hierarchically encodes multiple sentences

into a tensor. Our proposed encoder, Hierarchical Context Encoder (HCE), is designed

to capture correlations between sentences in contexts as well as correlations between

words in each sentence.

Each context sentence ci after word embedding layer is given as a tensor of order

2; ci ∈ RLc×D′
where Lc is a maximum length of each context sentence and D′ is a

dimension of word embeddeding vectors. In the lower part of hierarchy, HCE encodes

each of ci to sentence-level tensor ei using the stacked transformer encoder as [7];

ei = StackedTransformerEncoder(ci). (3.12)

Each encoded sentence-level tensor ei is also a tensor of order 2, ei ∈ RLc×D where

D is a hidden dimension.

We then compress each encoded sentence-level tensor into a sentence-level vector

by a self-attentive weighted sum module which is similar to that of [60]. Our self-

attentive weighted sum module takes ei as an input tensor and computes a vector si as

follows;

si =
∑
j

αjeij , (3.13)

α = FFN(MultiHead(ei, ei, ei)). (3.14)

The output of the attentive weighted sum module si is a vector representing the

information of each i-th context sentence. Then we concatenate (s0, · · · , sN ) to a con-

text embedding tensor s. The context embedding tensor s ∈ RN×D is fed into another

SAN encoder layer which is the upper part of the hierarchy to encode the whole con-

textual information into a single tensor t;

t = TransformerEncoder(s). (3.15)

Finally, the contextual information tensor t is combined to source encoder by gated
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sum as Equation 3.4, 3.5, and 3.6, which is the same process introduced by [17]. Full

structure of HCE is depicted in Figure 3.1.

The main difference between HCE and other baseline models especially HAN is

that HCE encodes each context sentence as the way of sentence embedding with self-

attention independent to the source word, while HAN uses context-source attention. To

explain more in detail, two main differences between the hierarchical SAN structures

of HAN and HCE are as follows: 1) at the bottom part of the hierarchy, HCE encodes

each context sentence to a tensor with self-attention while HAN encodes each context

sentence with context-source attention using query words from input sentences; and

2) at the upper part of the hierarchy, HCE first uses the self-attentive weighted sum

to encode a tensor into a vector which contains the whole information from each con-

text sentence, then encodes the whole contexts with self-attention again. On the other

hand, HAN uses context-source attention again. To summarize, HCE only models the

context-source relations at the upper part of the hierarchy resulting in a simpler and

clearer model structure.

The computational complexity of HCE is O(L2
s + NL2

c). HCE extracts more

compact context-level representation from each sentence-level representation by self-

attentive weighted sum over each ei, hence it complements DAT [17] and DCT [55]

whereas they take the whole contexts as a single sentence by concatenation. Besides,

the encoding procedure of context sentences is not dependent on the input sentence x

unlike HAN. This allows HCE to cache context-level representations t of frequently

appeared context sentences, which is important in implementing a real-time applica-

tion.

3.3 Data

We experimented with our model and baseline models on English-German TED cor-

pus, English-German OpenSubtitles corpus, English-Turkish OpenSubtitles corpus,
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and our web-crawled English-Korean subtitle corpus.

3.3.1 English-German IWSLT 2017 corpus

We use the English-German corpus from the IWSLT 2017 evaluation campaign [61],

which is publicly available on WIT3 website1. The corpus consist of transcriptions and

their translations of TED talks. We combine dev2010 and tst2010 into a devel-

opment(dev) set and tst2015 as a test set. We extract context-aware dataset where

each set consists of a source, a target sentence and multiple context sentences. Since

the corpus is aligned as sentence level, we assume that every 2 preceding sentences

are context sentences. We also include context sentences only within the same talk of

the source sentence, as the data is separated as talks. The resulting dataset consists of

211k, 2.4k, 1.1k examples of train, dev, test sets respectively. Also, we put a special

beginning of context token at the beginning of each context sentences to differenti-

ate from source sentences. Finally, we have used a byte-pair encoded vocabulary with

about 16,000 tokens.

3.3.2 OpenSubtitles corpus

We also choose the OpenSubtitles corpus for English-German and English-Turkish

tasks. We use the 2018 version [62] of the data, each consist of 24.4M , 47.4M parallel

sentences respectively. Following the approach in [21], we first cleaned the data by

picking only pairs with a time overlap of subtitle frames at least 0.9. After cleaning,

we take 7.5M and 20.2M sentences for English-German and English-Turkish corpus.

We then take the context sentences by using the timestamp of each subtitle. The

timestamps contain start time and end time in ms for each subtitle. We focus on the

start times to compile a set of data including a source sentence and preceding contex-

tual sentences. We assume that if the start time of a preceding sentence is within 3000

ms from the start time of a sentence then that preceding sentence contains the contex-
1https://wit3.fbk.eu/mt.php?release=2017-01-trnted

29



St
ar

t T
im

e
En

d 
Ti

m
e

En
gl

ish
Ko

re
an

···

33
77

33
33

99
67

Da
ni

el
 li

ke
s h

an
gi

ng
 o

ut
 w

ith
 h

is 
co

us
in

s.
다
니
엘
은
사
촌
들
과
노
는
걸
좋
아
했
거
든
요

34
00

35
34

11
68

He
's 

be
en

 g
oi

ng
 b

ac
k 

an
d 

fo
rt

h 
un

til
 Le

ith
 a

nd
 I

양
육
권
을
제
대
로
가
질
수
있
을
때
까
지

34
12

36
34

23
03

ca
n 

se
tt

le
 cu

st
od

y.
왔
다
갔
다
했
어
요

34
43

73
34

59
40

Lis
te

n,
 d

on
't 

w
or

ry
.

너
무
걱
정
마
세
요

···

Fi
gu

re
3.

2:
B

ili
ng

ua
ls

ub
tit

le
sa

m
pl

es
fr

om
ou

rE
ng

lis
h-

K
or

ea
n

te
st

fil
es

30



tual information. We set the maximum number of preceding contextual sentences up

to 2.

3.3.3 English-Korean subtitle corpus

Finally, for English-Korean experiments, we construct a web-crawled subtitle cor-

pus with 5,917 files. These files are English-Korean bilingual subtitle files of movies,

TV series, and documentary films from various online sources. We set randomly se-

lected 5.3k files for train, 500 files for dev, and 50 files for test set. The train set in-

cludes 3.0M sentences, the dev set includes 28.8k sentences, and the test set includes

31.1k sentences. Our web-crawled English-Korean bilingual subtitle files include time

stamps for each subtitles. Thus we pre-process those files as similar as processing in

Section 3.3.2. The resulting data have 1.6M sets of serial sentences in train set, 155.6k

sets in dev set, and 18.1k sets in test set. We also have used a byte-pair encoded vo-

cabulary with about 16,500 tokens for English-Korean experiments. We display some

raw samples from our test files in Figure 3.2.

3.4 Experiments

We evaluate our HCE by BLEU score, model complexity, BLEU on helpful/unhelpful

set, and accuracy on the pronoun resolution set. All experimental results show the

effectiveness of HCE compared to baseline models.

3.4.1 Hyperparameters and Training details

Through our experiments, we use 512 hidden dimensions for all layers including words

embedding layers, SAN layers, and the encoded context layer. We set NLayer = 6 for

all models and share the weights of the source encoder to context encoder for the DAT,

HAN, and HCE models. For all attention mechanisms, we set the number of heads as

8. The dropout rate of each SAN layers is set to 0.1.
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For each language pair, we tokenize each text by the wordpiece model [63, 8]

with a vocabulary of about 16,000 tokens. Also, we put a special beginning of context

token <BOS> at the beginning of each context sentences to differentiate from source

sentences.

We implement all the evaluated models using the tensor2tensor framework

[64]. We train all models with ADAM [65] optimizer with learning rate 1e-3 and adopt

early stopping with dev loss. Unlike [22, 55, 23], we do not use the iterative training

which trains the model on a sentence-level task first, then fine-tunes the model with

contextual information. All the models we have evaluated are trained from scratch with

random initialization.

For scoring BLEU, we use the t2t-bleu script2 which outputs the identical

results as Moses script [66].

3.4.2 Overall BLEU evaluation

We measure performances of HCE and other five baseline models in English-German

(IWSLT’17 and OpenSubtitles), English-Turkish (OpenSubtitles), and English-Korean(our

Web-crawled corpus). Overall BLEU scores on all eight datasets are displayed in Table

3.1. Our model yields the best performances on all eight datasets. Especially on our

Web-crawled English-Korean, HCE shows superior performance compared to other

models. These results indicate that our model exploits given contextual sentences ef-

fectively and translate better than all five baseline models in English-German, English-

Turkish and English-Korean translation tasks.

3.4.3 Model complexity analysis

We also observe that our HCE is the most efficient in training speed and inference time

among our baselines. In Table 3.2, HCE records the fastest training speed and infer-

ence time indicating that HCE has the most computationally efficient structure. These
2https://github.com/tensorflow/tensor2tensor
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Model Training speed Inference time # of Params

(steps/sec) (tokens/sec)

TwC 4.07 62.10 61.0M

DCT 2.42 45.32 98.7M

DAT 4.59 65.07 69.9M

HAN 4.47 64.05 66.2M

HCE 4.67 65.12 66.7M

Table 3.2: Training speed, inference time and number of parameters.

results also show that the performance gain of HCE is not only from the complexity of

the model but the structural strength because the number of parameters is comparable

to others.

3.4.4 BLEU evaluation on helpful/unhelpful context

Model Total set helpful set unhelpful set BLEU gap

Transformer without contexts 7.46 6.69 8.04 +1.35

Transformer with contexts 8.29 7.45 8.92 +1.47

DAT [17] 8.22 7.48 8.77 +1.29

HAN [22] 8.34 7.44 9.01 +1.57

HCE (ours) 10.27 10.08 10.40 +0.32

Table 3.3: BLEU score evaluations with helpful contexts set and unhelpful contexts set

from En→Ko test data. All four baseline models have shown large gap between BLEU

score on helpful contexts set and BLEU score on unhelpful contexts set. On the other

hand, Our proposed Hierarchical Context Encoder has almost closed the gap between

BLEU scores on two sets.

In order to verify that our model actually uses the contextual information to im-

prove translation quality, we conduct an additional experiment with a part of data
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where contextual sentences are helpful for translating and the other part of data where

they are not. We randomly choose 10,000 sets of serial sentences from our test set of

En→Ko data and split them up into two parts by crowd-sourcing with Amazon Me-

chanical Turk [67]. The first part consists of 4,331 sets of which context sentences

are helpful for translating (e.g. context sentences include critical information, exact

referred object by pronouns, or residual parts of an incomplete source sentence). The

remaining part consists of 5,669 sets of which context sentences are unrelated to trans-

late the source sentences.

We examine BLEU scores of two parts separately to observe how well each model

uses helpful contexts. The results are displayed in Table 3.3. We observe a large gap

between BLEU score on helpful set and that on unhelpful set with all four baseline

models, showing that helpful set is harder to translate because abstracting and exploit-

ing contextual information is likely to be mandatory to translate helpful set. On the

other hand, HCE closes the gap between BLEU scores on each set, indicating that

HCE understands the contextual information and is able to perform on helpful set as

well as on unhelpful set.

3.4.5 En→Ko pronoun resolution test suite

Finally, we evaluate the accuracy of all models that use contexts on our En→Ko pro-

noun resolution test suite. we create a test suite for English→Korean pronoun resolu-

tion to examine how well a model understands contextual information. Our test suite

is composed of 150 sets, each of which includes 1) a source sentence with a pronoun,

2) preceding contextual sentences with the exact word referred to by the pronoun, 3)

a target sentence with the corresponding pronoun, 4) a correct target sentence where

the pronoun is replaced with the exact word, and 5) a wrong target sentence where

the pronoun is replaced with an unrelated word. We follow a scoring method in [1]

for evaluation; if a model’s negative log-likelihood of correct sentence is lower than

that of wrong sentence, then we consider the model is able to detect wrong pronoun
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Model accuracy

Transformer with contexts 0.25

DAT [17] 0.44

HAN [22] 0.47

HCE (ours) 0.48

Table 3.4: Accuracy on our En→Ko pronoun resolution test suite.

translation.

A sample from our test suite is displayed in Table 3.3, the pronoun and correspond-

ing words are emphasized in bold. In the sample, the source sentence has a pronoun

“it” referring the word “tower” in the context 1 sentence. The target sentence also has

the corresponding boldfaced pronoun in Korean, “ (it)”. We replace the pronoun

in target sentence to the exact referring Korean word “ (tower)” in the correct sen-

tence, and we replace it to an unprecedented yet similar Korean word, “ (roof)” in

the wrong sentence.

The results are displayed in Table 3.4. While TwC scores the lowest accuracy with

0.25, DAT and HAN record accuracy with 0.44 and 0.47 respectively. HCE records

the highest accuracy of 0.48 in this test. These results support the hypothesis that it is

harder to capture contextual information on a single long concatenated sentence than

on structured multiple context sentences. Also, the result that HCE and HAN both

perform better than DAT reveals the strength of hierarchical structure for multiple

contexts which is able to capture the contextual information effectively.

3.4.6 Qualitative Analysis

Attention Visualizations

Figure 3.4 shows three examples how contextual encoders attend and comprehend the

context sentences while translating a particular pronoun. The words in brackets next

to the input sentences are the words in context sentences referred by each boldfaced
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Model Input sentence & Visualization
I want to know what you told him that night. (My father)

DAT

HAN

HCE

Do you have any idea what his family has done? (Dan)

DAT

HAN

HCE

She can be the one to tell me or not tell me. (Lilly)

DAT

HAN

HCE

Figure 3.4: Three visualization examples of attention weights for given pronoun bold-

faced words which are referring to the words in brackets. We refer each of them as (a)

the uppermost example, (b) the middle example, and (c) the bottom example.
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pronoun. The intensity of color (orange) is proportional to the attention weight for

each word. Also, the intensity of color (blue) is proportional to the attention weight for

each context sentence in HCE and HAN.

In general, the third-person pronouns in English are often translated into Korean

pronouns that do not contain attributes like gender, or phrases indicating the referenced

person or object. For example, the word “his” in the middle example (b) has translated

as “졔네 (their)” which is a correct Korean possessive pronoun for referring “Dan”

in c1 sentence. In the bottom example (c), the word “She” has translated as “본인

(oneself)” which can be used for both male and female. Likewise, the word “him”

in the uppermost example (a) has translated as “아버지 (father)” which is the exact

referred word. Considering such phenomena, we regard that correctly referencing the

proper nouns is crucial in translating pronouns into Korean.

From this point of view, Table 3.4 explains the strength of HCE in the En→Ko

translation. As presented in Table 3.4, we observed that HCE gives more attention to

the context sentences which contain the exact referred words. Hence, the upper hier-

archy of HCE pays its attention to the more important sentence as we have intended.

We also observed that both our HCE and HAN tend to attend to nouns such as names

of people (e.g. Dan, Chuck) or names of specific locations (e.g. the church, Paris).

Nevertheless, HCE more accurately attends to the exact referred words comparing to

HAN. In the first example, HCE gives large portion of its attention to “My father”

while HAN choose “business” as the most important word. The second example also

shows the ability of HCE to exploit context information properly. HCE understands

that the word “Dan” is more important than “Chuck”, while HAN gives most of its

attention to the word “Chuck” except for the <EOS> token. Although HCE computes

context representations independent of the input query, these visualization examples

show that HCE can correctly attend to the exact words referred by the pronouns.
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Context Man asked us to locate his daughter. 

Source It was a long time ago, but it looks like she might have known Dewall.

Reference 오래전에실종됐지만그애가드월을아는것같아서요.

HCE 오래전일이지만, 그녀가데월을알고있는것같아요.

Google Translate 오래전일이지만그녀는 Dewall을알고있었던것같습니다.

Naver Papago 오래전일이지만뎁을알지도몰라.

Context This country does not  negotiate with terrorists. Tell that to the families o
f the dead!

Source Do you have any idea what  the public reaction will be when word gets o
ut that  these are acts of terrorism?

Reference 테러로인한참사인것이알려지면 대중의반응이어떨지아십니까?

HAN 테러행위가밝혀지면 대중의반응이어떨지아십니까?
(If a/another terrorism act is revealed)

HCE 테러행위로알려지면 대중의반응이어떨지아십니까?
(If it is revealed as a terrorism act)

(b)

(a)

Source Why would he pay you $10 million / not to ask any of these questions?

Reference 왜아버지는아무조건도없이 / 당신에게천만달러를줬을까요?

TwoC 이런질문은하지말라는건가요?
(Not to ask this kind of question?)

HCE 왜당신에게돈을지불한거죠?
(Why would him/her pay you the money?)

(c)

Figure 3.5: Translation samples. Context, source, and reference sentences are from

our En-Ko test set. (a) Translations of a sentence fragmented into the context and the

source. Each model is given with a context sentence (unbolded) and a source sentence

(bolded). (b) Considering the context, HCE’s translation is more adequate than HAN.

(c) Comparison with two commercial MT systems, Google Translate and Naver Pa-

pago that are retrieved on 15 Dec 2021 by providing a concatenation of context and

source sentences as input.
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Translation Samples

Figure 3.5 shows 3 sets of source, context, and reference target sentences from our

En-Ko test sets and their translations. Fig. 3.5-(a) displays an example of fragmented

source sentence and its translations. In the example, the English sentence “Why would

he pay you $10 million not to ask any of these questions?” is divided into two pieces,

inputted as a context and a source sentence respectively. This situation occurs very

frequently in subtitle translations and poses a challenge to MT models combined with

different word orders of both languages (En: SVO vs Ko: SOV for example). Despite

the difficulties, the HCE can able to generate translations of the relevant part of the

source sentence compared to the context-agnostic model (TwoC).

We also compare the HCE with HAN, the best performing context-aware baseline

model in Fig. 3.5-(b). Although the Korean translations differ in just one morpheme

(’가’ vs ’로’), their semantics are completely different. The context sentence suggests

that the speaker of the source sentence is afraid that the incident would be revealed as

a terrorist act. Considering the context, HCE’s translation is more adequate than HAN,

reflecting the strength of HCE in incorporating contextual information.

Finally, we compared HCE with Google Translate and Naver Papago in Fig. 3.5-

(c) which are two of the commonly used commercial MT services. In these examples,

HCE’s translations are adequate with respect to both the source and reference sen-

tences and also comparable with the two commercial systems. In fact, both HCE and

Naver Papago have generated more fluent Korean sentences than Google since the

names of people are also written in Korean despite minor spelling differences.

On the other hand, HCE shows some shortcomings commonly found in NMT mod-

els. In the example in figure 3.6-(a), HCE has omitted the translation of the conjunc-

tion word ”Then”, while Google and Naver results contain corresponding translations.

It shows the phenomenon known as word omission [68]. Fig. 3.6-(b) displays another

translation error that the HCE did not translate the source sentence at all. Instead, HCE

just copied the source English sentence. This is due to the fact that the training data
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Context ♪ hanging at the bar ♪

Source ♪ I don't owe you a thang, baby ♪

Reference
(as in test set) ♪ I don't owe you a thang, baby ♪

HCE ♪ i don't owe you a thang, baby ♪

Google Translate ♪난너에게빚진게없어, 자기♪

Naver Papago ♪네게땡땡이를빚진게아니야, 자기야♪

Context I called my wife,  told her I wanted to take a break.

Source Then at Erik Dalton's party,  Cole starts laughing.

Reference 그런데에릭달튼의파티에서 콜이갑자기웃기시작하는거에요.

HCE 에릭달튼의파티에서 콜이웃음을시작했죠.

Google Translate 그런다음 Erik Dalton의파티에서 Cole은웃기시작합니다.

Naver Papago 그리고에릭달튼의파티에서콜은웃기시작했다.

(a)

(b)

Figure 3.6: Unsuccessful translation samples. Google and Naver translations are re-

trieved on 15 Dec 2021. (a) HCE omitted the translation of ”Then” compared to

Google Translate and Naver Papago. (b) HCE just copied the source sentence as the

train/test data, but this is an unexpected behavior as a general MT system.
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is composed of the subtitle (and also is the test data). As can be seen from the special

character denoting a musical note, the source sentence in 3.6-(b) is a part of song lyrics

in the video. Since many subtitle creators tend to just copy the source lyrics rather than

translate them, our En-Ko subtitles data contains such untranslated lyrics with musical

notes. Copying the English lyrics in the example can be explained in this way since

the model is trained to mimic this behavior as seen in the data (as a form of exposure

bias). However, this is a completely unexpected outcome as a general MT system as

Google and Naver are able to translate the lyrics into Korean. We suggest that these

limitations may be due to the fact that HCE does not employ any special techniques to

deal with these phenomenons and need to be enhanced for practical applications.

3.5 Summary of Efficient Hierarchical Architecture for Mod-

eling Contextual Sentences

In this chapter, we have introduced Hierarchical Context Encoder (HCE) structure

which is able to encode multiple contextual sentences with hierarchical SAN structure.

We have shown that our model outperforms all baseline models in English-German,

English-Turkish and English-Korean translation tasks and also that our model is the

most efficient in computational complexity. We also have shown that our model closes

the gap of translation quality between the sentences with helpful contexts and the sen-

tences with unrelated contexts, indicating that our model is better at exploiting the

helpful contextual information for translating than baseline models. Analysis on pro-

noun resolution test suite support the effectiveness of our HCE.
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Chapter 4

Contrastive Learning for Context-aware Neural Machine

Translation

Neural machine translation (NMT) has achieved impressive performances on transla-

tion quality, due to the introduction of novel deep neural network (DNN) architectures

such as encoder-decoder model [5, 6], and self-attentional networks (SANs) like Trans-

former [7]. The state-of-the-art NMT systems are now even comparable with human

translators in sentence-level performance.

However, there are a number of issues on document-level translation [69]. These

include pronoun resolution across sentences [70], which needs cross-sentential con-

texts. To incorporate such document-level contextual information, several methods for

context-aware NMT (CNMT) have been recently proposed. Many of the works have

focused on introducing new model architectures like multi-encoder models [17] for

encompassing contextual texts of the source language. These works have shown sig-

nificant improvement in addressing discourse phenomena such as anaphora resolution

mentioned above, as well as moderate improvements in overall translation quality [71].

Despite some promising results, most of the existing works have trained the model

by minimizing cross-entropy loss, making the model rather exploit contextual informa-

tion implicitly such as a form of regularization [25, 26]. Data augmentation for CNMT
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is also an important issue, despite that recent works have focused on back-translation

[72].

In this chapter, we propose a Coreference-based Contrastive Learning for context-

aware NMT (CorefCL), a novel data augmentation and contrastive learning scheme

leveraging coreference information. Cross-sentential coreference between the source

and target sentence can be a good source of training signal for CNMT since it occurs

when one or more expressions refer to the same entity, thus reflects dependencies

between the source and contextual sentences.

CorefCL starts by conducting automatic annotation of coreference between the

source and contextual sentences. Then, the referred mentions on contextual sentences

are corrupted by removing and/or replacing tokens to generate contrastive examples.

With those contrastive examples, we introduce a contrastive learning scheme equipped

with a max-margin loss which encourages the model to discriminate between the orig-

inal examples and the contrastive ones. By doing so, CorefCL makes the model more

sensitive to cross-sentential contextual information.

We experimented with CorefCL on three English-German corpora and one English-

Korean document-level corpus, including WMT, IWSLT TED talk, and OpenSubti-

tles’18 English-German subtitles translation task, and a web-crawled English-Korean

subtitles translation. In all translation tasks, CorefCL consistently improves overall

BLEU over vanilla CNMT models. On experiments with three common context-aware

model settings, we show that improvements by CorefCL are also model-agnostic. Fi-

nally, we show that the proposed method significantly improved the performance on

ContraPro [1], an English-German contrastive coreference benchmark.
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4.1 Related Works

4.1.1 Context-aware NMT Architectures

CNMT has been vigorously studied to exploit the crucial context information in sur-

rounding sentences. Recent works have shown that contextual information can help

the model to generate not only more consistent but also more accurate translation

[1, 13, 17, 25].

In particular, [17] introduced a context-aware Transformer model which is able

to induce anaphora relations, [22] showed that a model using cross-sentential con-

textual information significantly outperforms in document-level translation tasks, and

[24] insisted that context-aware models record the best performance especially in spo-

ken language translation tasks where mandatory information tend to be sparse over

multiple sentences.

The simplest method for CNMT is to concatenate all surrounding sentences and

treat the concatenated sequence as a single sentence [18]. Although the concatenation

strategy boosted translation quality of SAN-based architectures in multiple tasks, it

lagged behind efficiency as the SAN has limited long-range dependency [56].

To improve the efficiency, an additional encoder module is introduced to encode

only the context sentences [14, 17, 73]. Additionally, hierarchical structures also have

been introduced because the context sentences do not have the same significance as

the input sentences [22, 24].

For training CNMT, most of existing studies relied on conventional negative log-

likelihood (NLL) minimization similar to the sentence-level systems. Since this do not

directly uses contextual information, several methods have been proposed to comple-

ment the insufficiency, i.e. adding context-dependent regularization [75], introducing

reinforcement learning [76], or curriculum learning [77]. Inspired by these approaches,

we introduce contrastive learning that exploits contextual dependency among source

sentences.
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4.1.2 Coreference and NMT

The difference in coreference expressions among languages [74, 78] gives MT sys-

tems a challenge on pronoun translation [19]. Several recent works have attempted to

incorporate coreference information [79]. The closest work to ours is [80] which also

adds noise on creating a coreference-augmented dataset, while we do not add oracle

coreference information directly to the training data.

4.1.3 Data augmentation for NMT

One of the most common methods for data augmentation in NMT is back-translation

that generates pseudo-parallel data from monolingual corpora using intermediate NMT

models [37]. Generally, back-translation is conducted at sentence-level, however, sev-

eral works have proposed document-level back-translation [72, 81].

On the other hand, sentence corruption by removing or replacing word(s) has also

been widely used for improving model performance and robustness [21, 82]. Inspired

by these works, we choose sentence corruption for contrastive learning.

4.1.4 Contrastive Learning

Contrastive learning is to learn a representation by contrasting positive and negative

(contrastive) examples. It has succeed in various machine learning fields including

computer vision [83] and natural language processing tasks like word [84] and sen-

tence representation learning [85], as well as sequence-to-sequence learning [86].

Recently, several approaches to contrastive learning for NMT have also been stud-

ied. Yang et. al. [68] proposed strategies for generating word-omitted contrastive ex-

amples and leveraging contrastive learning for reducing word omission errors in NMT.

Pan et. al. [87] applied contrastive learning for multilingual MT and employed data

augmentation for obtaining both the positive and negative training examples.

While these works have been conducted in sentence-level NMT settings, we focus

on extending contrastive learning in context-aware NMT.
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4.2 Context-aware NMT models

In this section, we briefly overview context-aware NMT methods and describe our

baseline models which are also commonly adopted in recent works.

Generally, a sentence-level (context-agnostic) NMT model takes an input sentence

in a source language and returns an output sentence in a target language. On the other

hand, a context-aware NMT model is designed to handle surrounding contextual sen-

tences of source and/or target sentences. We focus on leveraging the contextual sen-

tences of the source language.

Throughout this work, we consider self-attentional networks (SANs) like Trans-

former [7] by following the majority of the recent works on context-aware NMT. We

list four SAN-based configurations that we used in the experiments:

• sent-level, sent-level-t5: Vanilla sentence-level SAN as same settings as the

Transformer, that ignores contextual sentences. In addition to sent-level which is

a SAN trained from scratch, we also experimented with a pre-trained language

model (PLM) fine-tuned for English-German task. In our settings, we use the

Text-to-Text Transfer Transformer (T5) [53] refered as sent-level-t5.

• concat, concat-t5: SAN with a concatenation of the input andits contextual sen-

tences as an input [18]. Since this can incorporate contextual sentences without

modifying the SAN model, we also implemented this settings in T5 as concat-

t5.

• multi-enc: This has an extra encoder for encoding contextual sentences sepa-

rately. We experimented with the Discourse Aware Transformer (DAT) [17].

• multi-enc-hier: Multi-encoder model with hierarchically computing contextual

representations in token-level first, then sentence-level. We experimented with

the HCE [24] introduced in the Chapter 3.

48



×𝑁 ×𝑁

(𝑁−1) ×

(𝑁− 2) ×

(a) sent-level (b) concat

(c) multi-enc

(d) multi-enc-hier

Transformer Layer

Encoder Output

Token Embeedings

Source Sentence

Context Sentence

Source-Context Integration

Sentence-level Pooling

Parameter Sharing

Figure 4.1: The structure of compared context-aware NMT models.
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All the model structures are displayed in Figure 5.3. For detailed explanations on DAT

and HCE, please refer to the Section 3.2.1

4.3 Our Method: CorefCL

In this section, we explain the main idea of CorefCL, a data augmentation and con-

trastive learning scheme leveraging coreference between the source and contextual

sentences.

4.3.1 Data Augmentation Using Coreference

Generally, constrastive learning encourages a model to discriminate ground-truth and

contrastive (negative) examples. In existing works, a number of approaches have been

studied for obtaining contrastive examples:

• Corrupting the sentence by randomly removing or replacing one or more tokens

in the sentence. [68]

• Choosing an irrelevant example in the batch or dataset. [87]

• Perturbations on representation space. Usually output vector of encoder or de-

coder is used. [86]

CorefCL basically takes a similar approach to the first one, by the sentence cor-

ruption. However, unlike previous works that modify the source sentence, CorefCL

modifies the contextual sentences to form contrastive examples. Specifically, we cor-

rupt cross-sentential coreference mentions which occur between the source and its

contextual sentences. This is based on the intuition that coreference is one of the core

components of coherent translation.

More formally, steps to forming contrastive examples in CorefCL are as follows

(see also Figure 4.2):
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Context She opened her cupboard and gave me a petticoat.

Source I should wear it.

She opened her cupboard and gave me a petticoat. I should wear it.

She opened her cupboard and gave me a [MASK]. I should wear it.

Context’ She opened her cupboard and gave me a .
She opened her cupboard and gave me a glass.

(omission)
(replacement)

Source I should wear it.

(a) Original source and context sentences

(b) Annotate coreference chain(s)

(c) Mask word(s) in antecedents

(d) Generate contrastive examples

Figure 4.2: Data augmentation process of CorefCL.

1. Annotate the source documents automatically. We use NeuralCoref1 to identify

the coreference mentions between the source and its previous sentences as con-

textual sentences

2. Filter the examples with cross-sentential coreference chain(s) between the source

and contextual sentences. Around 20 to 30% of the training corpus is annotated

in this way. See Section 4.4.1 for details

3. For each coreference chain, mask every word in the antecedents with a special

token. We also keep the original examples for training

4. Masked words are replaced randomly with other words in vocabulary (word

replacement), or omitted (word omission)

In the experiments, we take both of the corruption strategies. Precisely, the masked

words are removed with a probability of 0.5, or randomly replaced otherwise. We
1https://github.com/huggingface/neuralcoref
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found that this method is more effective compared to the methods using only one of

the two corruption strategies. Please refer to the ablation study in Section 4.4.5 for

more details.

4.3.2 Contrastive Learning for Context-aware NMT

Context-aware NMT models can implicitly capture dependencies between the source

and contextual sentences. CorefCL introduces a max-margin contrastive learning loss

to train the model to explicitly discriminate inconsistent contexts. This contrastive loss

also encourages a model to be more sensitive to the contents of contextual sentences.

Formally, given the source x, target y, n contextual sentences C = [c1, · · · , cn]

in the data D, we first train the model by minimizing a negative log-likelihood loss,

which is a common MT loss:

LMT =
∑

(x,y,C)∈D

−logP (y|x, C). (4.1)

Once the model is trained with MT loss, we fine-tune the model with a contrastive

loss. With a contrastive version of context C̃, our contrastive learning objective is

minimizing a max-margin loss [68, 88]:

LCL =
∑

(x,y,C,C̃)∈D

max{η + logP (y|x, C̃)− logP (y|x, C), 0}. (4.2)

Minimizing LCL encourages the log-likelihood of the ground-truth to be at least η

larger than that of the contrastive examples. In our formulation, we want the model to

be more sensitive to the subtle changes in the contextual sentences.

The contrastive loss is jointly optimized with MT loss since we empirically found

that the joint optimization has yielded better performance than minimizing CL loss

only as similar to [89]:

L = (1− α)LMT + αLCL,
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where α ∈ [0, 1] is a weight for balancing between contrastive learning and MT

loss. For simplicity, we fixed α during fine-tuning.

4.4 Experiments

4.4.1 Datasets

We experimented with CorefCL on various document-level parallel datasets: i) 3 English-

German datasets including WMT document-level news translation2 [90], IWSLT TED

talk 3 [61], OpenSubtitles’184 [62], and ii) our web-crawled English-Korean subtitles

corpus.

For all tasks, we take every 2 preceding sentences as contextual sentences and we

only consider sentences within the same document (article, talk, movie, one episode

of TV programs, etc.) of the source sentence. If split of the validation and the test set

is not presented in the data, we apply document-based split to ensure that training and

validation/test data is well-separated. Details of datasets are listed as follows:

WMT We use a set of parallel corpora annotated with document boundaries which

is released in WMT’19 news translation task. Specifically, we combine Europarl v9,

News Commentary v14, and MODEL-RAPID to form a training set containing 3.7M

examples and 0.85M with cross-sentential coreferences. For validation and test sets,

we used newstest2013 and newstest2019 which contain 3.05k and 2.14k examples

respectively.

IWSLT The IWSLT dataset consists of transcriptions of TED talks in a variety of

languages. We used the 2017 version of the training set, a combination of dev2010,

tst2010, tst2015 as a validation set, and tst2017 as a test set. The resulting dataset

consists of 232k (50.3k with cross-sentential coreferences), 3.5k, 1.2k examples of

train, dev, test sets respectively.
2http://www.statmt.org/wmt19/translation-task.html
3https://wit3.fbk.eu/home
4https://opus.nlpl.eu/OpenSubtitles-v2018.php
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OpenSubtitles We also choose the English-German pair of OpenSubtitles2018

corpora. The raw corpus contains 24.4M parallel sentences. We follow the filtering

methods in [21] by removing pairs that have a time overlap of subtitle frames less

than 0.9. We also use separate documents for validation / test sets, resulting in 3.9M

(1.01M with cross-sentential coreferences), 40.7k, 40.5k examples for train / valida-

tion / test sets respectively.

En-Ko Subtitles For English-Korean experiments, we first crawled approximately

6.1k bilingual subtitle files from websites such as GomLab.com. Since sentence pairs

of these subtitles are already soft-aligned by the creators so we applied a simple time-

code based heuristics to filter examples. The final data contains 1.6M (0.24M with

cross-sentential coreferences), 155.6k, and 18.1k examples of consecutive sentences

in the training, validation, and test sets respectively.

For preprocessing, all English and German corpus is tokenized first with Moses

[66] tokenizer5. We then apply the BPE [91] using SentencePiece6, and the size of

the merge operation is approximately 16.5k. We also put a special token [BOC] at the

beginning of contextual sentences to differentiate them from the source sentences.

4.4.2 Settings

We use model hyperparameters, such as the size of hidden dimensions and the number

of hidden layers as same the transformer-base [7], since all of the compared

models are based on Transformer. Specifically, we set 512 as the hidden dimension,

the number of layers is 6, the number of attention heads is 8, and the dropout rate is set

to 0.1. On T5-based models (sent-level-t5, concat-t5), we used the T5-Small setting

which has roughly the same number of parameters as transformer-base for fair

comparison with others.

All models are trained with ADAM [65] with different learning rates for each
5https://github.com/moses-smt/mosesdecoder
6https://github.com/google/sentencepiece
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dataset. We employ early stopping of the training when the MT loss on the validation

set does not improve. We start training each baseline model from scratch with random

initialization and document-level dataset. Note that all the baseline models are not

trained using iterative training as [55, 72] which first trains the model from sentence-

level task first, then document-level task. All the evaluated models including T5-based

models are implemented on top of the transformers7 framework.

We measure the translation quality by the BLEU score [28]. For scoring BLEU,

we use the sacreBLEU [92] case-sensitive, detokenized scores for En-De, and case-

insensitive scores with intl tokenizer for En-Ko task. We also report case-insensitive

char-level scores on En-Ko for comparison.

4.4.3 Overall BLEU Evaluation

We display the corpus-level test BLEU scores of all compared models on different

tasks in Table 4.1. Among the baseline systems, all context-aware models show moder-

ate improvements over the sentence-level (sent-level) baseline. These results are com-

parable to that of [72] on the IWSLT task except for multi-enc-hier, and [24] on Open-

Subtitles task. One exception is a single-encoder model (concat) on WMT task, which

seems due to the longer average sentence length.

We evaluated CorefCL by fine-tuning the context-aware models. Results show that

models with CorefCL outperformed their vanilla counterparts, with the BLEU gain of

up to 1.4 in En-De tasks, and 1.6/2.8 (detokenized/char-level BLEU) in the En-Ko

subtitles task. In addition to the models trained from scratch, CorefCL moderately

improved the concat-t5 model on all the English-German tasks as well.

We observed that while CorefCL consistently improves BLEU on all tasks, it

achieves better results on IWSLT and En-Ko subtitles tasks. Since improvements on

much larger datasets like WMT and OpenSubtitles are smaller, we suggest that Core-

fCL also works as a regularization.
7https://github.com/huggingface/transformers
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4.4.4 Results on English-German Contrastive Evaluation Set

System Trained on

WMT OpenSubtitles

BLEU Acc. BLEU Acc.

sent-level 19.3 47.9 29.6 48.4

sent-level-t5 20.6 48.7 30.4 49.5

concat 19.9 49.7 30.5 54.4

+ CorefCL 20.3 51.2 32.3 57.9

concat-t5 20.9 50.2 30.9 56.3

+ CorefCL 21.2 52.0 32.5 58.7

multi-enc-hier 20.4 50.9 31.7 57.3

+ CorefCL 21.9 52.4 33.6 60.5

Table 4.2: BLEU and pronoun resolution accuracies on ContraPro [1] En-De con-

trastive test set.

To assess how CorefCL improves the ability to deal with pronoun-related trans-

lations more in detail, we experiment our method with ContraPro.8 ContraPro is a

contrastive test suit for En-De pronoun translation introduced by [1]. The evaluation is

done by letting the model scores the German sentence with correct and incorrect pro-

noun translation, given the source and contextual English sentence. The accuracy is

calculated by counting the number of correctly scored examples (i.e. correct examples

that received a higher score than their incorrect counterpart).

We evaluate the models trained with WMT and OpenSubtitles tasks. We also list

BLEU scores of En-De translation using the English source text in ContraPro. As

shown in Table 4.2, CorefCL significantly improves the baselines in scoring accuracy

for all models by up to 5.5%, as well as slight improvements in BLEU scores.

One interesting finding is that CorefCL also achieved substantial accuracy gain
8https://github.com/ZurichNLP/ContraPro
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on the models trained on WMT. Since the ContraPro is created from OpenSubtitles,

WMT-trained models would yield lower performance because of domain shift between

training and testing. Table4.2 clearly shows the performance drop in BLEU, never-

theless, moderate improvements in accuracy can also be observed on WMT-trained

models.

System BLEU Accuracy

multi-enc-hier 31.7 57.3

+ CorefCL 33.6 60.5

- Word omission 32.4 59.4

- Word replacement 32.3 58.6

Table 4.3: Ablation study on coreference corruption strategy. All systems are trained

on OpenSubtitles English-German dataset and evaluated on ContraPro.

4.4.5 Analysis

Ablation Study CorefCL uses the two corruption strategies for generating contrastive

coreference mentions; word omission and word replacement. To make a better under-

standing of influence of these strategies, we evaluate CorefCL of different settings of

these strategies.

As shown in Table.4.3, using both types of corruptions results in better perfor-

mance. Removing one of the two strategies slightly degrades both the pronoun resolu-

tion accuracy and BLEU. Although not being significant, removing the word replace-

ment has more impact on accuracy. This suggests that a standard context-aware model,

at least for multi-enc-hier is less sensitive to word substitution. The word replacement

strategy can complement this behavior as resulted in better performance.

Qualitative Example We display a sample from ContraPro corpus and its trans-

lations made by multi-enc-hier model trained with OpenSubtitle task. In this example,

since ”coat” is translated as Mantel which is a masculine noun thus Er would be ade-
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Context What'll I do with the coat? 
When you're through with it, send it to the police.

Source It... It didn't belong to her. 

multi-enc-hier Sie... sie gehörte nicht zu ihr.

+ CorefCL Er… er ist nicht ihr gehörte.

Reference Er... er gehörte ihr nicht.

Figure 4.3: Example translation with and without CorefCL.

quate translation of ”It” instead of Sie which is feminine. While multi-enc-hier incor-

rectly translated ”It” as Sie, the model fine-tuned with CorefCL correctly resolved it

as Er.

In practice, context-aware models that do not leverage target-side contexts struggle

to maintain these kinds of coreference consistency [1, 93] because of the asymmetric

nature of grammatical components and data distributions. Results show that CorefCL

can complement the limitation of source-only context-aware models.

4.5 Summary of Contrastive Learning for Context-aware Neu-

ral Machine Translation

In this chapter, we have presented a data augmentation and contrastive learning scheme

based on coreference for context-aware NMT. By leveraging coreference mentions be-

tween the source and target sentence, CorefCL effectively generates contrastive exam-

ples for applying contrastive learning on context-aware NMT models. In the experi-

ments, CorefCL consistently improves the translation quality and pronoun resolution

accuracy.
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Chapter 5

Improving English-Korean Honorific Translation Using

Contextual Information

Neural machine translation (NMT) has shown impressive results on translation quality,

due to the availability of vast parallel corpus [94], and the introduction of novel deep

neural network (DNN) architectures such as self-attentional networks [7]. The perfor-

mance of NMT systems has reached on par with human translators in some domains,

and hence many commercial MT services, such as Google Translation, have adopted

NMT as their backbone of translation systems [8].

Despite the significant improvement over the previous machine translation (MT)

systems, NMT still suffers from language-specific problems such as Russian pronoun

resolution [17] and honorifics. Addressing such language-specific problems is crucial

in both personal and business communications [95] not only because the preservation

of meaning is necessary but also many of these language-specific problems are also

closely related to their culture. Honorifics are good example of these language-specific

problems that conveys respect to the audience. In some languages including Korean,

Japanese, and Hindi that use honorifics frequently, speaking the right honorifics is

considered imperative in those languages.

In Korean, one of the most frequent usages of honorifics occurs in the conversation
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Sentence English Korean

context_1 Come on, dad. Don’t you even take something? 아빠, 뭐라도안드세요?

context_0 Okay, give me some coffee. 좋아, 그럼커피좀줘.

source/target Wait a minute, please. 잠시만기다려요.

Figure 5.1: An example of Korean dialogue that is extracted from subtitles. The blue

words are verbs that translated into polite form whereas the red words are impolite

form, using Korean honorifics.

with people who are in superior positions, or elders [2]. As is shown in Figure 5.1, the

source English sentence “Wait a minute, please.”, which is the second utterance by

the son, is translated into the target sentence “잠시만 기다려요.” (jam-si-man gi-

da-lyeo-yo) that is represented as haeyo-che (해요체) as the sentence ends with -요

(-yo). Haeyo-che is a type of Korean honorific reflecting the relationship between the

two speakers.

Addressing such honorifics in MT is challenging since the definition of honorifics

differs across different languages. For example, Korean has 3 major types of honorifics

[2] and corresponding honorific expressions. In contrast, it is known that English has

fewer types of honorifics compared to many other languages [96]; only titles, such as

Mr. and Mrs., are frequently used in modern English. It is known that managing hon-

orifics in translation is comparatively more complicated in English-Korean translation;

the source language has a simpler honorific system compared to the target language.

The source language with fewer honorifics provides fewer honorific features that are

used to generate correct honorifics in the target side, as shown in Figure 5.1. Since the

English verb “wait” can be translated into both the honorific style (기다려요, gi-da-

lyeo-yo) and the non-honorific style (기다려, gi-da-lyeo), the model cannot determine

the adequate honorific solely depending on the source sentence, and additional infor-

mation is necessary such as the relationship between speakers.

In this study, we propose a novel method to remedy limitations from solely de-

pending on source sentence by using context, which is represented by the surrounding
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sentences of the source sentence. In Figure 5.1, we can infer that this is a dialogue be-

tween a son and his father from the content of context 1, and the source sentence.

Therefore, the model can determine that the source sentence should be translated into

a polite sentence using honorifics, such as haeyo-che (해요체), if such context is taken

into account.

To this end, we introduce a context-aware NMT to incorporate the context for im-

proving Korean honorific translation. It is known that the context-aware NMT can im-

prove the translation of words or phrases that need contextual information, such as pro-

nouns that are sensitive to the plural and/or gender [97]. Considering above example

that how the adequate honorific style can be determined using the context, we suggest

that the context-aware NMT can also be used to aid the honorific-aware translation. To

the best of our knowledge, this work is the first attempt to utilize context-aware NMT

for honorific-aware translation.

We consider two types of context-aware NMT framework in our proposed method.

First, we use a contextual encoder that takes context in addition to the source sentence

as input. The encoder captures contextual information from the source language that

is needed to determine target honorifics. Second, a context-aware post-editing (CAPE)

system is adopted to take the context of translated target sentences for refining the

sentence-level translations accordingly.

To demonstrate the performance of our method, an honorific-labeled parallel cor-

pus is needed so we also developed simple and fast rule-based honorific annotation

for labeling the test data. In the experiments, we compared our context-aware systems

with context-agnostic models and we show that our method outperformed the context-

agnostic baselines significantly in both the overall translation quality and translation

of honorifics.
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5.1 Related Works

5.1.1 Neural Machine Translation dealing with Korean

There have been a number of MT studies involving Korean. Because parallel cor-

pora containing Korean are not as widely available as English and many European

languages, a number of the existing works focused on low-resource MT settings. For

example, Heo et al. [98] exploited out-of-domain and multilingual parallel corpora,

and Jeong et al. [99] applied LM pretraining and back-translation. In addition, some

other works have attempted to develop additional techniques to overcome the limita-

tions of common low-resource MT methods. For example, Nguyen et al. [100] incor-

porated morphological information and word-sense disambiguation (WSD) on Korean

source sentences to improve the translation into Vietnamese. Park et al. [101] focused

on beam search decoding and experimented with various decoding settings including

beam size to improve translation quality without re-training the target NMT model.

Although low-resource MT methods are out of scope in this study, some methods in-

cluding back-translation are closely related with our methods in training CAPE.

5.1.2 Controlling the Styles in NMT

Although the style of a generated translation also affects the quality of the machine

translation, it has received little attention in the field of NMT. Since the source sentence

contains insufficient information of the output style, most of the existing works have

introduced a set of special tokens [102]. For example, to control the formality of the

target sentence, one can add <F> at the beginning of the source sentence to translate

formally or add <I> to translate informally. The model can attend to this token and

extract the relevant linguistic features on training. This approach has been adopted in

many subsequent works such as [103, 104]. Some other works have addressed this

problem as domain adaptation that treats each style as a domain [105] or adopted

multitask learning of the machine translation and the style transfer problem to address
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the lack of a style-annotated parallel corpus [106], but the output is still controlled

by the special tokens. By contrast, our approach can improve the honorific translation

without using such kinds of special tokens by exploiting the contextual information of

the surrounding text. In addition, our method can be combined with the methods using

special tokens to further improve the accuracy of honorifics.

On the other hand, a few kinds of grammatical styles have addressed the style-

controlled MT. The English formality [107] or the T-V distinction in European lan-

guages such as Spanish [95] are two common examples. Viswanathan et al. [95] have

addressed the control of T-V distinction such as the use of a formal/informal form

of second-person pronouns (usted vs. tú), as domain adaptation. Niu et al. [107] has

shown that employing syntactic supervision can improve the control of English formal-

ity. Furthermore, few studies have addressed the honorifics of Asian languages such as

Korean [104] and Japanese [108]. Wang et al. [104] used data labeling and reinforce-

ment learning (RL) to enhance translation of Korean honorifics. However, they ignored

contextual sentences and only relied on special tokens to control the honorifics.

5.1.3 Context-Aware NMT Framework and Application

The context-aware MT models focus on contextual information in the surrounding

text [18] and either the context of the source or the target sentence can be considered.

Exploiting the source side of contexts usually implements an additional encoder to

represent the multiple contextual sentences efficiently [17, 22, 23]. On the other hand,

the target-side contexts can be exploited by first translating a part of documents or

discourses at the sentence level and then refining those translations. This can be imple-

mented either by the use of multi-pass decoding or automatic post-editing (PE). The

multi-pass decoder generates the translation at the sentence level first and then trans-

lates again by regarding the translated sentences as contexts [20, 21]. On the other

hand, the context-aware PE corrects the common and frequent errors of sentence-level

models by considering both the target sentence and its contexts [97]. In contrast to our
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previous studies, we choose to use both sides of contexts as the target Korean context

is helpful in correcting inconsistencies of Korean honorific translations.

On applications of context-aware MT, many of previous studies have been focused

on improving pronoun resolutions such as choosing the correct gender or plural for

pronouns. For example, Voita et al. [17, 97] have addressed the translation of Russian,

and Müller et al. [1] are focused on German pronoun resolution. To the best of our

knowledge, our work is the first attempt to use context-aware NMT to control gram-

matical styles such as honorifics.

5.2 Addressing Korean Honorifics in Context

In this section, we present an overview of the Korean honorifics system and how the

contextual sentence can be used to infer appropriate honorifics for translation.

5.2.1 Overview of Korean Honorifics System

Asian languages such as Korean, Japanese, and Hindi are well-known as having rich

honorific systems to express formality distinctions. Among those languages, the use of

honorifics is extensive and also crucial in Korean culture. In practice, Korean speakers

are forced to choose appropriate honorifics in every utterance, and failing to do that

can induce serious social sanctions including school expulsion [2]. Moreover, it is

known that Korean honorific systems are very sophisticated among the well-known

languages thus teaching how to use Korean honorifics appropriately is also considered

challenging in Korean as a Second Language (KSL) education [2, 109]

There are three types of Korean honorifics; subject honorification, object honorifi-

cation, and addressee honorification.
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Subject Honorification

In the subject honorification, the speaker honors the referent by using honorific suffixes

such as ‘-시-’(-si-), case particles such as ‘-께서’(-kke-seo), and so on:

1. 철수가 방에 들어가다. (cheol-su-ga bang-e deul-eo-ga-da; Cheolsoo goes to

the room.)

2. [-15]어머니께서방에들어가신다. (eo-meo-ni-kke-seo bang-e deul-eo-ga-sin-da;

My mother goes to the room.)

In contrast to (1), the speaker’s 어머니 (eo-meo-ni, mother) in (2) is honored by

the following case particle ‘께서’ (-kke-seo) and the honorific suffix ‘-신-’ (-sin-) at

the verb가다 (ga-da; go).

Object Honorification

Object honorification is often used when the referent of the object is of higher status

(e.g., elder) to both the speaker and referent of the subject :

1. 철수는 잘 모르는 것이 있으면 항상 아버지께 여쭌다. (cheol-su-neun jal mo-

leu-neun geos-i iss-eu-myeon hang-sang a-beo-ji-kke yeo-jjun-da; Cheolsoo al-

ways ask his father about something that he doesn’t know well.)

2. 아버지는휴대폰에대해잘모르는게있으면항상철수에게묻는다. (a-beo-

ji-neun hyu-dae-pon-e dae-hae jal mo-leu-neun ge iss-eu-myeon hang-sang cheol-

su-e-ge mud-neun-da; Cheolsoo’s father always ask him about mobile phones

that he doesn’t know well.)

In the example (a), Cheolsoo’s아버지 (a-beo-ji, father) is in the superior position

both to철수 (Cheolsoo) and the speaker. Therefore, ’여쭌다’ (yeo-jjun-da), which is

an honorific from of the verb묻는다 (mud-neun-da, ask), is used.
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Style and Name Politeness Formality Example

합쇼체 High High 날씨가춥습니다.

(Hapsio-che; Deferential) nal-ssi-ga chub-seub-ni-da

해요체 High Low 날씨가추워요.

(Haeyo-che; Polite) nal-ssi-ga chu-wo-yo

하오체 Neutral High 날씨가춥소.

(Hao-che; Semiformal) nal-ssi-ga chub-so

하게체 Neutral Low 날씨가춥네.

(Hagae-che; Familiar) nal-ssi-ga chub-ne

반말체 Low High 날씨가추워.

(Banmal-che; Intimate) nal-ssi-ga chu-wo

해라체 Low Low 날씨가춥다.

(Haela-che; Plain) nal-ssi-ga chub-da

Table 5.1: Speech levels and sentence endings in Korean. Names are translated with

respect to [2]. Each of the example sentences are a Korean translation of ”The weather

is cold”. Each underllined sentence ending corresponds to their addressee honorific.

Adressee Honorification

Addressee honorifics are expressions of varying speech levels that are used to show

politeness or closeness and are usually expressed as sentence endings in Table 5.1.

Despite that all 6 examples are translated as the same English sentence, each ex-

ample has its own levels of formality and politeness and different usages. For example,

‘반말체’ (banmal-che) and ‘해라체’ (haela-che) are used between people with close

relationships or used by the elderly when speaking to younger people. Conversely,

‘해요체’ (haeyo-che) and ‘합쇼체’ (hapsio-che) are used to honor the addressees and

express politeness [2].
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Sentence English Korean

context_1 You're back. 자네들또왔구만.

context_0 Yes, sir, we are. 예, 어르신.

source/target We're addicted to your citrus. 어르신의감귤류에중독됐어요.

Sentence English Korean

context_1 You need to relax, okay? 진정해주실래요?

context_0 You are not a suspect. 당신은용의자가아닙니다.

source/target We should find Jessica right now. 저희는빨리제시카를찾아야만합니다.

(a)

(b)

Figure 5.2: Two examples of Korean dialogue from our dataset, which are extracted

from subtitles. The blue words are verbs that translated with polite and/or formal hon-

orifics whereas the red words are translated with impolite and/or informal honorifics.

The bold keywords are used to determine what types of honorifics should be used. The

underlined pronouns indicate that the two utterances is told by the same speaker in (a)

and the utterances are formal speech in (b).

5.2.2 The Role of Context on Choosing Honorifics

As stated earlier, the relationship between speaker and audiences affects the use of

Korean honorifics. For example, the student should use haeyo-che and hapsio-che as

addressee honorifics when asking a teacher some questions. Since such social context

is often reflected in utterances, readers may infer the relationship from text without

knowing who are speakers and/or audiences.

In the Figure 5.1, we can infer that the source and the contextual sentence is consist

of a dialogue between a dad and a son and the context 1 and the source sentence is

utterances of the son, so the source English sentence should be translated into a polite

Korean sentence as shown.

Figure 5.2 shows two another examples in our dataset. In (a), a dialogue between

a person (context 0) and his/her superior (context 1). So their Korean trans-
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lations are in polite (haeyo-che) and impolite (banmal-che) respectively. In addition,

we can infer that the source sentence is also an utterance by the same person who

told (context 0) as we can find the same pronoun we to refer themselves. So the

sentence endings of translation should be as “중독 됐어요” (jung-dog dwaess-eo-yo)

which has the same honorifics as context 0, instead of using banmal-che, such as

“중독됐어” (jung-dog dwaess-eo).

On the other hand, (b) shows the usage of hapsio-che which is frequently used

for formal expressions in context 0 and the source sentence, as both of the sen-

tences are ending with ‘-ㅂ니다’ (-b-nida). The word suspect (용의자, yong-ui-ja) in

context 0 give us a hint that the context 0 is told by police officers, prosecutors

etc since the word is frequently used by those occupations. We can also infer that this

dialogue is not held between those officers from the pronoun you, rather the utterances

are told to a witness, etc. So the context 0 and the source sentence would be trans-

lated into formal Korean utterances, rather than informal sentences like “우린 빨리

제시카를찾아야해” (u-lin ppal-li je-si-ka-leul chaj-a-ya hae).

As shown in the examples, contextual sentences often have important clues for

choosing appropriate honorifics in Korean translation. However prior approaches for

honorific-aware NMT including [108] for Japanese, and [104] for Korean have ignored

those contexts. Instead, they explicitly controlled the model to translate the source

sentence into a specific honorific style, using special tokens for indicating the target

honorific as [102].

5.3 Context-Aware NMT Frameworks

To utilize the contextual sentences in NMT, we introduce the CNMT systems. These

are divided into two categories: contextual encoders on NMT models and a CAPE

system. Here we briefly review those systems before explaining our proposed method.
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×𝑁

(a) TwoC (b) TwC

×𝑁

(c) DAT

×𝑁(𝑁−1) ×

(e) HCE

×𝑁(𝑁−2) ×

Transformer Layer

Encoder Output

Token Embeedings

Source Sentence

Context Sentence

Source-Context Integration

Context-source attention

Attentive Weighted Sum

Parameter Sharing

(d) HAN

×𝑁𝑁×

Figure 5.3: The structure of compared contextual encoders; (a) TwoC (b) TwC (c) DAT

(d) HAN and (e) HCE.

70



5.3.1 NMT Model with Contextual Encoders

Generally, NMT models are operated at the sentence-level; it takes an input sentence

in a source language and returns an output sentence in a target language. On the other

hand, a contextual encoder in NMT is designed to handle one or more contextual sen-

tences as input and extract the contextual representation. In our settings, NMT models

are based on the self-attentional network (SAN) like Transformer [7]. Because of its

strength in performance and efficiency, SAN has been widely used in NMT, and many

improvements have also been made including contextual encoders. We list five SAN-

based models in our experiments:

• Transformer without contexts (TwoC): Vanilla sentence-level SAN as same

as [7].

• Transformer with contexts (TwC): SAN with a concatenation of the input and

its contextual sentences as an input.

• Discourse Aware Transformer (DAT): A multi-encoder model proposed by

Voita el. al. [17].

• Hierarchical Attention Networks (HAN): A multi-encoder model with hierar-

chical structure proposed by Miculicich et. al. [22].

• Hierarchical Context Encoder (HCE): Our improved hierarchical multi-encoder

model described in Chapter 3.

All the model structures are described in Figure 5.3. For detailed explanations on each

model, please refer to the Section 3.2.1.

5.3.2 Context-Aware Post Editing (CAPE)

CAPE is a variant of automatic post-editing (PE) systems (e.g., Vu et al. [110]). The PE

fixes systematic errors that frequently occur in a specific machine translation system.
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낸시하퍼, 맞습니까? 그분이어머니시죠? 재미있네요.

NMT Ko -> En

Nancy Harper, is that right? She's your mother, right? Interesting.

낸시하퍼맞어? 당신어머니에요? 재미있군.

NMT En -> Ko’

CAPE
Ko’->Ko

낸시하퍼, 맞습니까? / 그분이어머니시죠? / 재미있네요.

Segment into sentences

낸시하퍼맞어? / 당신어머니에요? / 재미있군.

Concatenation

(a) Training

Nancy Harper, right? Is that your mother? That’s interesting.

낸시하퍼맞어? 당신어머니에요? 흥미롭네요.

NMT En -> Ko

낸시하퍼맞어? / 당신어머니에요? / 흥미롭네요.

Concatenation

낸시하퍼맞아요? / 당신어머니에요? / 흥미롭네요.

CAPE

(b) Testing (translation)

Figure 5.4: (a) Training a CAPE model requires a monolingual, discourse-/document-

level corpus. Each consecutive text is segmented into a set of sentences first. Then,

each sentence is translated and then back-translated. The resulting sentence group is

concatenated again, and then the CAPE, which consists of a sequence-to-sequence

model, is trained to minimize the errors of these round-trip translations. (b) At test

time, a trained CAPE fixes sentence-level translations by taking them as a group.
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Most of the PE operates at the sentence level; however, Voita et al. [97] suggested using

PE to correct inconsistencies between sentence-level translations of a context-agnostic

MT system. Analogous to many existing PE systems, the CAPE itself is independent

of a specific MT model and can therefore in principle be trained to correct translations

from any black-box MT system including a context-aware NMT system.

The training and testing process of CAPE is illustrated in Figure 5.4. First, the

translation inconsistency of the target NMT model is simulated by using a round-trip

translation. For example, to refine an English to Korean NMT system, Korean sen-

tences are translated into English using Korean to English NMT first; then, they are

again back-translated into Korean with a target English to Korean NMT system. In this

way, the errors of the NMT model can be represented as the difference and inconsis-

tency between the original Korean sentences and its round-trip translations. Once these

round-trip translations are prepared, the CAPE, which consists of a typical sequence-

to-sequence model, is trained to minimize these gaps. At test time, the target NMT

system translates each sentence first, and then the CAPE takes a group of such transla-

tions and produces fixed translations. Moreover, CAPE has been shown to improve the

English to Russian translation of context-sensitive pronouns [97] such as deixis and

ellipsis.

5.4 Our Proposed Method - Context-Aware NMT for Ko-

rean Honorifics

In this section, we describe our proposed approach to generate appropriate Korean

honorific expressions with context-aware NMT. We propose the use of context-aware

NMT for translation of the honorific-styled sentence, which can improve the transla-

tion of honorifics without explicit control as done with special tokens. We also de-

veloped an automatic honorific labeling method to label the parallel corpus so that

evaluation of the honorific translations, and preparing training data when the system is
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(ii) NMT with 
Contextual encoder

Ko’ KoEn

“멈춰주세요”

“honorific”
Ko

(i) Context-aware
parallel corpus

(iii) CAPE

(iii) Honorific labeling

Optional; training data labeling
for special tokens

Evaluation

Figure 5.5: The process of our method, context-aware NMT for Korean honorifics.

First we train NMT model with contextual encoder for English-Korean and Korean-

English translation. Then we train CAPE to correct errors on those round-trip trans-

lations made by the NMT model. The automatic honorific labeling is primarily used

for assessing honorific translation, but can also be used to label the training set if the

NMT model uses special tokens to control target honorifics explicitly.

allowed to control target honorifics as in [104]. The process of our proposed method

is illustrated in Figure 5.5.

5.4.1 Using CNMT methods for Honorific-Aware Translation

To capture contextual information that affects the use of Korean honorifics, our method

exploits the context-aware models in two ways, as described in Section 5.3.

The first one is an NMT model with a contextual encoder (Section 5.3.1), which

is trained to capture the dependency between the contents of contextual sentences of

the source language and the usage of honorific expressions represented in the training

data. For example, in Figure 5.1, the model can attend the noun dad in the context 1

to generate a translation in haeyo-che. In this way, the trained model can implicitly

control the translation to generate appropriate honorific expressions according to the
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contextual sentences. In the experiments, we compare this approach against the NMT

models that explicitly control the translation honorifics by introducing special tokens

as in [104]. Furthermore, we adopted the CorefCL [27], a contrastive learning method

proposed in Chapter 4 for boosting performance of these contextual encoder models.

CorefCL makes the model more sensitive to content of the contextual sentences and it

improved overall translation quality and En-De pronoun resolution.

The second one is a CAPE (Section 5.3.2) for improving the inconsistent sentence-

level translation of honorifics. As stated earlier, the CAPE is trained by recovering in-

consistent round-trip translations that require a pretrained bidirectional sentence-level

MT model. Therefore, we first train a TwoC model to translate both Korean-English

and English-Korean using the same parallel corpus. Then, we sample round-trip trans-

lations from a separately constructed monolingual Korean corpus and train a CAPE to

reconstruct the original Korean sentence from the sampled round-trip translations, as

illustrated in Figure 5.4. Our CAPE model is implemented using the same Transformer

model as the TwoC [7], so once the monolingual corpus and its round-trip translations

are prepared, training CAPE is similar to training a TwoC. We also apply the CAPE

to improve the NMT models with contextual encoders, such as HCE. Despite that the

CAPE was originally intended to correct the errors of sentence-level MT similar to

TwoC [97], it can complement the NMT with a contextual encoder. Importantly, the

CAPE exploits the context information of the target language, and some types of in-

consistency, such as inter-sentence disagreement of honorifics, can only be identified

in the target language. In the experiments, we show that the CAPE can further improve

the honorific translation of HCE as well by correcting the inconsistency of honorifics

between sentences.

5.4.2 Scope of Honorific Expressions

Our work focuses on the translation of addressee honorifics, which is a key factor

in determining whether the sentence is honorific style. From the 6 types of sentence
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타이머를 정지시킬 수 있겠어요?

(a) Original Sentence

('타이머', 'NNG'), ('를', 'JKO'), ('정지', 'NNG’), 
('시키', 'XSV'), ('ㄹ', 'ETD'), ('수', 'NNB’), 
('있', 'VV'), ('겠', 'EPT'), ('어요', 'EFN'), ('?', 'SF')

(b) Morph/POS Tagging  (c) Extract eomi (word ending)

('어요', 'EFN') 

(d) Substring Matching

Figure 5.6: Tagging sentences into honorific or nonhonorific styles. The original sen-

tence (a) ”타이머를정지시킬수있겠어요?” (ta-i-meo-leul jeong-ji-si-kil su iss-gess-

eo-yo; Can you shut off the timer?) is segmented into morphologies with their part-of-

speech (POS) tags. Then we use ’eomi’s to classify the sentence.

endings in Table 5.1, the haeyo-che and hapsio-che are usually considered honorific

styles that are used frequently by age–rank subordinates speaking to superiors [2, 104].

Thus, we consider sentences having these two types of endings as honorific sentences,

while others are non-honorific sentences. The target sentence in Figure 5.1 “잠시만기

다려요” (jam-si-man gi-da-lyeo-yo) whose ending is haeyo-che, is an example of an

honorific sentence. In contrast, “잠시만기다리게” (jam-si-man gi-da-li-ge) is a non-

honorific sentence that is translated the same as in English according to our criteria

since its ending is hagae-che.

5.4.3 Automatic Honorific Labeling

To assess the quality of honorific translation, we need to annotate the corpus into hon-

orific sentence vs. non-honorific sentences. We developed heuristics using the above

criteria to label the Korean sentences with honorific styles.

As illustrated in Figure 5.6, we first segment sentences into morphologies and

obtain their part-of-speech (POS) tags. This ensures that our heuristic can correctly
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identify the proper sentence ending. In our implementation, the Kkma Korean tagger

[111] is used to extract morphologies and POS tags. Once morphologies and POS tags

are extracted, we then select eomi (어미) which is the sentence ending. We picked

morphologies whose tag starts with ‘EF’ 1 in our implementation. We label sentences

as honorific if their eomi is hapsio-che or haeyo-che. In some cases where the mor-

phology tagger fails to extract word endings, we resort to sub-string matching with

sentence-ending markers such as ‘?’, or ‘.’ to correctly extract the proper sentence

ending.

This heuristic is used primarily to label the test set for evaluation of our method;

however, it can also be used to label the training set for training NMT models with

explicit control of honorifics. In this case, the honorific label is used to generate a

special token if the translation honorific of the model is controlled by a special token.

5.5 Experiments

To verify how the context-aware models improve Korean honorifics in English-Korean

translation, we conduct comprehensive experiments and analyses on how context-

aware MT models translate Korean honorifics. First, we constructed an English-Korean

parallel corpus with contextual sentences. Then, we train and compare the models de-

scribed in Section 5.3. Finally, a qualitative analysis is conducted on some examples

from our proposed method.

5.5.1 Dataset and Preprocessing

To the best of our knowledge, there are no English-Korean discourse-level or context-

aware parallel corpora that are publicly available. Thus, we constructed an English-

Korean parallel corpus with contextual sentences. Basically we expand the English-

Korean subtitles dataset introduced in Chapter 3 as these subtitles data contain many
1http://kkma.snu.ac.kr/documents/index.jsp?doc=postag
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scripts with honorific expressions.

We first crawled subtitle files from websites such as GomLab.com. Combined with

the data crawled for experiments in the Section 3.4, our raw subtitle set consist of

approximately 6100 files. Then, we split these files into training, development, and

test sets, which consist of 5.3k, 500, and 50 files, respectively. We applied a file-

based split to make sure that contextual sentences are only extracted from the same

movie/episode. Unlike other datasets such as OpenSubtitles2018 [62], our subtitle files

contain both English and Korean sentences, so extracting bilingual sentence pairs is

straightforward; we used timestamp-based heuristics to obtain those pairs. The result-

ing sentence pairs are 3.0M , 28.8k, and 31.1k pairs for training, development, and test

sets, respectively. Some of the raw samples from our test sets are shown in Table 5.7.

The contextual sentences are selected by using the timestamp of each subtitle,

which contains the start time and end time in milliseconds. We assume that the sen-

tences contain contextual information if they appear within a short period of time be-

fore the source sentence. Specifically, the start time of a contextual sentence is within

K milliseconds from the start time of the source sentence. We set K as 3000 heuris-

tically, and the maximum number of preceding contextual sentences is 2 for all ex-

periments except those of Section 6.4.2. The final data contains 1.6M , 155.6k, and

18.1k examples of consecutive sentences in the training, development, and test sets,

respectively.

For monolingual data to train the CAPE, we added 2.1M Korean sentences us-

ing an additional 4029 crawled monolingual subtitles. The resulting monolingual data

consist of 5.1M sentences.

We finally tokenized the dataset using the wordpiece model [8], and the size of

the vocabulary is approximately 16.5k. We also put a special token <BOC> at the

beginning of contextual sentences to differentiate them from the source sentences.
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5.5.2 Model Implementation and Training Details

For NMT models, we use model hyperparameters, such as the size of hidden dimen-

sions and the number of hidden layers as the transformer-base [7], since all of

the models in our experiment share the same Transformer structure. Specifically, we

set 512 as the hidden dimension, the number of layers is 6, the number of attention

heads is 8, and the dropout rate is set to 0.1. These hyperparameters are also applied to

the CAPE model. For NMT models with additional encoders (DAT, HCE), we share

the weights of encoders. All the evaluated models are implemented on top of the trans-

formers2 framework.

All models are trained with ADAM [65] with a learning rate of 1e-3, and we em-

ploy early stopping of the training when loss on the development set does not improve.

We trained all of the models from scratch with random initialization, and we do not

pretrain the model on a sentence-level task as in [22, 104].

5.5.3 Metrics

We measure the translation quality by BLEU scores [28]. For scoring BLEU, we use

the sacreBLEU [92] with intl tokenizer for properly evaluating Korean. We first

measure BLEU scores with original translations and we refer to these scores as normal

BLEU scores. In addition, we also measure tokenized BLEU scores by tokenizing

translations prior to scoring BLEU, as a common practice in the evaluation of Korean

NMT [99].

For honorifics, we set the accuracy of honorifics as the ratio of translations with

the same type of honorific style with respect to the reference translations. For ex-

ample, if the reference translation of an English sentence “Yeonghee is cleaning.” is

“영희가 청소해요.” (yeong-hui-ga cheong-so-hae-yo; haeyo-che - honorific) and the

model translation is “영희가 청소한다.” (yeong-hui-ga cheong-so-han-da; banmal-

che - non-honorific), the translation is considered inaccurate.
2https://github.com/huggingface/transformers
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5.5.4 Results

First, overall BLEU scores and honorific accuracy are compared among MT models

with various types of contextual encoders. We also examine the varying performance

of these models with respect to the number of contextual sentences and effects of

CAPE for improving honorific translations.

Effect of Contextual Encoders

To evaluate the effect of contextual information on the translation of Korean honorifics,

we first measure the performances of context-agnostic and context-aware models. The

results are summarized on Table 5.2. As shown in the results, all the context-aware

models (TwC, DAT, HAN, and HCE) outperform the context-agnostic model (TwoC)

in terms of BLEU. The HCE shows a significant English-Korean BLEU improvement

over TwoC of approximately 1.07/2.03 and the TwC, DAT, and HAN also show slight

improvements. We later use Korean-English TwoC and HCE trained in this experiment

for generating round-trip translations on CAPE experiment since the HCE performed

best among the context-aware models in terms of BLEU.

We also experimented with the models on Korean-English BLEU using the same

dataset for comparison. All the context-aware models again outperformed the context-

agnostic model in this experiment. Note that BLEU scores are lower in all English-

Korean experiments compared to Korean-English BLEU in the same dataset. This is

mainly due to the morphological-rich nature of Korean and the domain of the dataset,

which consists of spoken languages.

In addition to the BLEU scores, the context-aware models are also better in trans-

lation with correct Korean honorifics in English-Korean translation. In particular, the

HCE has improved the honorific accuracy by 3.6%. Since showing politeness is con-

sidered important in Korean culture as discussed in Section 5.2.1, we also focus on the

accuracy of the test sets which are polite target sentences. The TwC outperformed

all other models in this set up to 4.81% compared to TwoC. The HAN and HCE
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Models BLEU Accuracy Accuracy

En-Ko Ko-En All Test Set Polite Targets

TwoC 9.16/12.45 23.81 64.34 39.27

TwC 9.6/13.2 24.35 66.85 44.08

DAT [17] 9.36/12.98 23.96 65.12 38.7

HAN [22] 9.50/13.08 24.54 66.3 42.26

HCE [24] 10.23/14.75 26.63 67.94 42.42

Table 5.2: English-Korean BLEU scores and accuracy (%) of honorifics for context-

agnostic (TwoC) and context-aware (TwC, DAT, and HCE) NMT models. English-

Korean BLEU scores are shown as (normal/tokenized) respectively. All the models

are trained and tested without any honorific labels or explicit control of honorifics.

also showed significant improvement over TwoC, while the DAT’s accuracy is slightly

lower than that of TwoC. We believe that such differences derive from how the model

utilizes contextual information. Since we only use the sequence-level cross-entropy

(CE) as a training objective, the more compact representations of contextual encoders

in DAT, HAN, and HCE can improve the main objective (translation quality), but con-

sidering the raw information of contextual sentences as in TwC could be more benefi-

cial to honorific translation.

Models BLEU Accuracy Accuracy

All Test Set Polite Targets

TwoC + Special Token 9.36/12.68 99.46 98.91

HCE + Special Token 10.83/14.79 99.49 99.04

Table 5.3: English-Korean BLEU scores (normal/tokenized) and accuracy (%) of hon-

orifics for models with explicit control of honorifics by special tokens on the input. All

the models are forced to obtain the translation with the honorific style of the reference

sentence.
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# Contextual Sents. BLEU Accuracy Accuracy

All Test Set Polite Targets

1 9.23/12.88 65.42 40.31

2 10.23/14.75 67.94 42.42

3 9.83/13.49 66.56 41.93

4 9.31/12.92 64.8 39.27

5 8.98/12.09 63.3 36.48

Table 5.4: English-Korean BLEU scores (normal/tokenized) and accuracy (%) by the

number of contextual sentences on HCE

On the other hand, all of the results in Table 5.2 are from models that do not have

any explicit control of honorifics and do not employ the honorific-annotated dataset.

For comparison with prior works that forced the model to translate with specific hon-

orifics as [104], we also include the results of NMT models with special tokens for

controlling output honorifics in Table 5.3. In particular, the TwoC with special tokens

is the same as the data labeling (DL) method in [104]. The training set was labeled

the same as the test set, with the method described in Section 5.4.3. As shown in the

results, both models are able to translate almost all the test examples with the same

honorifics as their references, which is a similar result to that in [104]. Interestingly,

both controlled models also improve the translation quality over their counterparts

without control, and the HCE with special tokens again outperformed TwoC with spe-

cial tokens on BLEU.

In summary, the context-aware NMT models can improve not only the translation

quality but also the accuracy of honorifics. While their improvements are less signif-

icant compared to the honorific-controlled models, they can nevertheless exploit the

contextual information to aid in the correct translation of honorifics.
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Models # Contextual Sents. BLEU Accuracy Accuracy

All Test Set Polite Targets

TwC 2 9.6/13.2 66.85 44.08

5 8.23/11.41 61.21 38.05

DAT 2 9.36/12.98 65.12 38.7

5 8.02/11.2 60.94 33.2

HAN 2 9.5/13.08 66.3 42.26

5 8.55/11.74 63.1 36.6

HCE 2 10.23/14.75 67.94 42.42

5 8.98/12.09 63.3 36.48

Table 5.5: English-Korean BLEU scores (normal/tokenized) and accuracy (%) by the

number of contextual sentences on all of the context-aware NMT models

Effect of the Number of Contextual Sentences

The number of contextual sentences has a significant effect on the model perfor-

mance since not all the contextual sentences are important in obtaining an adequate

translation [112]. Such redundant information can hurt the performance. Since this

number is dependent on the model and the data, we carry out experiments to exam-

ine the effect of the number of contextual sentences. As shown in Table 5.4, both the

BLEU and accuracy of honorifics are the best on 2 contextual sentences, and then they

decay as the number increases. Similar effects are also shown by the other context-

aware NMT models, as displayed in Table 5.5.

Effect of CAPE

We measure the effect of CAPE and results are provided in Table 5.6. The CAPE

improved TwoC by 0.87/1.93 on BLEU and outperformed TwC and DAT on honorific

accuracies by approximately 3 to 4%. The improvement in honorific accuracy suggests

that CAPE can also repair the inconsistency of honorifics. We additionally applied
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Models BLEU Accuracy Accuracy

All Test Set Polite Targets

TwoC 9.16/12.45 64.34 39.27

+CAPE 10.03/14.38 67.5 43.81

HCE 10.23/14.65 67.94 42.42

+CAPE 10.55/15.03 69.16 46.51

Table 5.6: English-Korean BLEU scores (normal/tokenized) and accuracy (%) of hon-

orifics for models with/without CAPE.

CAPE to HCE. The result shows that HCE with CAPE also outperformed the vanilla

HCE, supporting our hypothesis.

Effect of Contrastive Learning

Models BLEU Accuracy Accuracy

All Test Set Polite Targets

HCE 10.23/14.65 67.94 42.42

+CL 11.64/16.49 68.72 45.3

+CAPE 10.55/15.03 69.16 46.51

+CL+CAPE 12.1/17.27 71.34 47.26

Table 5.7: English-Korean BLEU scores (normal/tokenized) and accuracy (%) of hon-

orifics for models with CorefCL (denoted as +CL), and CAPE (as +CAPE). Using

both the CorefCL and CAPE (as +CL+CAPE) results in the best performance.

Finally, we investigate how the contrastive learning (CorefCL) introduced in Chap-

ter 4 can improve the overall BLEU and honorific accuracy on HCE. The results dis-

played in Table 5.7 clearly show improvements made by CorefCL either with or with-

out CAPE, and using both the CorefCL and CAPE recorded the best performance.

One interest result is that HCE+CL excels in BLEU compared to HCE+CAPE, but
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with lower honorific accuracies. We suggest that this may due to a data augmentation

strategy of CorefCL that does not exploit honorifics.

5.5.5 Translation Examples and Analysis

We show some translation examples in Figures 5.8 and 5.9. As discussed in Section

5.4, the honorific sentences are mostly used when a subordinate such as a child is talk-

ing to superiors such as his/her parents. Figure 5.8 shows two examples of these situa-

tions. In (a), context and source sentences are a conversation between a mother and her

child. This can be speculated from the contextual sentences; the child is talking but the

mom urges him/her to continue eating. The TwoC completely ignores the contextual

sentences, so such a situation is not considered. Thus, TwoC translates the source sen-

tence as a non-honorific style using the non-honorific sentence ending때 (ttae), which

is banmal-che. In contrast, the translation of HCE is an honorific sentence since its

sentence ending is 요 (yo), which is haeyo-che, the same as the reference. This is an

example that shows HCE’s context-awareness that helps translation of honorific-styled

sentences.

On the other hand, Daddy! in context 1 of (b) and the content of context 1

directly indicate that the source sentence is spoken by a dad’s child. Despite such direct

hints, HCE failed to correctly identify the proper honorific style, resulting in banmal-

che (해 (hae) and어 (eo)). However, the TwC correctly translated the source sentence

as an honorific sentence using haeyo-che (해요 (haeyo) and데요 (daeyo)). Note that

there are two sentence segments in the source and translations, and the honorific style

of the two segments agrees in all the model translations and the reference. One inter-

esting observation is that TwC has translated verb sorry as 죄송-하다 (joesong-hada)

instead of 미안-하다 (mian-hada) and the 2nd person pronoun you as 아빠/(appa;

daddy) instead of 네 (ne; you) like HCE. As the former is resulting as a more polite

translation and the latter is closer to the reference so this example can be viewed as a

clue that TwC’s context-awareness is better than that of HCE. We suggest that TwC’s
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En (Context_1)
Life must go on as it always has. 
(언제나처럼인생은계속되어야죠.)

En (Context_0) Come on, let’s eat. (어서먹자.)

En (Source) How's mom?

Ko (TwoC) 엄마는어때?

Ko (HCE) 엄마는어떠세요?

Ko (Reference) 엄마는어때요?

En (Context_1) Daddy! (아빠!)

En (Context_0) Hey, I'm here. (어, 나여기있어.)

En (Source) I'm sorry.  I should have listened to you.

Ko (TwoC) 미안해. 네말을들었어야했는데.

Ko (HCE) 미안해. 네말을들었어야했어.

Ko (TwC) 죄송해요. 아빠말을들었어야했는데요.

Ko (Reference) 미안해요. 아빠말을들을걸그랬어요.

(a)

(b)

Figure 5.8: Example translations of different NMT models. The sentences are given

in a sequence, from context 1 to source. The reference translation of each contextual

sentence is given in (). In (a), a mother and her child are talking to each other. The

context-aware model (HCE) can infer this situation using contextual sentences and

translate the source sentence with an appropriate honorific style. Similarly, in (b) a

dad and his child are talking, but only a translation from TwC has the correct honorific

style. Note that translations of the verb sorry and the 2nd person pronoun you also

differ among models despite that all the translations have the same meaning as the

source sentence.
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simple and direct use of contextual sentences can perform better than the abstract rep-

resentation of contextual sentences in HCE when the contextual sentences are simple

and short.

Finally, Figure 5.9 shows how the CAPE corrects the inconsistent use of honorifics.

These 3 sentence segments are obtained from a scene held in a funeral home. Consid-

ering the content of the sentences, we can assume that the 2nd and 3rd segments are

the utterances of the same speaker. However the honorific styles of HCE translations

do not agree on banmal-che for the 2nd segment and haeyo-che for the 3rd. CAPE

corrected this inconsistency by looking at the translated Korean sentences. In addition,

CAPE also amended the 3rd sentence segment by modifying the subject honorifica-

tion, replacing both the case particle for the subject (his father) from -가 (-ga) to께서

(-kkeseo) and the verb죽기 (jukgi) to돌아가시기 (doragasigi); both are translated as

died. Considering that a deceased person is generally highly honored in Korean cul-

ture, the CAPE’s correction results in a more polite and thus adequate honorific-styled

sentence. Although the subject honorification is out of scope in this study, this shows

the CAPE’s ability to capture various honorific patterns observed in the training corpus

and correct translations.

5.6 Summary of Improving English-Korean Honorific Trans-

lation Using Contextual Information

In this chapter, we have introduced the use of context-aware NMT to improve the trans-

lation of Korean honorifics. By using contextual encoders, the context-aware NMT

models can implicitly capture the speaker information and translate the source sentence

with proper honorific style. In addition, context-aware postediting (CAPE) is adopted

to improve the honorific translation by correcting the inconsistent use of honorifics

between sentence segments. Experimental results show that our proposed method can

improve the translation of Korean honorifics compared to context-agnostic methods
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both in BLEU and honorific accuracy. We also demonstrated that the use of context-

aware NMT can further improve the prior methods which use special tokens to control

honorifics translation. Qualitative analysis on sample translations supports the effec-

tiveness of our method on exploiting contextual information for improving translations

of honorific sentences.
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Chapter 6

Future Directions

While many advances have been made in document-level NMT and CNMT recently,

there are still many issues for exploration. Challenges on document-level NMT are

not limited to better modeling of the document-level context but include developing

better document-level datasets, context-dependent evaluations, and addressing ethical

and practical issues. Here we discuss a few of the possible future research directions.

6.1 Document-level Datasets

Since most of the publicly available MT datasets are aligned in sentence-level, the need

on creating document-level bilingual datasets is increasing. There have been several

efforts to create new document-aligned datasets [113] or extending existing corpus by

adding document boundaries [90].

However, there are still a number of issues that exist in those curations. One of the

problems is that many of the current public datasets, especially for training sets do not

have annotations on context-dependent discourse phenomena. Expanding automatic

annotation of discourse phenomena such as coreference as introduced in Chapter 4

would be a viable direction as this explicit information could help improve lexical

cohesion.
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In addition, domains and language pairs of datasets should also be extended into

multi-domain and morphologically rich languages, which are more challenging set-

tings and would reflect practical applications of document-level NMT methods. It is

the right time to invest efforts in creating such resources so that researches can be

standardized with respect to the datasets used.

6.2 Document-level Evaluation

Sentence-level metrics like BLEU and METEOR are still used to evaluate MT sys-

tems, as they are widely accepted in the MT community for almost two decades.

Since these metrics have limitations in assessing context-dependent discourse phe-

nomena, developing and improving evaluation methods is crucial for making progress

in document-level MT. Despite a number of document-level metrics and discourse

phenomena test suits have been proposed, currently, there is no consensus about the

evaluation of document-level MT. This is because many of the proposed document-

level metrics including [115, 114] have their own limitations, and test suits like [1]

only cover a part of the problem since they are mostly designed for specific language

pairs.

For evaluation metrics, pre-trained language model(PLM)-based metrics like BERTScore

[116] have attracted some attention recently. These metrics have advantages in taking

the linguistic capabilities of PLMs and addresses several flaws of metrics like BLEU

by not relying solely on n-grams. Currently, these PLM-based metrics are mostly work

in the sentence-level, so extending the method to document-level would be an interest-

ing option. In addition, an alternative would be found between automatic and manual

evaluation that could enable a more economical manual evaluation, and it would still

be better than the current automatic metrics at assessing discourse phenomena.

On the other hand, more attention are needed on extending test suits to cover more

language pair and discourse phenomena, especially for non-European languages. Most
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of the recent efforts have been focused on pronoun-related problems and language

pairs involving English and European languages.

6.3 Bias and Fairness of Document-level NMT

Recently the problem of biased models has been recognized as important in the field

of machine learning [117] since it hinders the fairness of the model. Such biases like

gender bias are frequently induced from training data and NMT is also affected [118].

For example, when translating “The engineer asked for diagrams.” to a language

with grammatical gender like Spanish, it is necessary to determine the gender of the

subject “engineer” for obtaining adequate translation. If the sentence does not contain

gender information, machine translation systems generally select the most common

translation option learned from the data. These translations often correspond to the

stereotypical translations as pointed in [119] that the MT service frequently mistrans-

lated the female author into masculine pronouns. Such biases potentially induce several

harms including exacerbation of prejudice.

As discussed in Savoldi et al.’s survey [120], several studies have addressed mit-

igating gender biases in NMT, such as adding extra information to preserving gen-

der [118] or introducing debiasing techniques such as balanced fine-tunings [121].

Among these approaches, CNMT has also been used to incorporate gender informa-

tion that can be inferred from contextual sentences. In Basta et al.’s study [122], the

CNMT model with 1 preceding sentence significantly improved gender accuracies on

English-Spanish WinoMT test suit [123] over sentence-level baselines. This improve-

ment is quite impressive as the gender disambiguation addressed in WinoMT is more

challenging than simply maintaining grammatical gender like the example in Figure

1.1.

Despite the promising results, applications of CNMT for reducing gender bias need

more exploration as studies on the identification and evaluation of gender bias are still
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emerging. For example, WinoMT mainly focuses on occupation and pronoun-related

biases and there are recent approaches to introduce extended test suits to cover broader

categories of biases such as stereotypical adjectives [124]. In addition, improvements

by CNMT should be carefully examined since there are significant bias-unrelated im-

provements by CNMT as pointed in [122].

6.4 Towards Practical Applications

There are a number of issues facing real-world applications of NMTs. Many of these

research topics have not yet been widely addressed in the venue of document-level

NMT. The following topics are non-exhaustive, yet to be considered as guidelines for

future researchers.

Domain Adaptation Generally NMT models perform poorly on out-of-domain

data. For example, a model trained on news data is unlikely to achieve good perfor-

mance on the biomedical corpus. As it is impractical to train the model on all do-

mains of data and there is always the possibility of additional domains at a later stage

(e.g. translation of newer texts with older model), re-purposing the model, or domain-

adaptation for newer data is desirable. Domain adaptation is can be implemented in

the training and/or inference process [125]. A few works have been applied domain

adaptation on CNMT settings [126] for improving multi-domain performance.

Automatic Post-editing As stated in Chapter 5, automatic post-editing (APE) aims

to improve the quality of an existing, black-box MT system by using human-edited

examples. Recent researches have focused on neural APE systems leveraging transfer

learning and data augmentation [127]. Although APE has been proposed in the CNMT

framework as [97], this does not leverage human-edited data and relied on a simple

sequence-to-sequence model and training scheme.

Translation Using Terminologies Domains like biomedical require very careful

use of terminologies to get adequate translations. These domains also often face data
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scarcity issues, especially on lack of high-quality parallel corpus enough to train NMT

models. One good example is the recent COVID-19 pandemic which has forced ur-

gent translation of the latest medical information. Instead of relying solely on parallel

bitexts, exploiting word- or phrase-level dictionaries of key terms is an emerging area

of research [128] as this setting is also prevalent and prominent on commercial MT

services. Many of the existing approaches involve pre- and post-processing of sen-

tences since incorporating dictionaries directly into the NMT model is nontrivial. On

the other hand, document-level MT could be aided by these schemes since maintaining

coherence on terminology and entity is an important aspect.
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Chapter 7

Conclusions

This dissertation mainly focused on improving document-level translation quality of

the context-aware neural machine translation (CNMT) model and investigating its ap-

plication to deal with language-specific problem. To that end, we first tackle the ef-

ficiency issues on modeling multiple contextual sentences on encoder. We introduce

a hierarchical context encoder (HCE) in Chapter 3 that encodes multiple contextual

sentences from token-level to sentence-level. By adapting the hierarchical structure,

the HCE consuming less computation time on training and translation than existing

state-of-the-art CNMT encoders.

Secondly, we investigate training process for CNMT models, where most mod-

els rely on negative log-likelihood (NLL) that do not fully exploit contextual depen-

dencies. To overcome the insufficiency, we introduce a coreference-based contrastive

learning for CNMT in Chapter 4 that generates contrastive examples from coreference

chains between the source and target sentences. This novel training method enables

the model to generate more adequate pronoun translation, as well as improve overall

translation quality.

Finally, we move on an application of CNMT, that is dealing with Korean hon-

orifics translation which requires contextual information for adequate translations in

Chapter 5. Since this problem needs the model to exploit contexts of both the source
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and the target languages, we propose to use CNMT models that captures crucial con-

textual information on English source document and thee conext-aware post-editing

(CAPE) system for exploiting contexts on Korean target sentences. We also design a

Korean honorific test suit for assessing the models’s ability on translating adequate

Korean honorifics. Empirical results shows our method’s strength in more consistent

Korean honorific translations.

To sum up, this dissertation presents better approaches on CNMT model architec-

ture and training method. In addition, we provide an application of CNMT that dealing

with lanugage-specific problem and future research directions on document-level MT.

We hope it improves the overall quality of document-level machine translation and

thus expanding the real-world use of CNMT, especially in communicating with Ko-

rean. We suggest that spoken language translation (SLT) systems for applications like

video captioning, online conference, and messaging can be benefited from our method.
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초록

신경망기계번역기법은최근번역품질에있어서큰성능향상을이룩하여많은

주목을받고있다.그럼에도불구하고현재대부분의신경망번역시스템은텍스트

를독립된문장단위로번역을수행하기때문에텍스트에존재하는문맥을무시하고

결국문서단위로파악했을때적절하지않은번역문을생성할수있는단점이있다.

이를 극복하기 위해 주변 문장을 동시에 고려하는 문맥 인식 기반 신경망 번역 기

법이 제안되고 있다. 본 학위 논문은 문맥 인식 기반 신경망 번역 시스템의 성능을

개선시킬수있는기법들과문맥인식기반신경망번역기법의활용방안을제시한

다.먼저여러개의문맥문장들을효과적으로모델링하기위해문맥문장들을토큰

레벨및문장레벨로단계적으로표현하는계층적문맥인코더를제시하였다.제시

된모델은기존모델들과비교하여가장좋은번역품질을얻으면서동시에학습및

번역에 걸리는 연산 시간을 단축하였다. 두 번째로는 문맥 인식 기반 신경망 번역

모델의 학습 방법을 개선하고자 하였는데 이는 기존 연구에서는 문맥에 대한 의존

관계를 전부 활용하지 못하는 전통적인 음의 로그우도 손실함수에 의존하고 있기

때문이다.이를보완하기위해문맥인식기반신경망번역모델을위한상호참조에

기반한대조학습기법을제시한다.제시된기법은원문과주변문맥문장들사이에

존재하는상호참조사슬을활용하여대조사례를생성하며,문맥인식기반신경망

번역 모델들의 전반적인 번역 품질 뿐만 아니라 대명사 해결 성능도 크게 향상시

켰다. 마지막으로는 맥락 정보가 필요한 한국어 경어체 번역에 있어서 문맥 인식

기반신경망번역기법의활용방안에대해서도연구하였다.이에영어-한국어번역

문제에문맥인식기반신경망번역기법을적용하여영어원문에서필수적인맥락

정보를추출하는한편한국어번역문에서도문맥인식사후편집시스템을활용하여

보다일관된한국어경어체표현을번역하도록개선하는기법을제시하였다.
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