16 research outputs found

    Atlas-Based Prostate Segmentation Using an Hybrid Registration

    Full text link
    Purpose: This paper presents the preliminary results of a semi-automatic method for prostate segmentation of Magnetic Resonance Images (MRI) which aims to be incorporated in a navigation system for prostate brachytherapy. Methods: The method is based on the registration of an anatomical atlas computed from a population of 18 MRI exams onto a patient image. An hybrid registration framework which couples an intensity-based registration with a robust point-matching algorithm is used for both atlas building and atlas registration. Results: The method has been validated on the same dataset that the one used to construct the atlas using the "leave-one-out method". Results gives a mean error of 3.39 mm and a standard deviation of 1.95 mm with respect to expert segmentations. Conclusions: We think that this segmentation tool may be a very valuable help to the clinician for routine quantitative image exploitation.Comment: International Journal of Computer Assisted Radiology and Surgery (2008) 000-99

    Accurate Segmentation of CT Male Pelvic Organs via Regression-Based Deformable Models and Multi-Task Random Forests

    Get PDF
    Segmenting male pelvic organs from CT images is a prerequisite for prostate cancer radiotherapy. The efficacy of radiation treatment highly depends on segmentation accuracy. However, accurate segmentation of male pelvic organs is challenging due to low tissue contrast of CT images, as well as large variations of shape and appearance of the pelvic organs. Among existing segmentation methods, deformable models are the most popular, as shape prior can be easily incorporated to regularize the segmentation. Nonetheless, the sensitivity to initialization often limits their performance, especially for segmenting organs with large shape variations. In this paper, we propose a novel approach to guide deformable models, thus making them robust against arbitrary initializations. Specifically, we learn a displacement regressor, which predicts 3D displacement from any image voxel to the target organ boundary based on the local patch appearance. This regressor provides a nonlocal external force for each vertex of deformable model, thus overcoming the initialization problem suffered by the traditional deformable models. To learn a reliable displacement regressor, two strategies are particularly proposed. 1) A multi-task random forest is proposed to learn the displacement regressor jointly with the organ classifier; 2) an auto-context model is used to iteratively enforce structural information during voxel-wise prediction. Extensive experiments on 313 planning CT scans of 313 patients show that our method achieves better results than alternative classification or regression based methods, and also several other existing methods in CT pelvic organ segmentation

    Regmentation: A New View of Image Segmentation and Registration

    Get PDF
    Image segmentation and registration have been the two major areas of research in the medical imaging community for decades and still are. In the context of radiation oncology, segmentation and registration methods are widely used for target structure definition such as prostate or head and neck lymph node areas. In the past two years, 45% of all articles published in the most important medical imaging journals and conferences have presented either segmentation or registration methods. In the literature, both categories are treated rather separately even though they have much in common. Registration techniques are used to solve segmentation tasks (e.g. atlas based methods) and vice versa (e.g. segmentation of structures used in a landmark based registration). This article reviews the literature on image segmentation methods by introducing a novel taxonomy based on the amount of shape knowledge being incorporated in the segmentation process. Based on that, we argue that all global shape prior segmentation methods are identical to image registration methods and that such methods thus cannot be characterized as either image segmentation or registration methods. Therefore we propose a new class of methods that are able solve both segmentation and registration tasks. We call it regmentation. Quantified on a survey of the current state of the art medical imaging literature, it turns out that 25% of the methods are pure registration methods, 46% are pure segmentation methods and 29% are regmentation methods. The new view on image segmentation and registration provides a consistent taxonomy in this context and emphasizes the importance of regmentation in current medical image processing research and radiation oncology image-guided applications

    Locally-constrained boundary regression for segmentation of prostate and rectum in the planning CT images

    Get PDF
    Automatic and accurate segmentation of the prostate and rectum in planning CT images is a challenging task due to low image contrast, unpredictable organ (relative) position, and uncertain existence of bowel gas across different patients. Recently, regression forest was adopted for organ deformable segmentation on 2D medical images by training one landmark detector for each point on the shape model. However, it seems impractical for regression forest to guide 3D deformable segmentation as a landmark detector, due to large number of vertices in the 3D shape model as well as the difficulty in building accurate 3D vertex correspondence for each landmark detector. In this paper, we propose a novel boundary detection method by exploiting the power of regression forest for prostate and rectum segmentation. The contributions of this paper are as follows: 1) we introduce regression forest as a local boundary regressor to vote the entire boundary of a target organ, which avoids training a large number of landmark detectors and building an accurate 3D vertex correspondence for each landmark detector; 2) an auto-context model is integrated with regression forest to improve the accuracy of the boundary regression; 3) we further combine a deformable segmentation method with the proposed local boundary regressor for the final organ segmentation by integrating organ shape priors. Our method is evaluated on a planning CT image dataset with 70 images from 70 different patients. The experimental results show that our proposed boundary regression method outperforms the conventional boundary classification method in guiding the deformable model for prostate and rectum segmentations. Compared with other state-of-the-art methods, our method also shows a competitive performance

    Computational Anatomy for Multi-Organ Analysis in Medical Imaging: A Review

    Full text link
    The medical image analysis field has traditionally been focused on the development of organ-, and disease-specific methods. Recently, the interest in the development of more 20 comprehensive computational anatomical models has grown, leading to the creation of multi-organ models. Multi-organ approaches, unlike traditional organ-specific strategies, incorporate inter-organ relations into the model, thus leading to a more accurate representation of the complex human anatomy. Inter-organ relations are not only spatial, but also functional and physiological. Over the years, the strategies 25 proposed to efficiently model multi-organ structures have evolved from the simple global modeling, to more sophisticated approaches such as sequential, hierarchical, or machine learning-based models. In this paper, we present a review of the state of the art on multi-organ analysis and associated computation anatomy methodology. The manuscript follows a methodology-based classification of the different techniques 30 available for the analysis of multi-organs and multi-anatomical structures, from techniques using point distribution models to the most recent deep learning-based approaches. With more than 300 papers included in this review, we reflect on the trends and challenges of the field of computational anatomy, the particularities of each anatomical region, and the potential of multi-organ analysis to increase the impact of 35 medical imaging applications on the future of healthcare.Comment: Paper under revie

    Automatic Mesh-Based Segmentation of Multiple Organs in MR Images

    Get PDF
    La segmentation de structures anatomiques multiples dans des images de résonance magnétique (RM) est souvent requise dans des applications de génie biomédical telles que la simulation numérique, la chirurgie guidée par l’image, la planification de traitements, etc. De plus, il y a un besoin croissant pour une segmentation automatique d’organes multiples et de structures complexes à partir de cette modalité d’imagerie. Il existe plusieurs techniques de segmentation multi-objets qui ont été appliquées avec succès sur des images de tomographie axiale à rayons-X (CT). Cependant, dans le cas des images RM cette tâche est plus difficile en raison de l’inhomogénéité des intensités dans ces images et de la variabilité dans l’apparence des structures anatomiques. Par conséquent, l’état de l’art sur la segmentation multi-objets sur des images RM est beaucoup plus faible que celui sur les images CT. Parmi les travaux qui portent sur la segmentation d’images RM, les approches basées sur la segmentation de régions sont sensibles au bruit et la non uniformité de l’intensité dans les images. Les approches basées sur les contours ont de la difficulté à regrouper les informations sur les contours de sorte à produire un contour fermé cohérent. Les techniques basées sur les atlas peuvent avoir des problèmes en présence de structures complexes avec une grande variabilité anatomique. Les modèles déformables représentent une des méthodes les plus populaire pour la détection automatique de différents organes dans les images RM. Cependant, ces modèles souffrent encore d’une limitation importante qui est leur sensibilité à la position initiale et la forme du modèle. Une initialisation inappropriée peut conduire à un échec dans l’extraction des frontières des objets. D’un autre côté, le but ultime d’une segmentation automatique multi-objets dans les images RM est de produire un modèle qui peut aider à extraire les caractéristiques structurelles d’organes distincts dans les images. Les méthodes d’initialisation automatique actuelles qui utilisent différents descripteurs ne réussissent pas complètement l’extraction d’objets multiples dans les images RM. Nous avons besoin d’exploiter une information plus riche qui se trouve dans les contours des organes. Dans ce contexte les maillages adaptatifs anisotropiques semblent être une solution potentielle au problème soulevé. Les maillages adaptatifs anisotropiques construits à partir des images RM contiennent de l’information à un plus haut niveau d’abstraction représentant les éléments, d’une orientation et d’une forme donnée, qui constituent les différents organes dans l’image. Les méthodes existantes pour la construction de maillages adaptatifs sont basées sur les intensités dans l’image et possèdent une limitation pratique qui est l’alignement inadéquat des éléments du maillage en présence de contours inclinés dans l’image. Par conséquent, nous avons aussi besoin d’améliorer le processus d’adaptation de maillage pour produire une meilleure représentation de l’image basée sur un maillage.----------ABSTRACT: Segmentation of multiple anatomical structures in MR images is often required for biomedical engineering applications such as clinical simulation, image-guided surgery, treatment planning, etc. Moreover, there is a growing need for automatic segmentation of multiple organs and complex structures from this medical imaging modality. Many successful multi-object segmentation attempts were introduced for CT images. However in the case of MR images it is a more challenging task due to intensity inhomogeneity and variability of anatomy appearance. Therefore, state-of-the-art in multi-object MR segmentation is very inferior to that of CT images. In literature dealing with MR image segmentation, the region-based approaches are sensitive to noise and non-uniformity in the input image. The edge-based approaches are challenging to group the edge information into a coherent closed contour. The atlas-based techniques can be problematic for complicated structures with anatomical variability. Deformable models are among the most popular methods for automatic detection of different organs in MR images. However they still have an important limitation which is that they are sensitive to initial position and shape of the model. An unsuitable initialization may provide failure to capture the true boundaries of the objects. On the other hand, a useful aim for an automatic multi-object MR segmentation is to provide a model which promotes understanding of the structural features of the distinct objects within the MR images. The current automatic initialization methods which have used different descriptors are not completely successful in extracting multiple objects from MR images and we need to find richer information that is available from edges. In this regard, anisotropic adaptive meshes seem to be a potential solution to the aforesaid limitation. Anisotropic adaptive meshes constructed from MR images contain higher level, abstract information about the anatomical structures of the organs within the image retained as the elements shape and orientation. Existing methods for constructing adaptive meshes based on image features have a practical limitation where manifest itself in inadequate mesh elements alignment to inclined edges in the image. Therefore, we also have to enhance mesh adaptation process to provide a better mesh-based representation. In this Ph.D. project, considering the highlighted limitations we are going to present a novel method for automatic segmentation of multiple organs in MR images by incorporating mesh adaptation techniques. In our progress, first, we improve an anisotropic adaptation process for the meshes that are constructed from MR images where the mesh elements align adequately to the image content and improve mesh anisotropy along edges in all directions. Then the resulting adaptive meshes are used for initialization of multiple active models which leads to extract initial object boundaries close to the true boundaries of multiple objects simultaneously. Finally, the Vector Field Convolution method is utilized to guide curve evolution towards the object boundaries to obtain the final segmentation results and present a better performance in terms of speed and accuracy

    IMPROVING DAILY CLINICAL PRACTICE WITH ABDOMINAL PATIENT SPECIFIC 3D MODELS

    Get PDF
    This thesis proposes methods and procedures to proficiently introduce patient 3D models in the daily clinical practice for diagnosis and treatment of abdominal diseases. The objective of the work consists in providing and visualizing quantitative geometrical and topological information on the anatomy of interest, and to develop systems that allow to improve radiology and surgery. The 3D visualization drastically simplifies the interpretation process of medical images and provides benefits both in diagnosing and in surgical planning phases. Further advantages can be introduced registering virtual pre-operative information (3D models) with real intra-operative information (patient and surgical instruments). The surgeon can use mixed-reality systems that allow him/her to see covered structures before reaching them, surgical navigators for see the scene (anatomy and instruments) from different point of view and smart mechatronics devices, which, knowing the anatomy, assist him/her in an active way. All these aspects are useful in terms of safety, efficiency and financial resources for the physicians, for the patient and for the sanitary system too. The entire process, from volumetric radiological images acquisition up to the use of 3D anatomical models inside the surgical room, has been studied and specific applications have been developed. A segmentation procedure has been designed taking into account acquisition protocols commonly used in radiological departments, and a software tool, that allows to obtain efficient 3D models, have been implemented and tested. The alignment problem has been investigated examining the various sources of errors during the image acquisition, in the radiological department, and during to the execution of the intervention. A rigid body registration procedure compatible with the surgical environment has been defined and implemented. The procedure has been integrated in a surgical navigation system and is useful as starting initial registration for more accurate alignment methods based on deformable approaches. Monoscopic and stereoscopic 3D localization machine vision routines, using the laparoscopic and/or generic cameras images, have been implemented to obtain intra-operative information that can be used to model abdominal deformations. Further, the use of this information for fusion and registration purposes allows to enhance the potentialities of computer assisted surgery. In particular a precise alignment between virtual and real anatomies for mixed-reality purposes, and the development of tracker-free navigation systems, has been obtained elaborating video images and providing an analytical adaptation of the virtual camera to the real camera. Clinical tests, demonstrating the usability of the proposed solutions, are reported. Test results and appreciation of radiologists and surgeons, to the proposed prototypes, encourage their integration in the daily clinical practice and future developments

    Reconstruction 3D des structures adjacentes de l'articulation de la hanche par une segmentation multi-structures Ă  l'aide des maillages surfaciques triangulaires[ressource Ă©lectronique]

    Get PDF
    Une nouvelle technique de reconstruction 3D des deux structures de la hanche à partir des images tomodensitométriques (TDM) est proposée. La tête fémorale et le cotyle sont reconstruits par une méthode de segmentation multi-structures des surfaces 3D adjacentes à l'aide des maillages surfaciques triangulaires 3D. La méthode débute par une segmentation hiérarchique préliminaire. Les deux maillages 3D résultants de la segmentation hiérarchique sont ensuite déployés en deux surfaces 2D planaires. Un déploiement parapluie est utilisé pour la tête fémorale et un déploiement par paramétrisation 3D/2D est utilisé pour le cotyle. Ces opérations de déploiement permettent de transformer les données volumiques en données surfaciques quasi planaires et d’en faciliter la segmentation. Une méthode itérative des surfaces minimales permet la segmentation des deux surfaces recherchées dans les volumes déployés. La dernière étape de la méthode de reconstructions 3D consiste en la détection et en la correction du chevauchement entre les deux structures. Cette technique de reconstruction a été validée sur une base de données de 10 séries d’images volumiques TDM. Les résultats des reconstructions semblent satisfaisants. Les erreurs de précision des reconstructions 3D ont été quantifiées par rapport à une technique standard de référence. La quantification a révélé des erreurs de quantification de 0,83 ± 0,25 mm pour le cotyle et de 0,70 ± 0,17 mm pour la tête fémorale. Le temps d’exécution moyen des reconstructions des deux structures de la hanche est estimé à 3,0 ± 0,3 min. La technique proposée montre le potentiel de solutions que le domaine du traitement des images peut fournir aux cliniciens pour les aider à accomplir leur tâche de planification chirurgicale à partir d’images 3D. De telles solutions pourront éventuellement être généralisées à d’autres modalités d’imagerie et à d’autres structures
    corecore