22 research outputs found

    BCN20000: dermoscopic lesions in the wild

    Get PDF
    This article summarizes the BCN20000 dataset, composed of 19424 dermoscopic images of skin lesions captured from 2010 to 2016 in the facilities of the Hospital ClĂ­nic in Barcelona. With this dataset, we aim to study the problem of unconstrained classification of dermoscopic images of skin cancer, including lesions found in hard-to-diagnose locations (nails and mucosa), large lesions which do not fit in the aperture of the dermoscopy device, and hypo-pigmented lesions. The BCN20000 will be provided to the participants of the ISIC Challenge 2019 [8], where they will be asked to train algorithms to classify dermoscopic images of skin cancer automatically.Peer ReviewedPreprin

    Data Augmentation for Skin Lesion Analysis

    Full text link
    Deep learning models show remarkable results in automated skin lesion analysis. However, these models demand considerable amounts of data, while the availability of annotated skin lesion images is often limited. Data augmentation can expand the training dataset by transforming input images. In this work, we investigate the impact of 13 data augmentation scenarios for melanoma classification trained on three CNNs (Inception-v4, ResNet, and DenseNet). Scenarios include traditional color and geometric transforms, and more unusual augmentations such as elastic transforms, random erasing and a novel augmentation that mixes different lesions. We also explore the use of data augmentation at test-time and the impact of data augmentation on various dataset sizes. Our results confirm the importance of data augmentation in both training and testing and show that it can lead to more performance gains than obtaining new images. The best scenario results in an AUC of 0.882 for melanoma classification without using external data, outperforming the top-ranked submission (0.874) for the ISIC Challenge 2017, which was trained with additional data.Comment: 8 pages, 3 figures, to be presented on ISIC Skin Image Analysis Worksho

    Improving Skin Lesion Segmentation via Stacked Adversarial Learning

    Get PDF
    Segmentation of skin lesions is an essential step in computer aided diagnosis (CAD) for the automated melanoma diagnosis. Recently, segmentation methods based on fully convolutional networks (FCNs) have achieved great success for general images. This success is primarily related to FCNs leveraging large labelled datasets to learn features that correspond to the shallow appearance and the deep semantics of the images. Such large labelled datasets, however, are usually not available for medical images. So researchers have used specific cost functions and post-processing algorithms to refine the coarse boundaries of the results to improve the FCN performance in skin lesion segmentation. These methods are heavily reliant on tuning many parameters and post-processing techniques. In this paper, we adopt the generative adversarial networks (GANs) given their inherent ability to produce consistent and realistic image features by using deep neural networks and adversarial learning concepts. We build upon the GAN with a novel stacked adversarial learning architecture such that skin lesion features can be learned, iteratively, in a class-specific manner. The outputs from our method are then added to the existing FCN training data, thus increasing the overall feature diversity. We evaluated our method on the ISIC 2017 skin lesion segmentation challenge dataset; we show that it is more accurate and robust when compared to the existing skin state-of-the-art methods

    Skin Lesion Segmentation using Deep Hypercolumn Descriptors

    Get PDF
    We present a image segmentation method based on deep hypercolumndescriptors which produces state-of-the-art results for thesegmentation of several classes of benign and malignant skin lesions.We achieve a Jaccard index of 0.792 on the 2017 ISIC SkinLesion Segmentation Challenge dataset

    Convolutional Sparse Kernel Network for Unsupervised Medical Image Analysis

    Full text link
    The availability of large-scale annotated image datasets and recent advances in supervised deep learning methods enable the end-to-end derivation of representative image features that can impact a variety of image analysis problems. Such supervised approaches, however, are difficult to implement in the medical domain where large volumes of labelled data are difficult to obtain due to the complexity of manual annotation and inter- and intra-observer variability in label assignment. We propose a new convolutional sparse kernel network (CSKN), which is a hierarchical unsupervised feature learning framework that addresses the challenge of learning representative visual features in medical image analysis domains where there is a lack of annotated training data. Our framework has three contributions: (i) We extend kernel learning to identify and represent invariant features across image sub-patches in an unsupervised manner. (ii) We initialise our kernel learning with a layer-wise pre-training scheme that leverages the sparsity inherent in medical images to extract initial discriminative features. (iii) We adapt a multi-scale spatial pyramid pooling (SPP) framework to capture subtle geometric differences between learned visual features. We evaluated our framework in medical image retrieval and classification on three public datasets. Our results show that our CSKN had better accuracy when compared to other conventional unsupervised methods and comparable accuracy to methods that used state-of-the-art supervised convolutional neural networks (CNNs). Our findings indicate that our unsupervised CSKN provides an opportunity to leverage unannotated big data in medical imaging repositories.Comment: Accepted by Medical Image Analysis (with a new title 'Convolutional Sparse Kernel Network for Unsupervised Medical Image Analysis'). The manuscript is available from following link (https://doi.org/10.1016/j.media.2019.06.005
    corecore