310 research outputs found

    Combing Euclidean buildings

    Full text link
    For an arbitrary Euclidean building we define a certain combing, which satisfies the `fellow traveller property' and admits a recursive definition. Using this combing we prove that any group acting freely, cocompactly and by order preserving automorphisms on a Euclidean building of one of the types A_n,B_n,C_n admits a biautomatic structure.Comment: 32 pages. Published copy, also available at http://www.maths.warwick.ac.uk/gt/GTVol4/paper2.abs.htm

    Decomposition spaces in combinatorics

    Get PDF
    A decomposition space (also called unital 2-Segal space) is a simplicial object satisfying an exactness condition weaker than the Segal condition: just as the Segal condition expresses (up to homotopy) composition, the new condition expresses decomposition. It is a general framework for incidence (co)algebras. In the present contribution, after establishing a formula for the section coefficients, we survey a large supply of examples, emphasising the notion's firm roots in classical combinatorics. The first batch of examples, similar to binomial posets, serves to illustrate two key points: (1) the incidence algebra in question is realised directly from a decomposition space, without a reduction step, and reductions are often given by CULF functors; (2) at the objective level, the convolution algebra is a monoidal structure of species. Specifically, we encounter the usual Cauchy product of species, the shuffle product of L-species, the Dirichlet product of arithmetic species, the Joyal-Street external product of q-species and the Morrison `Cauchy' product of q-species, and in each case a power series representation results from taking cardinality. The external product of q-species exemplifies the fact that Waldhausen's S-construction on an abelian category is a decomposition space, yielding Hall algebras. The next class of examples includes Schmitt's chromatic Hopf algebra, the Fa\`a di Bruno bialgebra, the Butcher-Connes-Kreimer Hopf algebra of trees and several variations from operad theory. Similar structures on posets and directed graphs exemplify a general construction of decomposition spaces from directed restriction species. We finish by computing the M\Preprin

    Asymptotically rigid mapping class groups and Thompson's groups

    Full text link
    We consider Thompson's groups from the perspective of mapping class groups of surfaces of infinite type. This point of view leads us to the braided Thompson groups, which are extensions of Thompson's groups by infinite (spherical) braid groups. We will outline the main features of these groups and some applications to the quantization of Teichm\"uller spaces. The chapter provides an introduction to the subject with an emphasis on some of the authors results.Comment: survey 77
    • …
    corecore