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Abstract

We present a image segmentation method based on deep hyper-
column descriptors which produces state-of-the-art results for the
segmentation of several classes of benign and malignant skin le-
sions. We achieve a Jaccard index of 0.792 on the 2017 ISIC Skin
Lesion Segmentation Challenge dataset.

1 Introduction

One of the fundamental and most challenging tasks in digital image
analysis is semantic segmentation, which is the process of assigning
pixel-wise labels to regions in an image that share some high-level
semantics. In this paper, we focus on the task of accurately seg-
menting benign and malignant skin lesions in dermatoscopy images
as a means of lesion quantification. Among the skin lesions con-
sidered in our work is melanoma which is an aggressive malignant
tumour originating from melanocytes cells — skin cells responsible
for the production of melanin. The American Cancer Society esti-
mates that in 2017, in the United States alone, more than 87,000
new melanoma cases will be diagnosed with an estimated 9,300
fatalities [1]. Skin melanoma lesions share similar visual character-
istics with other benign skin lesions such as nevus and seborrhoeic
keratosis as shown in Fig. 1.
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Fig. 1: Examples of various skin benign and malignant skin
lesions

Skin lesion segmentation is challenging due to a variety of
factors, such as variations in skin tone, uneven illumination, partial
occlusion due to the presence of hair, low contrast between lesion
and surrounding skin, and the presence of freckles or gauze in the
image frame, which may be mistaken for lesions. A successful lesion
segmentation technique should be robust enough to accommodate
this variation. Fig. 2 shows an example dermatoscope image of a
skin lesion and its corresponding binary mask.

Fig. 2: Left: An example of a skin lesion image with a blue
fiducial marker in the background. Right: The corresponding
ground truth binary segmentation mask.

2 Related Work

Skin lesion segmentation is a widely researched topic in medical
image analysis[2]. Until recently, most skin lesion segmentation
approaches were based on meticulously designed image features[3,
4, 5]. Such approaches often require extensive pre-processing and

post-processing approaches such as hair removal, edge-preserving
smoothing and morphological operations. Therefore the robustness
of such approaches could be limited as each new scenario may
require custom tuning.

An alternative approach to manually crafting image features
for segmentation is to instead leverage deep neural networks to
automatically learn robust image features given sufficient labeled
examples. Deep learning is becoming the dominant approach for
many medical imaging problems[6] and has seen tremendous suc-
cess for the related skin lesion classification task[7]. Early deep
learning approaches to image segmentation used a patch-wise
training strategy [8, 9], where overlapping patches are used to train
a convolutional neural network to predict the value of the pixel cen-
tered on each patch. While this approach overcame the requirement
of having a large labeled dataset, the approach was computationally
inefficient due to obvious redundancies in information contained in
overlapping patches. Long et al. [10] proposed the Fully Convolu-
tional Neural Network (FCN) architecture which has become the
mainstream approach to deep semantic segmentation and many
variants[11, 12, 13] have been proposed since. In FCNs, the usual
fully-connected and final prediction layers of convolutional neural
networks (CNNs) are replaced with convolutional layers to facilitate
dense prediction. In order to learn contextual information con-
tained in images, CNNs use pooling operations (e.g. max-pooling)
or strided-convolutions, that produce downsampled outputs across
the layers of the network resulting in a much smaller prediction mask.
Therefore, FCNN architectures require a single upsampling or sev-
eral progressive upsampling or “de-convolution” layers to upscale
the pixel-wise predictions of the network to match the dimensions
of the input image. In the 2017 skin lesion segmentation challenge
(ISIC2017: Skin Lesion Analysis Towards Melanoma Detection),
70% of the submissions, and 9 out of the top 10 submissions em-
ployed deep learning strategies for segmentation.

Deep learning architectures often require a large labelled dataset,
which is uncommon in the medical domain. Recently, transfer learn-
ing approaches (i.e. fine-tuning a pre-trained network on a limited,
but different dataset) has been successful[14, 15, 16]. Nevertheless,
the mechanisms of transfer learning and why such approaches work
on vastly different domains has been challenging to interpret[17].

Our approach to skin lesion segmentation is based on the idea
of using hypercolumn descriptors first proposed by[18]. Hypercol-
umn descriptors for a given pixel are formed by extracting activations
from multiple convolutional layers of a CNN that correspond to the
same pixel. These multi-scale descriptors, which capture rich se-
mantics and localization information, can then be used to train a
non-linear classifier to perform pixel-wise predictions. Hypercol-
umn descriptors have been applied to problems such as semantic
segmentation[18], edge detection, surface normal estimation[19]
and auto-colourization of grayscale images[20]. We demonstrate its
effectiveness for the challenging skin lesion segmentation problem
and show state-of-the-art performance on the ISIC2017 Skin Lesion
Segmentation Challenge 1 which is larger and more challenging
than the previous dataset used in a similar challenge (ISBI 2016).
The training dataset consists of 2000 dermatoscopy images of three
types of skin lesions: nevus, seborrhoeic keratosis and melanoma
— the latter lesion being malignant — and their binary masks. The
masks were created by an expert clinician, using either a semi-
automated process (using a user-provided seed point, a user-tuned
flood-fill algorithm, and morphological filtering) or a manual process
(from a series of user-provided polyline points). Fig. 2 shows an
example lesion and its corresponding binary mask.

3 Methodology

Our skin lesion segmentation model is an adaptation of the PixelNet
architecture[19]. The PixelNet architecture uses the convolutional
layers of the VGG16 [21] architecture to form hypercolumn descrip-
tors using sparsely sampled pixels from input images during training.

1http://challenge2017.isic-archive.com
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These descriptors are then used to train a 2-layered multi-layer per-
ceptron (MLP) to perform pixel-wise prediction. We demonstrate
that it is possible to achieve state-of-the-art segmentation perfor-
mance by training the network from scratch using a relatively small
dataset.

3.1 Preprocessing

For this application, the input images and the corresponding ground-
truth masks are first resized to 224 by 224 pixels to match the
resolution of images in the pre-training stage. When using a pre-
trained VGG16 net to extract the hypercolumns, we retained the
normalization of the input images using the mean channel-wise
pixel intensities computed for the entire ImageNet dataset. We
perform data augmentation on-the-fly by randomly rotating both the
image and its mask by 90-degree increments as well as flipping the
images. In addition, we also randomly varied the image brightness,
hue and contrast (within a small range) for each minibatch.

3.2 Deep Hypercolumns

During the training phase, we feed the input image to a VGG16 net-
work and extract the sparse hypercolumn descriptors from selected
convolutional layers. The hypercolumns are formed by concate-
nating a series of activations of the convolutional layers. In our
implementation, we chose the activations from the final convolu-
tional layer from each convolutional and fully-connected block in the
VGG16 architecture (i.e. conv12,conv22,conv33,conv43,conv53, and
FC2 layers.) to form the hypercolumn. The fully connected layers in
the original VGG16 network are implemented as 1×1 convolution
layers. As each convolutional block is preceded by a max-pooling
operation that downsamples the activations, we perform bilinear up-
sampling using an appropriate scaling factor such that the resulting
resolution for the activations of each layer forming the hypercolumn
is 224× 224. Then, we sparsely sample random points from the
dense hypercolumns to form rich descriptors for a given pixel in
the input image. The sparse hypercolumn descriptors are then
fed to a non-linear classifier, in our case, a 2-layered MLP (again,
implemented as 1× 1 convolutions) with 4096 and 2048 neurons
respectively. We use a sparsely-sampled output mask, whose pix-
els correspond to the location of the sparse hypercolumns to learn
pixel-wise class predictions.

3.3 Training

We implemented our network using TensorFlow [22] and experi-
mented both fine-tuning an ImageNet-pretrained VGG16 net as well
as training the entire network from scratch. In both cases, we used
batch normalization and ADAM optimization with an initial learning
rate of 10−3 using a per-pixel cross-entropy loss function. Since we
construct hypercolumn descriptors from sparsely sampled pixels,
we empirically found that using a sample size of 1600 pixels from
a batch size of 5 images provided best results. Training typically
converges after 120 epochs on a NVIDIA Titan-Xp GPU with 12Gb
of RAM. This takes around 3 hours. During inference, we turn
off sparse random sampling and use the dense hypercolumns for
image segmentation.

4 Results and Discussion

Example segmentation outputs from our lesion segmentation archi-
tecture are shown in Fig. 4. It can be seen that the model produces
accurate segmentations for a wide range of skin lesion appear-
ances in the dermatoscopy images. Tab. 1 shows the comparative
results of our approach against the top-3 scoring participants of
the 2017 ISIC lesion segmentation challenge. Our model achieves
significantly higher Jaccard score than the best submissions for the
2017 ISIC skin lesion segmentation challenge and can be effectively
trained from scratch using a relatively small dataset. The ranking
of segmentation quality is based on the Jaccard index, as used
in the challenge, which measures the degree of overlap between
the predicted segmentation and the expert-annotated ground truth
masks. It is defined as: JA = T P

T P+FN+FP where T P is the number of
True Positives, FN is the number of False Negatives and FP is the
number of False Positives. We found that a network trained from
scratch produces significantly better segmentation performance as

opposed to fine-tuning a pre-trained network. This may be attributed
to the misalignment between the distribution of images in ImageNet
and the distribution of dermatoscopy images in our target dataset.

Despite the impressive results obtained for the skin lesion seg-
mentation, the model has a large number of parameters and the
computation of dense hypercolumns during inference is compute-
intensive. We are currently working to reduce the model size and
inference times so that a relatively lean and fast model can be
deployed on mobile-phones.
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